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Abstract— This paper proposes a socio-spatio-temporal hu-
man characteristics-based socially aware navigation framework
that enables mobile service robots to both approach and
avoid humans in dynamic social environments. The proposed
framework consists of two major stages. In the first stage,
the robots estimate the approaching poses of the robot to the
human or human group. In the second stage, the proposed
framework will estimate an optimal robot’s trajectory using
the online trajectory planning technique. The control command
extracted from the optimal trajectory is then utilized to drive
the mobile robot to approach the individual humans or human
groups, while avoiding regular obstacles, humans and human
groups during the robot’s navigation. The proposed framework
is verified in the Gazebo-based simulation environment. The
simulation results illustrate that, the mobile robots equipped
with our proposed framework are able to safely and socially
approach and avoid individual humans and human groups,
providing socially acceptable behavior for the robots.

I. INTRODUCTION

Approaching humans in socially acceptable manners while
ensuring the human safety and comfort is necessary for
initiating any collaboration and communication activities
between social robots and humans. Hence, mobile service
robots must approach a human or a human group to interact
or collaborate with them, and provide them professional and
domestic services. To achieve that, a number of navigation
systems, which enable the mobile robots to approach hu-
mans, have been recently developed [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10]. However, a few existing methods were de-
veloped for approaching human groups, which is considered
more challenging than approaching a single person because
the robots have to deal with social rules of both individuals
and human groups.

The existing human approaching techniques can be
roughly divided into two categories according to the number
of humans to be approached: (1) approaching a single person
and (2) approaching a group of people. In the former, the
developed techniques are capable of driving a mobile robot
to approach a standing, moving, or sitting person. In the later,
the conventional navigation systems can guide the mobile
robot to approach a group of stationary people. The existing
human approaching algorithms have been mostly proposed
for mobile robots to approach a single person, e.g., a seated
person [1], a standing person [2], a sitting and standing
person [3], and a moving person [4], [5] and [6]. Some of
these human approaching systems have been implemented
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and verified on mobile platforms to illustrate the viability
of generating socially acceptable approaching behaviours of
mobile robots. Recently, a few navigation systems have been
proposed to allow the robot to safely and socially approach a
human group [7], [8], [9], [10]. Nevertheless, most of these
methods have only been implemented and validated in static
or semi-dynamic environments, and the human groups are
only stationary.

To overcome the above-mentioned drawbacks, in this
paper, we propose a socially aware navigation framework,
which allows the mobile service robot to safely and so-
cially approach and avoid individual humans and human
groups in dynamic environments with socially acceptable
behaviours. The proposed framework incorporates the socio-
spatio-temporal characteristics of the human and human
groups to estimate the approaching pose of the mobile robot
to the human groups. These characteristics and estimated
approaching poses are then utilized as inputs of the timed
elastic band (TEB) technique, which takes into account the
robot dynamics. The motion control commands generated
by the proposed model can drive the mobile robot to reach
the estimated approaching pose while avoiding other people
during the robot’s navigation.

The remainder of this paper is organized as follows.
Section II presents the proposed socially aware navigation
framework for mobile service robots in dynamic social en-
vironments. Section III shows comprehensive simulation re-
sults developed on the Robot Operating System and Gazebo
simulator. We draw conclusions in Section IV.

II. PROPOSED FRAMEWORK

A. Architecture of Socially Aware Navigation Framework

The primary objective of the paper is to develop a so-
cially aware navigation framework, which enables the mobile
robots to navigate safely and socially in the dynamic social
environments, providing the safety and comfort for the hu-
mans, and the socially acceptable behaviors for the robots in
two essential tasks: (i) avoiding humans, and (i) approaching
humans. To achieve that, in this paper we develop a socially
aware navigation framework based on the conventional robot
navigation scheme presented in [11], as shown in Fig. 1.

Figure 1 depicts the extended navigation scheme for
mobile service robots in dynamic social environments. The
proposed social navigation framework is composed of two
essential components: (1) the conventional navigation sys-
tem, and (2) the socially aware navigation framework (in the
dash line box). In the first part, the conventional navigation
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Fig. 1. The block diagram of the mobile robot navigation system.

system consists of four typical modules, including the per-
ception, localization, motion planning, and motor control. In
the extended part of the proposed framework, the dynamic
social zone (DSZ) block is utilized to model the space
around the human and human groups using the socio-spatio-
temporal human characteristics including human’s position,
orientation and motion, and the social interactions including
human groups and human–object interactions. Once the DSZ
have been modeled, the approaching pose estimation block
is made use of to estimate the approaching pose of the robot
to the individual humans or human groups. The outputs
of the DSZ block and the estimated approaching poses
are then fed into the optimal trajectory estimation block,
which enables the mobile robot to estimate optimal robot’s
trajectory. The control command generated from the robot’s
trajectory allows the mobile robot to safely and socially
approach humans and human groups while avoiding the other
humans and obstacles in socially acceptable manners.

B. Robot and Human States

We assume the robot state sr = [xr,yr,θr,vr,ωr]
T , where

[xr,yr]
T is the position, θr is the orientation, vr is the linear

velocity, and ωr is the angular velocity. We also assume
that, there are N people appearing in the vicinity of the
robot P = {p1,p2, ...,pN}, where pi is the ith person. The
state of the person pi is represented as si

p = [xi
p,y

i
p,θ

i
p,v

i
p]

T ,
where [xi

p,y
i
p]

T is the position, θ i
p is the orientation, and vi

p
is the linear velocity. The radius of the robot and human
are rr and rh, respectively. In dynamic social environments,
the robot is requested to navigate from the initial pose
ss = [xs,ys,θs,vs,ωs]

T to the estimated approaching pose
sg = [xg,yg,θg,vg,ωg]

T while safely avoiding the individual
humans and human groups during its navigation.

C. Dynamic Social Zone

To safely and socially approach and avoid a human or a
human group in socially acceptable manners, a mobile robot
must be capable of modelling the human and human group
infomation. In this study, we adopted the dynamic social
zone technique proposed by Truong et al. [12]. Therefore, in
this section we will briefly present the DSZ model. The DSZ
algorithm is integrated of six functional blocks, including: (1)
human detection and tracking, (2) human states extraction,

(3) social interaction detection, (4) extended personal space,
(5) social interaction space, and (6) dynamic social zone.
Specifically, a human detection and tracking function is used
to detect and track humans in the real-world environment.
Once the human states including position, orientation and
motion are extracted and the social interactions including
human groups and human-object interactions are detected,
an extended personal space and a social interaction space
are built. As a result, a dynamic social zone is consequently
generated around the humans and human groups. The DSZ is
then used for estimating the approaching pose of the robot
to the humans, and avoiding humans in the next section.
Technical details of such functional blocks can be found in
Truong et al. [12] and [13].

D. Approaching Pose Estimation Algorithm

p
1

p
2

inter-point

approaching 
position

2α

DSZ

approaching 
direction

Fig. 2. An example of approaching pose estimation algorithm.

In order to approach a human or a human group in
socially acceptable manners, a mobile service robot should
be capable of estimating an approaching pose, and then
safely and socially navigate towards this pose. Therefore, an
approaching pose estimation algorithm plays an important
role in our proposed socially aware navigation framework.
Truong et al. [12] and [13] figured out that, the suitable
approaching position of the robot to a human or a human
group should be located in the field of view of the humans
and outside the DSZ area. In this study, we proposed new
approaching pose estimation algorithms, as presented in
Algorithms 1 and 2. The main idea of the algorithms is that,
we first find the suitable inter-areas of the field of view of
all humans in the group. We then reduce the inter-areas by
the DSZ. Finally, we find the center points of the inter-areas,
and those points are the candidate approaching positions. The
direction of the robot is the direction of the vector from the
approaching positions to the person’s position or to the center
of the human group. Figure 2 illustrates an example result of
the approaching pose estimation algorithm. In this example
the robot wants to estimate the approaching pose to a group
of two people. The input of the approaching pose estimation
algorithms is the DSZ, set of people P, and humans field
of view 2α . Whereas, the output of the algorithms is a set
of candidate approaching poses Sg = {s1

g,s2
g, ...,sL

g}. We then
select an approaching pose based on the distance from the
robot to the candidate approaching poses. In the next section,
we will present an algorithm for estimating an optimal
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Algorithm 1: Approaching pose estimation algorithm
of a group of people

input : Dynamic social zone DSZ, set of people
P = {p1,p2, ...,pN}, human field of view 2α

output: Set of approaching poses Sg = {s1
g,s2

g, ...,sL
g}

1 begin
2 c point ← /0; app point ← /0;
3 Sg ← /0; delta α ← /0; step α ← 2.5;
4 while True do
5 c point ← computeGroupCenter(P);
6 for i =1, N do
7 tmpl1 ← Line(pi,c point);
8 line1 ← rotateRight(tmpl1,pi,α+delta α);
9 if (i==N) then

10 tmpl2 ← Line(p1,c point);
11 line2 ← rotateLeft(tmpl2,p1,α+delta α);
12 else
13 tmpl2 ← Line(pi+1,c point);
14 line2 ← rotateLeft(tmpl2,pi+1,α+delta α);
15 end if
16 i point ← line1 ∩ line2;
17 visual area ← polygon(i point,pi,pi+1);
18 app area ← visual area\DSZ;
19 app point ← computeCenterPoint(app area);
20 θ ← atan2(app point,c point);
21 Sg.append(app point,θ );
22 end for
23 if(Sg==/0) then
24 delta α += step α;
25 else
26 break;
27 end if
28 end while
29 Return Sg;

robot’s trajectory from the current robots pose to the selected
approaching pose.

E. Timed Elastic Band Technique

To socially navigate from the current position of the robot
to the selected approaching pose, in this study we adopt the
timed elastic band (TEB) technique. Because it is an online
trajectory planning algorithm for online collision avoidance,
and has been successfully applied in dynamic environments
[14], [15] and [16]. In this section, the conventional TEB
algorithm are briefly presented. Assume that a discretized
trajectory B is defined in terms of a finite-dimensional
parameter vector including of an ordered sequence of mobile
robot states sk = [xk

r ,y
k
r ,θ

k
r ]

T , with k = 1, 2, ..., N and time
stamps ∆Tk with k = 1, 2, ..., N-1. Thus the set of parameters
B subject to optimization is defined as follows:

B = [s1,∆T1,s2,∆T2, ...,sN−1,∆TN−1,sN ]
T (1)

where, ∆Tk represents the time interval that the mobile robot
has to require to transit between two consecutive poses sk

Algorithm 2: Approaching pose estimation algorithm
of a human–object interaction
input : Dynamic social zone DSZ, a person p, an

object o, human field of view 2α , rstep
output: Set of approaching poses Sg = {s1

g,s2
g, ...,sL

g}
1 begin
2 Initialize rs circle;
3 c line ← Line(p,o);
4 l line ← rotateLeft(c line,p,α);
5 r line ← rotateRight(c line,p,α);
6 while True do
7 s circle ← circle(p,rs circle);
8 lv area ← polygon(p,c line,l line,s circle);
9 app area.append(lv area\DSZ);

10 lr area ← polygon(p,c line,r line,s circle);
11 app area.append(rv area\DSZ);
12 for i=1, length(app area) do
13 app point ← computeCenterPoint(app area);
14 θ ← atan2(app point,p);
15 Sg.append(app point,θ );
16 end for
17 if(Sg==/0)
18 rs circle += rstep;
19 else
20 break;
21 end if
22 end while
23 Return Sg;

and sk+1. The robot’s trajectory B subject to:
0≤ ∆Tk ≤ ∆Tmax,
hk(sk+1,sk) = 0, (Nonholonomic kinematics)
ok(sk)≥ 0, (Clearance from surrounding obstacles)
νk(sk+1,sk,∆Tk)≥ 0, (Limitation of robot’s velocities)
αk(sk+1,sk,sk−1,∆Tk,∆Tk−1) ≥ 0 (Limitation of robot’s

accelerations)
The total transition time is approximated by T≈∑

N−1
k=1 ∆Tk,

∆Tmax is an upper limit of ∆Tk in order for the robot moving
smoothly in the real time. The aforementioned equality and
inequality equations represent the constraint of the envi-
ronment with the robot, such as nonholonomic kinematics,
clearance from obstacles and bounds on velocities and ac-
celerations. All of the constraints are incorporated into the
objective function Eq. 2 as additional penalty terms.

V (B) =
N−1

∑
k=1

[ ∆T 2
k +δh‖hk‖2

2 +δv‖min{0,νk}‖2
2+

δo‖min{0,ok}‖2
2 +δα‖min{0,αk}‖2

2 ] = wT f (B) (2)

where, the remainder of Eq. 2 is expressed in terms of the
dot product, in which w captures individual weights and f (B)
contains individual cost terms. With objective function V (B)
the overall optimization problem is defined by:

B∗ = argmin
B

V (B) (3)
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Algorithm 3: Timed elastic band algorithm
input : robot state sr, start pose ss, goal pose sg, set

of obstacles O
output: Control command ur

1 begin
2 G ← createGraph(sr, ss, sg, O);
3 D ← depthFirstSearch(G);
4 H ← computeH-Signature(D, G);
5 R ← removeRedundantPath(D, H, G);
6 T ← initializeTrajectories(R, G);
7 for each trajectory Bp ∈ T do
8 V ← objectiveFunction(); B using Eq. 2
9 B∗p← Optimizer(Bp,O,V); B Solve Eq. 3

10 B∗ ← storeLocalOptimalTrajectory(B∗p);
11 end for
12 Vc ← newObjectiveFunction(); B using Eq. 5
13 B̂∗← Optimizer(B∗,O,Vc); B Solve Eq. 4
14 Return ur = [υr,ωr]

T ;

The TEB approach utilized the Levenberg-Marquardt algo-
rithm [17] to solve Eq. 3, and obtained the optimal robot tra-
jectory B∗. Finally, the desired control commands are directly
extracted from the optimal trajectory B∗. The classical TEB
technique [15] has been applied in real-world environment
and has achieved considerable success. However, it still has
a drawback of only optimizing a single trajectory leading to
stuck to a locally optimal trajectory somewhere, especially in
dynamic environments. To tackle this problem, recently the
TEB approach was extended to parallel trajectory planning
in spatially distinctive topologies [14] and [16], which enable
the robot to switch to the current globally optimal trajectory
among the candidate trajectories of distinctive topologies.

Algorithm 3 presents the extension TEB technique [14]
and [16], which consists of three major steps: (i) exploration
(Lines 2-6 of the Algorithm 3), (ii) optimization (Lines 7-
11 of the Algorithm 3) and (iii) selection (Lines 12-13 of
the Algorithm 3). The input of the Algorithm 3 includes the
robot state sr, start pose ss, goal pose sg and set of obstacles
O, and the output is the control command ur = [υr,ωr]

T

of the mobile robot. In the exploration step, a graph G
is generated to connect from ss to sg by forward directed
edges. The graph is then filtered using depths-first search
algorithm to keep only the acyclic graph. Finally, the H-
Signature [18] technique is utilized to filter redundant paths
that have the same H-Signature; as a result, a set of M
primitive candidate paths that belong to alternative distinctive
topologies are obtained. In the second step, locally optimal
trajectories for all M alternative topologies are planned in
parallel by using the TEB optimization with respect to the
objective function Eq. 2, which generates M locally optimal
trajectories respectively B∗p, with p = 1, 2, ..., M. In the
final step, the best TEB B̂∗ or the least-cost trajectory is
selected from the set of alternatives B∗p obtained by solving

(a)

(4) (3)

(2)

(1)
Robot

(b)

Fig. 3. The robot model and simulation scenario: (a) The 3D model of
the robot using the Gazebo simulator with a simulated Kinect sensor and
a laser rangefinder; (b) A simulated office-like scenario with rooms, doors,
corridors, walls, objects, interesting objects, and humans. A mobile robot,
six moving people, and ten standing people are distributed in the scenario.
The robot has to sequentially navigate to approach individual humans, and
human groups in various social situations: (1) a human–object interaction;
(2) a group of two standing people; (3) a group of three standing people;
and (4) a group of four standing people.

the following equation, which reveals the global minimizer.

B̂∗ = arg min
B∗p∈{B∗1,B

∗
1,...,B

∗
M}

Vc(B∗p) (4)

where, the objective function Vc(B∗p) is presented as follows:

Vc(B∗p) = wT
c fc(B∗p) (5)

F. System Integration

Once the optimal trajectory is generated by the TEB
algorithm, the motion control command ur=[υr, ωr]

T is
extracted and used to drive the mobile robot to proactively
avoid the obstacles in the robot’s vicinity and approach a
given goal. In this study, we utilize a two-wheel differential
drive mobile robot platform, with the state of the robot at the
time k is sk

r = [xk
r ,y

k
r ,θ

k
r ]

T . Therefore, the state of the robot
at the time (k+1) is governed by the following equation:xk+1

r
yk+1

r
θ k+1

r

=

xk
r

yk
r

θ k
r

+


vr

r+vl
r

2 cos(θk)dt
vr

r+vl
r

2 sin(θk)dt
vr

r−vl
r

L dt

 (6)

where, vr
r and vl

r are the linear velocity commands of the
right and left wheels of the robot, respectively, and L denotes
the wheelbase of the robot. The wheel speeds vr

r and vl
r are

computed using the velocity control command ur as follows:

vr
r = υr +

Lωr

2
dt (7)

vl
r = υr−

Lωr

2
dt (8)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Four snapshots of the results of four scenarios in the simulation environment. The first row illustrates the results of the approaching pose estimation
algorithm. The second row presents the results of the optimal robot’s trajectory, which is the curve with red arrows.

III. SIMULATION

To verify the effectiveness of the proposed algorithm and
narrow the gap between the simulated and real-world envi-
ronments, we implemented and tested the proposed human
approaching framework using the Gazebo simulator [19] and
Robot Operating System (ROS) [20]. We created an office-
like scenario with rooms, walls, doors, objects, interesting
objects and humans, as shown in Fig. 3(b). The conventional
TEB package1 were inherited.

A. Simulation Setup

In the Gazebo simulator, we built up a 3D model of the
simulated mobile platform, and added a simulated Kinect
sensor and a laser rangefinder on it, as shown in Fig. 3(a).
Thanks to the physical properties available in the Gazebo
simulator, we have the advantage of being able to implement
and test our method, which was developed in ROS, in the
simulation before verifying it on the real mobile platform.
The standard Kinect sensor composed of an infrared light
projector, a depth sensor, a RGB camera, and a multi-array
microphone was positioned at a 1.35 m height from the
ground. The depth sensor range is from 0.8 m to 6.0 m with a
vertical viewing angle of 43o and a horizontal viewing angle
of 57o. This low-cost hardware can provide RGB-D data with
640 x 480 pixels resolution at a maximal frame rate of 30

1http://wiki.ros.org/teb local planner

frames per second. The laser range finder, the Hokuyo UTM-
30LX-EW laser positioned at the height of 0.4 m, provides
distance measurements up to 25.0 m in the angular field of
view 270o, and is utilized for robot localization system.

We have created an office-like environment based on
Gazebo simulator. The 3D models of the humans and objects
downloaded from 3D Warehouse2 were placed to create
social situations. The complete simulated office-like envi-
ronment is shown in Fig. 3(b). In this scenario, we deployed
16 3D-human models, P = {p1,p2, ...,p16}, regular objects,
and interesting objects. The scenario is generated with four
crucial situations to demonstrate the typical interaction situ-
ations between humans and the robot in social contexts. The
mobile robot is guided to sequentially navigate to approach
the humans and human groups in these social situations, as
shown in Figure 3(b). The humans are detected if they are
within the field of view of the Kinect sensor and are not
occluded by the other humans, walls, or objects.

B. Simulation Results
The simulation results are shown in Fig. 4. A video of our

experiments can be found at the link3.
As can be seen in Fig. 4(a), 4(b), 4(c) and 4(d). The

mobile robot equipped our proposed socially aware naviga-
tion framework has ability to model the space around the

2https://3dwarehouse.sketchup.com
3https://youtu.be/qWjfSsiREWk
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individual humans and human group, and estimate suitable
approach poses of the robot to the humans and the group of
people. In addition, the mobile robot is capable of generating
socially optimal trajectory, which allows the mobile robot to
navigate safely and socially to the selected approaching pose,
as presented in Fig. 4(e), 4(f), 4(g) and 4(h).

In summary, the simulation results illustrate that, the
mobile robot equipped with the proposed framework is
able to estimate the approaching poses and socially robot’s
trajectory, and safely and socially drive the mobile robot to
the selected pose, providing the comfortable safety for the
mobile robot in two essential task approaching and avoiding
the humans and human groups.

IV. CONCLUSIONS
We have presented a socio-spatio-temporal human

characteristics-based socially aware navigation framework
that enables mobile service robots to both approach and
avoid humans in dynamic social environments. The proposed
framework consists of two major stages. In the first stage,
the robots estimate the approaching poses of the robot to the
human or human group. In the second stage, the proposed
framework will estimate an optimal robot’s trajectory. The
proposed framework is verified in the Gazebo-based simula-
tion environment. The simulation results illustrates that, the
mobile robots equipped with our proposed framework are
able to safely and socially approach and avoid individual
humans and human groups, providing socially acceptable
behavior for the mobile robots.

In the future, we will install the proposed socially aware
navigation framework on our mobile robot platform and
conduct experiments in real-world environments to verify its
feasibility and effectiveness.
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