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Abstract
This paper introduces the configuration of the MEMS tuning fork gyroscope with the connecting diamond-shaped frame to

achieve the anti-phase mode in the driving direction. The connecting frame is an important element to compensate for the

phase deviation in two major directions in case of appearing elements that cause the phase deviation in operating such as

driving force, geometric error,… The matching phase between the two tines of the TFG with this configuration is 89% and

93.67% in the driving and sensing mode, respectively. Even, the phase compensation ability of the system reaches up to

95.6% in the driving mode with increasing the equivalent stiffness of the connecting frame to four times.

1 Introduction

Based on the advancement of micro-electro-mechanical

system (MEMS) technology, micro-machined vibratory

gyroscopes (MVGs) has been becoming popular in tech-

nology science and real-life thanks to its advantages over

traditional gyroscopes such as small size, light weight, and

low power consumption (Yazdi et al. 1998; Dunzhu et al.

2014; Andrei 2006; Acar 2009; Andrei 1999). This device

is a kind of micro-sensor used to detect and determine the

angular velocity or rotational angle of a body into which

the MVG is integrated. The MVG operates based on the

‘‘Coriolis effect’’ to transfer energy from the primary

vibration to a secondary one (Acar 2009). These vibrations

are in two perpendicular directions and called the driving

and sensing direction respectively.

Tuning fork gyroscope (TFG) is known as an anti-phase

system with the purpose to cancel the common-mode

inputs (Acar 2009). The TFG structure consists of two

identical masses connected directly or indirectly by a

mechanical frame. The masses are driven in opposite

directions but along the same axis (anti-phase mode).

When external angular velocity in the vertical axis is

applied, the secondary motion of the masses occurs in

opposite directions as well. This state increases signifi-

cantly the performance of TFG (Apostolyuk and Tay 2005;

Bumkyoo et al. 2008; Guan et al. 2016). However, the

traditional MEMS tuning fork structure with the direct

mechanical coupling between two tines likely causes an in-

phase vibratory mode (Guan et al. 2016), also could appear

some errors in vibration (Yoon et al. 2012), (Weinberg and

Kourepenis 2006). Therefore, TFG should be designed

with the mechanical frame to guarantee the anti-phase

mode in both the driving and sensing direction.

The mechanical frame connecting indirectly two tines in

the TFG were designed in a diamond-shaped frame (Guan

et al. 2016a, b), a U-shaped bar (Guan et al. 2014), a

lozenge-shaped frame (Trinh et al. 2014), a structurally

forced lever bar (Trusov et al. 2013), a T-shaped bar

(Sharma et al. 2004; Zaman et al. 2008), or a straight

linkage bar (Huilin and Yongpeng 2011). These researches

focused on simulation and modal analysis to determine the

frequency of anti-phase mode and the output characteristics

of the TFG model. The results showed that the connecting

frame is used to reject the vibration output and take likely

the anti-phase mode. However, how the masses of the TFG

respond when the external forces applied to them with the

considered phase deviation has not been still studied yet.

Besides, the response of the sense masses in TFG with the

different forms of outside angular velocity should be

considered.

This paper presents a TFG model with a connecting

diamond-shaped frame to create and guarantee anti-phase

mode in the first mode. Besides, the dynamic response of

& The Van Vu

vuvanthe@mta.edu.vn

1 Le Quy Don Technical University, Hanoi, Vietnam

2 Vietnam National University, Hanoi, Vietnam

123

Microsystem Technologies
https://doi.org/10.1007/s00542-020-04875-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-6265-3096
http://crossmark.crossref.org/dialog/?doi=10.1007/s00542-020-04875-w&amp;domain=pdf
https://doi.org/10.1007/s00542-020-04875-w


the device in the driving and sensing direction is analyzed

to determine the anti-phase frequency and demonstrate the

matching phase between two masses in two tines of this

TFG. The output mechanical signals of the TFG also are

studied by using a numerical analysis method in this

research.

2 Configuration

The simple configuration of the proposed TFG is shown in

Fig. 1. It consists of two tines. Each tine is defined as a

single gyroscope and includes a proof-mass 1 and an outer

frame 2. The configuration and dynamic characteristics of

every single gyroscope are provided in (Van Vu et al.

2018). This outer frame is connected to the proof-mass by

four elastic beams 3 and suspended on substrate thanks to
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Fig. 1 3D model of the

proposed TFG with a diamond-

shaped frame
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Fig. 2 Configuration and

dynamic of the connecting

frame with the diamond shape
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Fig. 3 Physical model of the

TFG
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four other elastic beams 4. Each of these beams 4 is linked

to the substrate (not be presented in Fig. 1) by an anchor 5

to allow the outer frame and the proof-mass to move freely

in two perpendicular directions. Two single gyroscopes are

connected through a diamond-shaped frame to create the

proposed TFG. This frame has four rigid bars 7 with length

L and the rectangular cross-section b 9 h, where h and

b are the thickness and width of each bar, respectively. The

bars are connected to the connectors by elastic stems 8 with

the width s (where s\ b). The configuration and dynamics

analysis of this frame is shown in Fig. 2.

Figure 3 describes a physical model of this TFG, where

kx1, kx2, ky1, and ky2 are the equivalent stiffness of the

elastic beams; cx1, cx2, and cy1, cy2 are damping coefficients

in x- and y-direction; mS1 and mS2 are values of the proof-

masses; and mf1 and mf2 are masses of the outer frames.

The points (e.g. A, B, C, and D) are the nodes of the

diamond-shaped frame.

3 FEM analysis

The parameters of this TFG is shown in Table 1, and the

specific material parameters of Silicon are shown in

Table 2.

The governing equations when carrying out the modal

analysis are formed as:

½M�f€qg þ ½C�f _qg þ ½K�fqg ¼ f0g ð1Þ

where [M]-masses matrix; [C]-damping matrix; [K]-stiff-

ness matrix; and {q}-deformation vector.

In this paper, the ANSYS software is used to create,

analyze and simulate the presented model in Fig. 1. The

mesh model for the beams is controlled by using elements

with a size of 25 lm, whereas the rest of this MVG is

defined by using maple face meshing with 500 lm of an

element size to reduce element quantity. The finite element

type in this model is SOLID 187 (element 3D with 10

nudes). The element quantity for MVG is 16,915.

3.1 Modal analysis

Three major frequencies of this TFG are shown in Table 3.

The natural vibratory modes of this TFG are displayed

in Fig. 4.

The harmonic response is carried out to re-determine the

resonant frequency of the structure when applying the

exciting force on it. The unit forces are applied to the two

outer frames of the TFG in the driving direction (1 lN). To
reduce time of the calculation, the range of exciting fre-

quency is chosen in 11.2712 kHz and the step of the

Table 1 The parameters of the

proposed TFG
Design parameters Value

Dimensions of TFG (x 9 y) 55009 1930 lm

Thickness of structure 60 lm

Surface area of the proof-mass 10,086 9 102 lm2

Surface area of the outer frame 9774 9 102 lm2

Length of the drive springs 500 lm

Width of the drive springs 18 lm

Length of the sense springs 510 lm

Width of the sense springs 16 lm

Length of the diamond frame 650 lm

Length of the flexible beam of the connecting frame 300 lm

Mass of the outer frame 1.3664 9 10-7 kg

Sensing mass 1.41 9 10-7 kg

Single gyroscope mass 2.7765 9 10-7 kg

TFG total mass 5.914 9 10-7 kg

Table 2 The properties of Silicon

Property Value Unit

Density 2330 kg/m3

Poisson’s ratio 0.28 1

Young’s modulus 169 9 109 Pa

Bulk modulus 1.2879 9 105 Pa

Table 3 The major modes of the proposed TFG

Vibration modes Frequency (Hz)

In-phase sensing mode 11,479

Anti-phase sensing mode 11,582

Anti-phase driving mode 11,605
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frequency is 10 Hz. The harmonic response of the model is

shown in Fig. 4.

The resonant frequency in the driving direction obtained

from this analysis is 11,610 Hz (Fig. 5) and match with the

result in the modal analysis mentioned above. So, the

exciting frequency of the external force applied in this TFG

should be chosen following this result.

3.2 Equivalent stiffness

The equivalent stiffness of the flexible beams in driving

and sensing direction and the connecting frame is deter-

mined using simulation analysis in ANSYS. The unit force

(1 lN) is applied on the structure, and the equivalent

stiffness is defined from the relation between the defor-

mation and the external force as the formula:

k ¼ F

d
ð2Þ

Fig. 4 Some of the natural vibratory modes of the proposed TFG

Fig. 5 Harmonic response of

the proposed TFG
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where d is the deformation of the structure after applying

the external force F.

The schemas of applying the external forces on the

structures mentioned above are the same and shown in

Fig. 6.

As follow the formula (2), the equivalent stiffness of the

flexible beams in driving, sensing direction and diamond

connecting frame is shown in Table 4.

4 The differential equation of motion

The bars 7 are assumed as a rigid body. The displacement

at the end of the beams (A, B, C, and D) is carried out by

the elasticity of stems with the smaller section. When the

diamond-shaped frame links two single gyroscopes to

create the tuning fork structure, points A and B only dis-

place in x-direction and points C and D only do in the y-

direction. The displacement of point A is x1, while point C

displaces y1 from the initial position. Points B and D are

the same displacements with A and C point except for the

direction of motion (Fig. 3). These displacements depend

mutually and are related by the followed formulas:

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � ðL1 � x1Þ2
q

� L2

y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � ðL1 � x2Þ2
q

� L2

8

>

<

>

:

ð3Þ

where L1 = Lcosa0, L2 = Lsina0, and a0 is the angle to

define the initial position of rigid bars of the diamond-

shaped frame.

Thence the elastic forces are defined by the followed

expressions:

FDy ¼ kyyD=2 ¼ kyy1=2 ð4Þ

FCy ¼ kyyC=2 ¼ kyy2=2 ð5Þ

The elastic force applied to the outer frames in the x-

direction is determined as the followed expression:

Fig. 6 Determining the

equivalent stiffness of the

proposed TFG

Table 4 The stiffness of the structures

The structure Value (N/m)

Stiffness of driving beams 858

Stiffness of sensing beams 725

Stiffness of the connecting diamond-shaped frame 4720

Stiffness of the whole structure in the x-direction 1427
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Fx ¼
1

2
ðFCy þ FDyÞcotga ð6Þ

with a is an angular rotation of a rigid beam when the

diamond-shaped frame operating.

By using the second Newton law, the differential

equations of motion for the system are obtained as follows:

m1
€x~1 ¼ F~L1 þ F~C1 þ F~x þ F~1

m2
€x~2 ¼ F~L2 þ F~C2 þ F~x þ F~2

ms1
€y~1 ¼ F~L1 þ F~C1 þ F~

C

1

ms2
€y~2 ¼ F~L2 þ F~C2 þ F~

C

2

8

>

>

>

>

>

<

>

>

>

>

>

:

ð7Þ

Adding some expressions described the relations

between the geometrical parameters of the diamond-shaped

frame, the differential equations of motion for the whole

TFG system becomes as the followed equations:

Fig. 7 Mechanical response of

two outer frames with deviation

phase a = 0

Fig. 8 Sensing response with

the constant angular velocity
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m1€x1 þ cx1 _x1 þ kx1x1

þ 1

4
ky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � ðL1 � x1Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � ðL1 � x2Þ2
q

� 2L2

� �

cotga ¼ F1

m2€x2 þ cx2 _x2 þ kx2x2

þ 1

4
ky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � ðL1 � x1Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � ðL1 � x2Þ2
q

� 2L2

� �

cotga ¼ F2

ms1€y1 þ cy1 _y1 þ ky1y1 ¼ 2ms1X _x1

ms2€y2 þ cy2 _y2 þ ky2y2 ¼ 2ms2X _x2

L1 ¼ L cos a0
L2 ¼ L sin a0

a ¼ atan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � ðL1 � x1Þ2
q

� L2
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0

@

1

A

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð8Þ

The Eqs. (8) are used to study the response of TFG with

every different initial condition.

5 Output mechanical characterization
of the TFG

The excited driving forces applied on two outer frames are

reversed in the direction (anti-phase) to allow the anti-

phase driving mode to appear in this TFG. Two outer

frames will oscillate with the same amplitude but reversal

phase.

The external forces maybe not completely symmetrical.

The phase between them maybe not fully reversal (p
radian). Even, there is a difference in the value of the

amplitude for them. To express this situation, the deviation

phase b is added in the expression of Fl while F-r is kept

stably. The deviation phase b describes the non-absolutely

opposite level of two exciting forces. Thence, these forces

are formed as follow:

Fl ¼ F0l sinð2pft þ bÞ
Fr ¼ F0r sinð2pft þ pÞ

ð9Þ

where, F0l and F0r are the value of exciting force amplitude

applied on the left and right outer frame, f is the resonant

frequency in driving direction (defined in harmonic anal-

ysis f = 11,600 Hz). The value of the force is set up to

match with the configuration presented in Fig. 1 (i.e. less

than 50 lm in this configuration). Thence, the value of the

forces, in this case, should be as 60 lN.

(a)

(b)

(c)

Fig. 9 The sensing response

with the different forms of

angular velocity

Fig. 10 The linear dependence of the sensing displacement on the

angular velocity
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In the case of b = 0 and F0r = F0l, two exciting forces

are absolutely opposite in the anti-phase situation, and the

mechanical response of two outer frames are in the anti-

phase mode (shown in Fig. 7).

The response of the proof-masses appears in the sensing

direction when applying the angular velocity X thanks to

the Coriolis force with the followed expression:

FC ¼ 2msX _x ð10Þ

The function of the angular velocity is formed as the

constant, the linearity or the impulse (triangular, trapezoid,

sinusoidal,… mode). The sensing response with the con-

stant X form is revealed in Fig. 8. The border of the

amplitude of this vibration is straight line after 0.5 s

(070.5 s is a period in which the driving and sensing

vibration is unstabilized). The maximal value of the

stable amplitude is directly proportional to the applying

angular velocity. Besides that, when applying the different

forms of the angular velocity on the whole system, the

sensing response reflects the form of the applying angular

(see Fig. 9). The results show that the TFG model is able to
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Fig. 11 Mechanical phase

deviation of the two outer frame

Table 5 The phase deviation

compensation ability in the

driving direction

Spring coefficient of the diamond frame 50% 75% 100% 200% 300% 400%

Driving mechanical phase deviation (0) 1.76 1.35 1.1 0.69 0.52 0.44

Matching phase in driving mode 82.4% 86.5% 89% 93.1% 94.8% 95.6%
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Fig. 12 Matching phase in the

driving direction
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reflect correctly the angular velocity needed to be

measured.

The output characterization of this TFG with the con-

stant angular velocity is shown in Fig. 10. The relation

between the displacement in the sensing direction and the

angular velocity is nearly linear. The variability of the

capacity DC between the two plates in the TFG depends

linearly on the sensing displacement of the proofmass

(Acar 2009) as the expression (11). Thence, the variable

capacity is directly proportional to the angular velocity.

DC ¼ 2N
e0tL
d2

y ð11Þ

(N is the number of the moveable combs, e0 is the

permittivity of the free space, t and L is the structural

thickness and overlap length respectively, d is the plate gap

and y is sensing displacement of the proofmass). The result

in Fig. 10 shows that the sensitivity of the model is defined

as to be 3.8 pm/rad/s.

6 Matching phase in the driving
and sensing mode

In this study, the deviation b is considered in range - 100

7 100) to observe the mechanical response of two outer

frames and two proof-masses. Besides, the value of the

forces is different on two sides. In every case with different

equivalent stiffness of the connecting diamond-shaped

frame, the vibration of the outer frame and proof-mass in

each tine of TFG is considered and thence let us evaluate

the influence of the stiffness of the connecting frame to the

ability creating the matching phase between two outer

frames of the proposed TFG.

The results in Fig. 11 show that the equivalent stiffness

of the connecting frame strongly affects the ability to

match phase in the driving direction of the connecting

diamond-shaped frame. The larger the equivalent stiffness

of the connecting frame, the lower the driving phase

deviation and the higher the phase deviation compensation

ability. In the case of the connecting frame mentioned in

this paper, the matching phase between two outer frames is

defined to be 89% (1.10/100). Besides that, the ability to

compensate for the phase deviation in driving increases up

to 95.6% when rising the equivalent stiffness of the con-

necting frame to 4 times. The influence of the equivalent

stiffness of the connecting frame to the matching phase in

the driving direction is surveyed and displayed in Table 5

and Fig. 12.

The matching phase between two proof-masses in the

two tines of TFG structure depends on some factors such as

the driving forces, the deflection in the spring coefficient in

sensing direction, the noise in the operating process, etc. In

this research, the influence of the deflection of the phase

between the two driving forces applied to two tines of the

TFG model is considered, whereas the others are ignored.

The external phase deviation changes in the range men-

tioned above. The input angular velocity is defined to

obtain the required sensing amplitude (according to the

survey, this value needs to be about 10 rad/s). The stiffness

coefficient of the connecting diamond-shaped frame is still

kept to be 4720 N/m as originally. According to the survey,

the matching phase in the sensing direction of two proof-

masses is displayed in Fig. 13 with the ability to com-

pensate for the sensing phase deviation of the connecting

frame as 93.67% (the compensation 0.6330/100).
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7 Conclusion

This paper presents the model design of a MEMS vibratory

gyroscope in tuning fork type with the connecting dia-

mond-shaped frame. The dynamic parameters of this sys-

tem are determined using the finite element method with

ANSYS software. The analysis of the matching phase

between two tines of this gyroscope in the driving and

sensing direction is carried out to confirm the ability of the

connecting frame to compensate for the phase deviation

appeared from external forces. The results showed that the

equivalent stiffness of the connecting frame considerably

affects the matching phase of the system. In this case, the

matching phase of the gyroscope is about 89% and 93.67%

in the driving and sensing mode, respectively. The ability

to compensate for the phase deviation in driving mode

increases up to 95.6% when the equivalent stiffness of the

connecting diamond-shaped frame rises 4 times. This result

is an important basis for further researches to improve the

configuration of the TFG model and increase the perfor-

mance of the sensor with this type.
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