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New hybrid between SPEA/R with
deep neural network: Application
to predicting the multi-objective
optimization of the stiffness parameter
for powertrain mount systems

Dinh-Nam Dao1,2 and Li-Xin Guo1

Abstract

In this study, a new methodology, hybrid Strength Pareto Evolutionary Algorithm Reference Direction (SPEA/R) with

Deep Neural Network (HDNN&SPEA/R), has been developed to achieve cost optimization of stiffness parameter for

powertrain mount systems. This problem is formalized as a multi-objective optimization problem involving six optimi-

zation objectives: mean square acceleration of a rear engine mount, mean square displacement of a rear engine mount,

mean square acceleration of a front left engine mount, mean square displacement of a front left engine mount, mean

square acceleration of a front right engine mount, and mean square displacement of a front right engine mount. A hybrid

HDNN&SPEA/R is proposed with the integration of genetic algorithm, deep neural network, and a Strength Pareto

evolutionary algorithm based on reference direction for multi-objective SPEA/R. Several benchmark functions are

tested, and results reveal that the HDNN&SPEA/R is more efficient than the typical deep neural network. stiffness

parameter for powertrain mount systems optimization with HDNN&SPEA/R is simulated, respectively. It proved the

potential of the HDNN&SPEA/R for stiffness parameter for powertrain mount systems optimization problem.
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Introduction

Multi-objective evolutionary algorithms (MOEAs) are common tools for solving multi-objective optimization
problems in the technical field, because of their performance on issues with large design spaces and scenes difficult
exercise. Inside, SPEA2 (Intensity 2 Evolutionary Algorithm) is used to evaluate the Pareto solution due to the
good performance of a variety of solutions different from normal multi-objective reliability assessment. There are
some researchers on this field like De Tommasi et al.1 who have proposed a multi-objective optimization for RF
circuit blocks through replacement models and NBI and SPEA2 methods. Sofianopoulos and Tambouratzis2

proposed a model-based machine translation system using large monolithic blocks in the target language from
which statistical information was extracted. This study reported using a specific machine translation to represent
the test that SPEA2 was chosen as the optimization method. Zhao et al.3 proposed an SPEA2 algorithm based on
adaptive selection evolutionary operators (AOSPEA). The proposed algorithm can selectively adapt simulated
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binary interference, polynomial mutations, and differential evolutionary operators in their evolution according to

their contribution to the external repository. Ben Hamidabrini Salah et al.4 proposed the Pareto Strength

(SPEA2) Evolution Algorithm for the Economic/Environmental Power Distribution (EEPD) problem. In the

past, minimizing fuel costs was the only objective function of economic power coordination. Due to the modi-

fication of clean air behavior has been applied to reduce emissions of polluting emissions from power plants,

utilities have also changed strategies to reduce pollution and atmospheric emissions, minimizing generation waste

when other target functions turn economic capacity (EPD) into versatile-objective problem with conflicting goals.

Jiang et al.5 published a new SPEA based on the reference direction, denoted SPEA/R, to optimize multiple goals.

A significant extension of the early SPEA algorithms is SPEA/R. It applies to the advantage of SPEA2’s physical

assignment in quantifying solutions diversity and convergence in one method. It is appropriate to replace the most

time-consuming density estimator with an algorithm based on the reference direction. Their proposed exercise

duties also take into account the convergence both local and global. However, MOEAs algorithms still need a lot

of computational time to evaluate the objective function in the typical practical problem-solving process. When

the problem is more difficult and complicated, the calculation time will be longer. Combined, this could make the

use of MOEAs algorithms impractical. Therefore, the best way to reduce computation time is to use artificial

neural networks (ANNs) with multiple hidden layers plus deep learning algorithms to accelerate calculations.
The ANNs with hidden layers combined with deep learning algorithms is one of the most widely used and

accurate predictive models. Many researchers have applied this method in the areas such as economics, engineer-

ing, society, foreign exchange, securities issues, etc.6–14 The application of neural networks in predictive models

optimizes many goals based on the ability of neural networks to predict that non-fixed behavior is very accurate.

For traditional mathematical models or statistical models, it is inconsistent with unusual data patterns that

cannot be clearly written as functions or deduced from a formula, while ANN algorithms can work with chaotic

components. Currently, there are a number of researchers such as Shen et al.,15 who have come up with potential

uncertainties of wind power and have since proposed options for building intervals prediction (PI) with

predictive models using wavelet neural network, in which the upper and lower limit estimate of PI has been

implemented by minimizing the multi-objective function including the probability of span width and coverage

range. Smith et al.16 announced a recurrent neural network used as an alternative method to predict long-term

models of fluid dynamics simulation in computation. In particular, hybrid MOEAs have been trained and opti-

mized structures from introduced recurrent neural networks. Kakaee et al.17 published a method of using ANNs

followed by multi-objective optimization using NSGA-II evolution algorithm and SPEA2 optimization algorithm

to optimize the operating parameters of a compression ignition heavy-duty diesel engine. Vieira and Tome18

published two different methods to increase the search speed of the multi-objective evolution algorithm (MOEA)

using ANNs.
In this article, a new hybrid optimization algorithm is proposed for multi-objective problems. This is the

hybrid between the genetic algorithm (GA), deep neural network (DNN), and strength Pareto evolutionary

algorithm-based reference direction for multi-objective (SPEA/R) to find the best of the Pareto-optimal front.

This combination gave computing time much faster than computing time when using GAs SPEA/R. On the

other hand, this combination also significantly reduces the number of samples needed for the training of

deep ANNs. The performance of the new algorithm is demonstrated via some complex benchmark functions

and for powertrain mount system stiffness parameter optimization problem with six-objective optimization in

model 3D.
The organization of this article is as follows: section “structure” describes the proposed new hybrid

HDNN&SPEA/R method and the vibration characteristic of the powertrain mount system. Section “simulation

results and discussion” describes simulation results of application HDNN&SPEA/R method to computational

experimentation with several benchmark functions and optimization of the powertrain mount system stiffness

parameter. Finally is a conclusion.

Structure

Many-objective optimization SPEA/R algorithm

Jiang et al. proposed SPEA/R algorithm as presented in the flowchart in Figure 1.
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New hybrid HDNN&SPEA/R method

DNN. ANNs are simulations of simplified models of the human brain. They have the ability to estimate complex
nonlinear relationships between corresponding input and output data parameters.19 As shown in Figure 2, the

neural network has a link structure consisting of three types of classes. It is an input layer, hidden layer, and

output layer. Each network layer consists of a number of neurons and is organized into layers, in which the nerve

cells of different layers in the network are connected by connections connected to independent weights (Wi).
In addition, an independent bias (b) can be added to each neuron. On the other hand, the transfer function

determines the influence of the weights and biases of the neuron on the neurons of the next layer and can be linear

or nonlinear. In addition, there are several types of transfer functions (such as pureline, logig, and tansig); some
neurons and some hidden layers are hyperparameters of neural networks to create different structures of the

network. neuron. Finally, weights and biases adjustment process are called the network training process, and they

are usually evaluated by minimizing the average mean square error (MSE) between the predicted outputs of the

neural network and the output reality.
In this article, we use the multilayer perceptron (MLP) neural network structure. MLP is a feedforward ANN

defined by an input layer with M neurons. N layers hidden, in which each hidden layer has Nh number of neurons

and an output layer has K neurons. In the MLP network structure, each layer has full connections to the next
layer, which means that each neuron output in layer N is the input of each neuron in the Nþ 1 layer. Figure 2

shows one example of an MLP network with input neuron M, N hidden layer with each hidden layer has Nh

neuron, and the output layer has K neurons. MLP network can be described with: nn¼ (M Nh1 Nh2 . . . NhN K).

DNN optimize. Recently, some researchers have published some new effective methods to train ANN neural

networks, in which the weights and biases of neural networks are optimized by GA algorithm.20 In the process

Figure 1. Flowchart of SPEA/R.
W: reference direction set; P: initial parent population; P1: offspring population; Q: summarize the population of parents and children;
E(i): fitness values function.

Dao and Guo 3



of network training, GA finds weight and bias values quickly and optimally for neural networks. That makes the
number of iterations in network training greatly reduced. Thus, the time for training is faster. Besides, the global
ability of searching and evolution of parameters is a key feature of GA. Therefore, GA was introduced in this
study. This method uses the theory of natural selection and biological evolution. It is the choice, cross-exchange,
and mutation of individuals to select the best and most suitable member. The initial weight and bias of DNN have
been evolved in the process of training neural networks. The interaction between the GA and DNN is done
through weight and bias exchange. The DNN was started to get a random weight and biases (Wi and b) as shown
in Figure 3. This is the initial population included in the GA algorithm. Then, the next generation is generated by
the GA based on the current population. To evaluate the difference between the predicted output values and the
actual output values, it is used as the fitness function. Decide on acceptable parameters if the total average square
of GA is less than 0.005. Weight and biases are calculated by the equation (1)

Nw ¼ In þ 1ð ÞNh þ Nh þ 1ð ÞOp (1)

Figure. 2. The architecture of a feedforward artificial neural network with M neurons in input, N in hidden layer, and K in output layers.

Figure 3. Training structure for hybrid method.
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where Nw is a number of weights and deviations, In is a number of neurons in the input layer, Nh is some hidden

neurons, and an Op number of neurons in the output layer. Through the training process, the optimal GA value

has been achieved. GA with population size 20, the mutation rate 0.15, and the crossover rate 0.65 has been

chosen for GA operation. GA has been run for 250 generations.

The deep learning training algorithm. The purpose of this section is to allow the DNN neural network to learn the

optimal analytical characteristics of many objects from the SPEA/R algorithm. We have combined DNN training

with the optimal analysis of SPEA/R algorithm as shown in Figures 3 and 4. This process started with the SPEA/

R algorithm with a random population of input variables P1. After that, summing up the population Q at time t is

created by population P1 and population P2 (where P2 is generated from P1 parents’ population through the use

of conventional genetic operators such as selection, mutations, and cross exchanges). After that, all individuals

were combined into population Q.

Figure 4. Training algorithm.
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From this population, individuals were selected to enhance reproduction instead of random selection. It is
therefore very useful for optimizing many goals when remote parents are unable to create good solutions.
The use of simple normalization based on the worst value of each SPEA/R goal deliberately gives higher
priority to diversity than convergence when making environmental choices leading to printing performance for
MOP issues. From there, the best Pareto fronts were selected (stored on the top of the list) and transferred to
the new parent group Pt. Through this process, the most quintessential nuclei were selected. Since the size of
the Pt population is only half of Q (in fact the size of Pt is equal to the size of P1), half of the Pareto front
will be deleted during the transfer. This process will be continued until all individuals of a specific Pareto
front cannot be completely provided in the parent population of Pt. Therefore, for choosing the exact number
of individuals of that particular front for filling remained space of the population Pt, an associate population
with reference points to keep a constant number of individuals (POP: population size). Finally, the population
update process Pt will be used to replace population P1 in the next generation of the SPEA/R algorithm and
the Pareto temporary front optimization will be defined after a specific generation can. Therefore, after each
cycle of population update (Pt) in the SPEA/R algorithm, Pareto front temporarily will be transferred to the
DNN including input data and output data (that is the Temporary Pareto front) to train the DNN. From
here, we see a lot of Temporary Pareto front files created from the SPEA/R algorithm, which means there are
many standard data sets for training DNN. Therefore, the combined training of the DNN has the full
characteristics of the SPEA/R algorithm, but it has a fast calculation speed and converges faster of neural
networks. The search area is larger than the SPEA/R algorithm because the DNN is trained on many
standard samples. This process has been generalized according to Algorithms 1 and 2 as follows

Algorithm 1: Training DNN optimize
1: Input: Pareto temporary front set
2: Output: weight and bias values optimized
3: Initializing parameters

Population size
Number of generation

Probabilities of selection
Crossover and mutation

Fitness function
Mean square error

4: Creating initial population parent encoding weight and bias

5: while stopping criterion not met do

6: Calculation fitness
7: Evolution of population
8: Fitness ranking
9: Selection crossover

10: Selection of fitness and update
11: Record the best chromosome
12: end while

Algorithm 2: Training DNN
1: Input: N (population size)
2: Output: Pareto-optimal front set
3: Create a diverse set of reference directions F

F:¼Reference Create ();
4: Create an original parent population P1;
5: while stop criterion not met do
6: Apply this genetic operator P1 to create offspring
7: Q:¼P1 [ P2;
8: Normalize the goals of internal members Q:
Q: ¼Objective normalization(Q);
9: for each reference direction i 2 F do
10: Identify members of Q close to i:
H(i) :¼ Associate (Q, F, i);
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11: Perform calculations fitness values of members in H(i):
Fitness assignment (H(i));
12: end for
13: Pt: ¼Choose the environment (Q, F);
14: Call Algorithm 1
15: end while

Leave-one-out cross-validation (LOOCV) method. Cross-validation is the most common and effective way to verify
models in statistical machine learning. This method is intended to estimate predictive models that they have

learned from training data. How it will do on data that has not been tested in the future. In other words, by

this method, we can measure the generalized power (accuracy) of our trained model in practice and avoid over-
fitting when the use of techniques in cross-validation. LOOCV is the most common cross-authentication method.

This technique is often applied when the amount of training and testing data is not too large or too difficult to
create a large training/test data set for model learning. With this method, in each iteration, a sample of the

temporary data point is considered as the validation data and the remaining data is used for model training.

Through each model training process, its prediction errors will be calculated on the validation data. If the initial
training data contains Iter_max samples, this procedure repeats Iter_max times (it equals the number of obser-

vations in the initial training set). Then, the average of these errors is reported as the predictive error of our
predictive model across the entire data set in terms of expressions by equation (2). Thus, with this validation

method, in its iterations Iter_max, all patterns have the opportunity to act as a prototype. For more information

on LOOCV, refer to Ron.21

X
error

¼
XIter max

i¼1

jIter�ij
 !

=Iter max (2)

Vibration characteristic of the powertrain mount system

Full car model with 10 degrees of freedom (D.O.F.) is shown in Figure 5. Suspension and tires are considered
spring and damping systems. Where the masses m2.1, m2.2, m2.3, and m2.4 denote the weight of four wheels (the

mass does not burst). The masses mcg1 and mcab represent the mass (unburnt mass) of the frame and engine,

respectively. Z3.1, Z3.2, Z3.3, and Z3.4 are the vertical displacements of the wheel, Z1, Z2 are, respectively, the
vertical displacement of the frame and the transmission system. And, Roll and Altitude are vibrations that rotate

around the corresponding X and Y axes. Next, the symbols U and W represent the pitch and roll of the frame.
The inertia of the transmission system on the y-axis and the x-axis are Iyy and Ixx, respectively, the inertial

Figure 5. The principle diagram of a full-car dynamic model with a power source system mounting system.
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moment for the chassis on axes X1 and Y1 are Iyy1 and Ixx1, respectively. The stiffness and damping parameters
of the wheels are K3.1, K3.2, K3.3, K3.4 and C3.1, C3.2, C3.3, C3.4, respectively. Similarly, the hardness and
damping parameters of primary suspension are K2.1, K2.2, K2.3, K2.4 and C2.1, C2.2, C2.3, C2.4, respectively,
while the hardness and damping parameters of the drive system are K1.1, K1.2, K1.3 and C1.1, C1.2, C1.3,
respectively. The distance of the front and rear support from the center (CG) of the transmission system is a
and b, respectively; the right and left mounting distances from the CG of the transmission system are c and d,
respectively. a1, b1, c1, and d1 Distances for the chassis are indicated as follows.

By using Newton’s law, the mathematical model of Figure 4 can be written as below

M€xi þ K _xi þ Cxi ¼ QðtÞ (3)

where the symbols are shown in Table 1.

Simulation results and discussion

Numerical results

In this section, to demonstrate the superiority of the HDNN&SPEA/R method, we conducted calculations and
tests on a number of benchmark functions. The results are compared to SPEA/R algorithms and Simplex
NSGAII algorithms.22 For the performance metric,23 inverted generational distance (IGD),24 spacing (SP), and
maximum spread (MS)25 criteria are employed to measure convergence, quantity, and coverage, respectively.
The mathematical formulation of IGD is as follows

IGD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
di

2
q

N
(4)

where N is the number of true Pareto front optimal solutions, and di indicates the Euclidean distance between the
i-th true Pareto front optimal solution and the closet obtained Pareto front optimal solutions in the reference set.
It should be noted that IGD¼ 0 indicates that all members of the non-dominated solutions are in the true
Pareto front

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1

XN�1

i¼1

ðd��diÞ2
vuut (5)

where d� is the average of all di, N is the number of Pareto front optimal solutions obtained, and
di¼ min jf1i xð Þ � f1

j xð Þj þ jf2i xð Þ � f2
j xð Þj

� �
j for all i, j¼ 1,2,3,. . .N

MS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

max d ai; bið Þ½ �
vuut (6)

Table 1. Parameters of the mathematical model.

Symbol Parameters of the mathematical model

Xi Vector-column of displacements and angular oscillations of masses.

M The matrix of inertial coefficients of car parts.

C The matrix of coefficients of stiffnesses and torsional rigidity.

K The matrix of damping coefficients.

Q(t) Column vector of the perturbing forces and moments.

q2 tð Þ ¼ q1 tþ sð Þ with s: time interval, va: vehicle speed.
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where d is a function to calculate the Euclidean distance, bi is the maximum value in the i-th objective, bi is the

minimum in the i-th objective, and M is the number of objectives.
In addition to utilizing the performance metrics, the best set of Pareto front optimal solution obtained by

HDNN&SPEA/R on both the parameter space as well as the search space is shown in Figures 6 and 7. These

figures show the performance of HDNN&SPEA/R in comparison with the true Pareto front, and at the same time

it is compared with the results of Simplex NSGAII algorithms. For a comparative evaluation, all the algorithms

are run 20 times on the test problems, and the statistical results of the 20 runs with algorithm parameters are

provided in Table 3. Statistical results of the algorithm for IGD, SP, and MS are provided in Tables 4 to 6,

respectively of benchmark functions. In Table 4, the IGD parameter is a performance indicator that shows the

accuracy and convergence of the algorithm. The IGD parameter shows that the proposed hybrid algorithm

(HDNN&SPEA/R) can provide better results than the Simplex NSGAII algorithm, but it is far more than the

SPEA/R algorithm.
Similarly, parameters SP and MS in Tables 5 and 6 also show that HDNN&SPEA/R algorithm is the most

dominant. Pareto optimal solution of HDNN&SPEA/R on each benchmark is also compared with the standard

Pareto front set and the result of Simplex NSGAII algorithm as described in Figures 6 and 7.

Simulation results test benchmark functions

The resulting Pareto front is shown in Figures 6 and 7.
In this regard, Figures 6 and 7 show the comparison between the predicted results of HDNN&SPEA/R

algorithms with the result of Simplex NSGAII algorithm being similar, but in terms of coverage,

HDNN&SPEA/R algorithm is somewhat more outstanding. The results of both algorithms closely follow the

Figure 6. Pareto front set of bi-objective benchmark functions.

Figure 7. Pareto front set of tri-objective benchmark functions HDNN&SPEA/R.
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results of benchmarking as shown in Figures 6 and 7. Therefore, it can be said that the proposed hybrid technique

of HDNN&SPEA/R in this article has been successfully implemented.
The numerical results demonstrate that HDNN&SPEA/R is proposed to have better performance for bench-

marking functions with two objectives related to convergence and coverage compared to SPEA/R algorithms. For

some tri-objective benchmark functions, the proposed algorithm shows high convergence; it has high coverage.

Thus, we could say the key advantages of the proposed HDNN&SPEA/R algorithm compared to SPEA/R and

Simplex NSGAII algorithm are high convergence and coverage characteristics.

Simulation results test optimization of the Powertrain Mount System Stiffness Parameter

When the vehicle moves there are many factors that cause the vibration, the factors can be told: the internal force

in the car; external forces appear in the process of using acceleration, braking, and revolving; exterior conditions

such as wind and storm; and boring face street. Among the other factors is the bumpy side of the road which

causes oscillation of the vehicle. To simulate the most general calculation, we use the road surface profile as a

random function as in Figure 8 and simulated parameters as shown in Table 7.
Through Matlab software and SPEA/R and HDNN&SPEA/R algorithms for simulation calculation to find

Pareto front optimal set simultaneously of six functions of acceleration and displacement according to the

Table 3. Model parameters of SPEA/R algorithm and DNN

Maximum number of iterations Iter_max¼ 1000 pMutation 1-pCrossover

Population size 100 nMutation nPop-nCrossover

Archive size 50 mutation_params.h 0.2

KNN parameter round(sqrt(nPopþ nArchive)) crossover_params.gamma 0.1

pCrossover 0.7 crossover_params.VarMin VarMin

nCrossover round(pCrossover� nPop/2)� 2 mutation_params.VarMin VarMin

mutation_params.VarMax VarMax crossover_params.VarMax VarMax

DNN parameters Nn¼ (100 200 200 200 200 100)

DNN: deep neural network, KNN: K-Nearest Neighbor.

Table 4. Results for IGD.

UF2 UF4

IGD Average Median Std. dev Worst Best Average Median Std. dev Worst Best

Simplex

NSGAII

0.01359 0.01225 0.00289 0.01845 0.01060 0.02434 0.02415 0.00138 0.02760 0.02295

SPEA/R 0.12244 0.1242 0.01243 0.14485 0.10454 0.06823 0.06835 0.00254 0.07078 0.06424

HDNN&SPEA/R 0.01351 0.01544 0.00245 0.01456 0.01274 0.02645 0.02867 0.00145 0.02734 0.02267

UF5 UF8

IGD Average Median Std. dev Worst Best Average Median Std. dev Worst Best

Simplex

NSGAII

0.45289 0.45486 0.08449 0.53701 0.25741 0.19992 0.20740 0.06217 0.33433 0.12553

SPEA/R 1.26755 1.33741 0.13839 1.46735 0.12145 0.56681 0.53667 0.28667 0.69647 0.28530

HDNN&SPEA/R 0.47843 0.45450 0.08445 0.53561 0.22371 0.19639 0.27870 0.06765 0.33467 0.17565

UF10

IGD Average Median Std. dev Worst Best

Simplex

NSGAII

1.70149 1.54063 0.55163 3.02835 1.12806

SPEA/R 1.63529 1.59123 0.29349 2.16232 1.22048

HDNN&SPEA/R 1.70344 1.54333 0.55135 3.03833 1.13821

IGD: inverted generational distance.
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Table 6. Results for MS.

UF2 UF4

MS Average Median Std. dev Worst Best Average Median Std. dev Worst Best

Simplex

NSGAII

0.89222 0.88328 0.05448 0.82385 0.93883 0.95759 0.96323 0.01762 0.92252 0.97665

SPEA/R 0.87501 0.87337 0.00580 0.85436 0.87884 0.88564 0.88431 0.01866 0.84324 0.91394

HDNN&SPEA/R 0.89542 0.88678 0.05765 0.82565 0.93433 0.95656 0.96873 0.01542 0.92642 0.95676

UF5 UF8

MS Average Median Std. dev Worst Best Average Median Std. dev Worst Best

Simplex

NSGAII

0.83746 0.83556 0.06986 0.69914 0.95996 0.35198 0.34883 0.44928 0.27879 0.73412

SPEA/R 0.29341 0.29565 0.3560 0.23544 0.34550 0.55310 0.54401 0.16736 0.26523 0.71676

HDNN&SPEA/R 0.82456 0.83646 0.06756 0.64514 0.95656 0.34648 0.36343 0.47768 0.27859 0.77772

UF10

MS Average Median Std. dev Worst Best

Simplex

NSGAII

0.27643 0.14774 0.38569 0.03183 0.93133

SPEA/R 0.13435 0.10433 0.06253 0.06679 0.25414

HDNN&SPEA/R 0.24632 0.14324 0.38439 0.03433 0.96433

MS: maximum spread.

Table 5. Results for SP.

UF2 UF4

SP Average Median Std. dev Worst Best Average Median Std. dev Worst Best

Simplex

NSGAII

0.02770 0.02654 0.01289 0.06199 0.01640 0.02543 0.02386 0.00475 0.03384 0.02055

SPEA/R 0.00866 0.00879 0.00096 0.01042 0.00797 0.00780 0.00758 0.00066 0.00876 0.00617

HDNN&SPEA/R 0.02743 0.02634 0.01269 0.06449 0.01754 0.02865 0.02865 0.00478 0.03743 0.02054

UF5 UF8

SP Average Median Std. dev Worst Best Average Median Std. dev Worst Best

Simplex

NSGAII

0.12049 0.12758 0.02505 0.15826 0.07457 0.23364 0.23699 0.03859 0.27492 0.16389

SPEA/R 0.00278 0.00007 0.00553 0.01665 0.00001 0.02692 0.02737 0.00867 0.04453 0.01731

HDNN&SPEA/R 0.12645 0.12433 0.03455 0.16854 0.7454 0.24367 0.23849 0.03845 0.28652 0.16229

UF10

SP Average Median Std. dev Worst Best

Simplex

NSGAII

1.06788 0.89524 0.41661 1.81766 0.67219

SPEA/R 0.01984 0.02064 0.00378 0.02645 0.01538

HDNN&SPEA/R 1.06754 0.89523 0.41943 1.81745 0.67354

SP: spacing.
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Table 7. Model parameters of the powertrain mount system.

Model parameters of the powertrain mount system

Numbers Parameters Values Units

1 m2.1, m2.2, m2.3, and m2.4 60 Kg

2 mcg1 and mcab 1000, 1200 Kg

3 K2.1, K2.2, K2.3, K2.4 37,000 N/m

4 C2.1, C2.2, C2.3, C2.4 700 N-s/m

5 K3.1, K3.2, K3.3, K3.4 55,000 N/m

6 C3.1, C3.2, C3.3, C3.4 4000 N-s/m

7 K1.1, K1.2, K1.3 67,000 N-s/m

8 C1.1, C1.2, C1.3 6000 N-s/m

9 a, b, c¼ d 0.187, 0.623, 0.3 M

10 a1¼ b1, c1¼ d1 1.5,1 M

11 Ixx, Iyy 320, 80 Kg-m2

12 Ixx1, Iyy1 4000, 950 Kg-m2

Figure 9. Global Pareto front set of six-objective optimization functions with SPEA/R.

Figure 10. Global Pareto front set of six-optimization objective with HDNN&SPEA/R.

Figure 8. Road surface profiles.
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stiffnesses of the front left, front right, and rear engine mount (K1.1, K1.2, and K1.3) value as shown in
Figures 9 and 10 (Figures 9 and 10 shows the results in the form of 4D via the isosurfaces function in Matlab).

In order for a more intuitive look, the analytical results are presented in statistical form in the Tables 8 to 11.
It is known that the result of multi-objective optimization will be a set of unaffected optimization points, called

Pareto sets. These points provide a series of parameters for the designer to select the optimal point depending on
his design conditions. There are always conflicting objective functions in the vehicle design that improving a
function can adversely affect other functions. In this article, multi-objective optimization for all six target func-
tions is done simultaneously. With the two results obtained from the two algorithms shown in Figures 9 and 10,
we see Pareto front optimal set of two algorithms found relatively similar. But HDNN&SPEA/R algorithm has
very fast computation time compared to SPEA/R algorithm. Therefore, through tests comparing two algorithms,
HDNN&SPEA/R algorithms have proven superiority over SPEA/R algorithm because the time of calculation is
extremely small, and the accuracy is completely reliable. That is, the optimal calculation time of HDNN&SPEA/R
is much less than the SPEA/R algorithm. The results of the proposed HDNN&SPEA/R were in almost all cases
better than SPEA/R.

Table 10. Results for MS of Powertrain mount system.

MS

Powertrain mount system

Average Median Std. dev Worst Best

SPEA/R 0.32338 0.36429 0.52268 0.13476 0.67448

HDNN&SPEA/R 0.34739 0.48362 0.68488 0.15453 0.87498

MS: maximum spread.

Table 9. Results for SP of Powertrain mount system.

SP

Powertrain mount system

Average Median Std. dev Worst Best

SPEA/R 0.55955 0.42976 0.50478 0.92846 0.64569

HDNN&SPEA/R 0.86050 0.69569 0.61845 1.51648 0.87655

SP: spacing.

Table 8. Results for IGD of Powertrain mount system.

IGD

Powertrain mount system

Average Median Std. dev Worst Best

SPEA/R 2.54558 2.68427 0.37349 3.86259 1.92940

HDNN&SPEA/R 2.91574 2.84373 0.381459 4.05993 2.14391

IGD: inverted generational distance.

Table 11. Results for time analysis compare of Powertrain mount system.

Results for time analysis compare of Powertrain mount system (h)

Test times 1 2 3 4 5 6 7 8 9 10

SPEA/R 30.12 30.04 29.80 30.06 29.70 31.01 30.06 30.15 29.96 29.89

HDNN&SPEA/R 1.58 1.45 1.52 1.59 1.40 1.49 1.60 1.47 1.49 1.48

Test times 11 12 13 14 15 16 17 18 19 20

SPEA/R 30.50 30.02 30.08 29.95 30.02 30.55 30.45 29.08 29.99 30.30

HDNN&SPEA/R 1.51 1.53 1.54 1.52 1.51 1.51 1.55 1.54 1.53 1.52

Total squared average SPEA/R (30.0865 h): HDNN&SPEA/R(1.5165 h)
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Conclusion

This article has published a new combination method between SPEA/R, DNN, and GA. So ANNs with many

hidden layers are trained with intelligent deep learning algorithms; it has created a deep learning network to

realize the optimal problem simultaneously of many objects in the technology. This method is most effective

and highly practical because: firstly, it offers a way of deep learning of the network with a much smaller number

of standard samples than previous deep-learning networking methods announced. For test cases optimization

of the Powertrain Mount System Stiffness Parameter, we only need a standard set of 15 samples to train DNNs.

It is this combination of training that the actual number of samples generated for the training process is 15x

(Iter_max)¼ 15,000 samples. While training with the old method is extremely difficult to collect a large number

of samples. Secondly, for test cases optimization of the Powertrain Mount System Stiffness Parameter, the time

for multi-objective optimal analysis of HDNN&SPEA/R hybrid methods is only 1.5 h, while using SPEA/R

algorithm takes 30 h.
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