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Abstract—In this study, we propose a socially aware navigation
framework, which enables a mobile robot to avoid humans and
social interactions in dynamic social environments, using deep
reinforcement learning algorithm. The proposed framework is
composed of two main stages. In the first stage, the socio-spatio-
temporal characteristics of the humans including human states
and social interactions are extracted and projected onto the 2D
laser plane. In the second stage, these social dynamic features
are then feed into a deep neural network, which is trained using
the asynchronous advantage actor-critic (A3C) technique, safety
rules and social constraints. The trained deep neural network
is then used to generate the motion control command for the
robot. To evaluate the proposed framework, we integrate it into a
conventional robot navigation system, and verify it in a simulation
environment. The simulation results illustrate that, the proposed
socially aware navigation framework is able to drive the mobile
robot to avoid humans and social interactions, and to generate
socially acceptable behavior for the robot.

I. INTRODUCTION

To deploy mobile service robots in dynamic social en-

vironments, the robots should smoothly avoid humans and

social interactions in their vicinity, while efficiency navigating

towards a given goal. In order to achieve that, several socially

aware robot navigation systems have been proposed in the

recent years [1] and [2] to generate the socially acceptable

behaviors for the mobile robot and ensure the human safety

and comfort during the robot navigation.

The conventional socially aware robot navigation frame-

works can be roughly classified into two categories according

to the techniques utilized to develop the motion planning

systems: (i) model-based methods and (ii) learning-based

approaches. In the first category, the navigation systems utilize

available models, such as artificial potential field [3], social

force model [4], velocity obstacles [5] to develop the motion

planning system. In the second category, the machine learning

techniques, including reinforcement learning [6], and inverse

reinforcement learning [7] techniques are used to enable the

robots to navigate safely and socially in social environments.

Although the model-based approaches [8], [9], and [10]

have been evaluated such that, the navigation systems are

capable of driving the robot to navigate safely and socially

towards a given goal, they still suffer essential weaknesses that

seriously hinder the robot capabilities to navigate in crowded

and dynamic environments. For example, in these papers, the

authors have to hand-craft all the features of the human and
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Fig. 1. An example of a dynamic social environment, in which there are a
robot and six people p1 − p6. The people p1 and p2 are forming a stationary
group, while a group of two people p3 and p4 are moving towards the robot,
and person p5 is interacting with an object. The robot needs to navigate to
approach person p6 while avoiding people p1 − p5, and social interactions.

surrounding environments, model these information and then

incorporate them into the robot navigation system. In addition,

several parameters are empirical set by the authors experiences

for a specific environment. Moreover, this parameter set often

need to be tuned individually, and can vary significantly for

different environments.

To overcome the aforementioned drawbacks, a number of

machine learning techniques-based navigation systems have

been proposed to enable the robots to navigate socially and

safely in dynamic social environments [11], [12], [13] and

[14]. The learning-based approaches can be divided into two

categories according to the information used as inputs of the

the navigation system: (1) sensor-level-based approaches and

(2) agent-level-based techniques. In the former, the authors

utilize the raw data from sensors as input of the model. In the

later, the agent information is utilized to develop the navigation

system of the robot.

The sensor-level-based robot navigation system [11] and

[12] learn to select actions directly from raw sensor readings

(e.g. 2D laser rangefinder, rgb image, depth image) with end-

to-end training. The raw sensor approach has the advantage

that, the navigation system can deal with both static and

dynamic obstacles (including walls). In addition, the data from

the sensors can be fed directly into the neural network with

a single framework. However in real-environments, especially

in dynamic human environments, it is important to extract an

agent-level representation of the world from multiple sensors.

Regarding to agent-level-based navigation system [13] and

[14], the input of the model is the states including position and

motion of nearby humans and moving obstacles. However,

it is difficult to incorporate the surrounding environment
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information into the model. In addition, since the number of

surrounding humans can vary dramatically in different scenes,

we need a model that can handle an arbitrary number of inputs

into a fixed size output. Therefore, recently Everett et al. [13]

uses a long short term memory network to process the state

of each neighbor sequentially in reverse order of the distance

to the robot. However, the underlying assumption that the

closest neighbors have the strongest influence is not always

true. Some other factors, such as motion and direction, are also

essential for correctly estimating the importance of a neighbor,

which reflects how this neighbor could potentially influence

the robots goal acquisition.

Although, learning-based navigation systems have been

demonstrated that, the robot can navigate safely and socially

in dynamic social environments. Each approaches have ad-

vantages and disadvantages. Therefore, to exploit the ad-

vantages of these techniques, in this paper we proposed a

deep reinforcement learning-based socially aware navigation

system, which can handle both agent-level and sensor-level.

In addition, the proposed system takes into account the social

interactions (human group and human–object interactions). In

order to accomplish that, we project the human state and

social interactions onto the 2D laser plane, and use this as

input of a deep neural network. In addition, to exploit the

parallel training process and help the robot to learn do deal

with a variety of social situations in the dynamic social

environments, we utilize the asynchronous advantage actor-

critic (A3C) technique proposed by Mnih et al. [15] for

teaching the robot. The main idea of the A3C algorithm

is that, instead of using a single agent learning in a single

environment, the algorithm uses multiple agents learning in a

set of environments in parallel, and sharing knowledge with the

others about what they have learned. This allows the algorithm

to not only train faster as more agents are training in parallel,

but also to increase the diversity of training data as each

workerss experience is independent. As a result, the proposed

framework is capable of generating the socially acceptable

behavior for the robot and providing human safety and comfort

in the robot’s vicinity.

The rest of this paper is organized as follows. Section II

presents the proposed socially aware robot navigation frame-

work using the asynchronous advantage actor critic technique.

Sections III describes the simulation results. We conclude our

paper in section IV.

II. PROPOSED FRAMEWORK

A. Problem Description

We consider a social context of a robot navigating towards

a given goal (xg
t ,y

g
t ) through a social environment in the pres-

ence of N humans and M objects, as shown in Fig. 1. Assume

that, states of the robot in the robot local coordinate at time

t are represented as sr
t = [ẋr

t , ẏ
r
t ]

T , where (ẋr
t , ẏ

r
t ) is the robot’s

velocity. We also assume that, there are N people appearing

in the robot’s vicinity at time t, P = {p1
t ,p2

t , ...,pN
t }, where

pi
t is the ith person. The states of person pi

t are represented

as spi
t = [xpi

t ,ypi
t ,θ pi

t ]T , where (xpi
t ,ypi

t ) is the position, θ pi
t is

P
i

Intimate zone (0−0.45 [m])
Personal zone (0.45−1.2 [m])

Social zone (1.2−3.6 [m])
Public zone (from 3.6 [m])
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Fig. 2. The Hall model with four zones (a); The human group interaction
with the radius rg

k (b); The human–object interaction with the radius ro
m (c).

Fig. 3. Socially aware robot navigation framework based on asynchronous
advantage actor-critic (A3C) learning technique.

the head orientation. There are M objects O = {o1
t ,o2

t , ...,oM
t },

where o j
t is the jth interesting object. The states of object o j

t
are represented as so j

t = [xo j
t ,yo j

t ,θ o j
t ]T , where (xo j

t ,yo j
t ) is the

position, θ o j
t is the orientation.

To generate the socially acceptable robot behaviors, the

robot should take the personal space around the human pro-

posed by Hall [16], the human group interaction space (F-

formation) proposed by Kendon [17], and the human–object

interaction space proposed by Truong et al. [9], as shown in

Fig. 2(a), 2(b) and 2(c), respectively.

B. Proposed Socially Aware Navigation Framework

As shown in Fig. 1, in this context, the robot should navigate

towards the given goal timely while guaranteeing the safety

and comfort of the humans in the robot’s vicinity. In order

to achieve that, the navigation system of the robot should

take into account the obstacles, humans, social interactions.

In addition, inspired by the idea of the A3C algorithm [15],

instead of using a single robot learning to address social

situations, we uses multiple robots learning in parallel to solve

all social situations. To this end, we proposed a socially aware

navigation framework for robot using the A3C algorithm and

the conventional navigation system [18], as shown in Fig. 3.

In order to perceive the surrounding environment, the robot

is equipped with a laser rangefinder and a Microsoft Kinect

sensor, as shown in Fig. 3. The proposed framework first

detects the humans and interesting objects using the data from
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(a) Example scenario (b) Obstacle state space - so (c) Social state space - ss (d) Goal state space - sg

Fig. 4. The state space of the mobile robot. (a) the scenario including humans, an object, a goal, and social interactions; (b) the state space of the obstacle
avoidance layer; (c) the state space of the social layer; (d) the state space of the goal layer.

the laser and Kinect sensor. Then it recognizes social interac-

tions in the robot’s vicinity. The human and social interaction

information are then projected onto 2D laser plane. Finally,

the laser data, the projected human and social interaction, and

the robot’s state are used as inputs of the A3C-based motion

control, which then generates the motion control command

for the robot. This motion control command is then used to

control the robot to approach the goal while avoiding other

people, social interaction and obstacles in the robot’s vicinity.

C. State Space

In this study, we utilize the 2D laser plane as state space of

the robot. However, in order to incorporate the social dynamic

of the humans (human states, social interactions) into the

proposed socially aware navigation framework, we project

these information onto the 2D laser plane, as shown in Fig. 4.

To accomplish that, we assume the robot has 240 eyes pointing

out in 240 directions, as seen in Fig. 4(a), in each direction

the robot can observes 3 variables in its vicinity: (1) the

distance from the robot to the surrounding objects, as shown

in Fig. 4(b). We call this information as obstacle avoidance

layer, and named as so; the type of sensed objects including

(2) humans and social interactions, as shown in Fig. 4(c). It

is called social layer, and named as ss; and (3) goals, named

as sg, as shown in Fig. 4(d). In addition, the robot’s state is

sr
t = [ẋr

t , ẏ
r
t ]

T . Therefore, the total state space of the robot is

st = [so
t ,ss

t ,s
g
t ,sr

t ]
T . As a result, there is a total of (240 x 3)+2

dimensional state space. In other words, the size of the state

space is Ns = 722. This state space is then used as an input

of a deep neural network.

D. Action Space

The action space of the robot is a set of permissible

velocities. In this study, we utilize a differential drive robot

platform, thus the action includes the linear and angular

velocities, at = [vt ,ωt ]. We consider the real robots kinematics

and the real world applications, therefore we set the range

of the linear velocity v ∈ [0.0,1.2] and the angular velocity

ω ∈ [−π
6 , π

6 ]. We call A is the action space of the robot. Thus,

at each time step the robot will select an optimal action in

the action space at ∈ A. In this paper, we choose the size of

the action space Na = 14. Note that, the backward moving of

the robot (v < 0.0) is not allowed since the laser rangefinder

cannot cover the back area of the robot.

E. Network Architecture

Fig. 5. The architecture of the policy and the value networks. The one-
dimensional convolutional neural network (Conv1D) layer [32,7,2] indicates
that, in this convolution layer the number of filters are 32, kernel size is 7
and stride is 2. The output of the final Conv1D is concatenated with the robot
state, is then feed into the long short-term memory network (LSTM). The
LSTM network has 32 hidden states. There are two fully connected (FC)
layers of 512 neural nodes. The output of the policy network (π) is the action
space of the robot. The output of the value network (V ) is one value with
linear activation function.

In this study, a deep neural networks-based function ap-

proximation is utilized to map from the state space to action

space of the robot. Because, the neural networks offer many

advantages, such as quality of the generalization, limited mem-

ory requirement for storing the knowledge, and continuous

state space of the system. To deploy both the spatio-temporal

information from the state space of the robot, we utilize the

network architecture, as shown in Fig. 5.
Using this network architecture we aim at extracting the

spatial features of the state space using three layers of one-

dimensional convolutional neural network. We then feed these

features into the LSTM network with 32 hidden state to extract

the temporal dependencies of the state space. Following the

LSTM network is two fully connected layers, which learn non-

linear combinations of the features. The output of the value

network (V ) is used for learning process. The output of the

policy network (π) is utilized to select the optimal action of

the robot during the training and testing stages.

F. Reward Function
In order to guide the robot to learn how to avoid obstacles,

humans and social interactions in the surrounding environ-

ment, and minimize the mean arrival time to the given target,

we propose a reward function as follows:

rr
t = rro

t + rrh
t + rrs

t + rrg
t (1)
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where, rr
t is the reward received by robot at time-step t. It is

a sum of four components including rro
t –obstacle avoidance

reward, rrh
t –human avoidance award, rrs

t –social interaction

reward and rrg
t –goal reward. Specifically, the robot is punished

by rro
t when it collides with obstacles or other robots:

rro
t =

{
ro

collision if
√
(xo

t )
2 +(yo

t )
2 < rr + ro

0 otherwise
(2)

When the robot navigates close to a human or collides it,

the robot is penalized by rrh
t depending on the distance drh

t
from the robot to the surrounding humans:

rrh
t =

⎧⎪⎨
⎪⎩

rh
collision if drh

t ≤ rr + rp

rps
collision if rr + rp < drh

t ≤ rps
0

0 otherwise

(3)

where, rh
collision is the punishment when the robot collides with

the humans; the robot is penalized by rps
collision when it crosses

the personal space of the humans; rps
0 is the radius of the

personal space according to Hall [16], as shown in Fig. 2(a).

When the robot crosses social interaction spaces including

human group and human–object interaction spaces, it will be

penalized by rrs
t depending on the distance drs

t from the robot

to the social interactions:

rrs
t =

{
rs

collision if drs
t ≤ rg

k or drs
t ≤ ro

m

0 otherwise
(4)

where, rg
k and ro

m are the radius of the human group and

human–object interaction spaces, respectively.

In order to encourage the robot to quickly approach a given

goal, and track the target when it is moving, the robot is

awarded by rrg
t for reaching and tracking the goal (xg

t ,y
g
t ):

rrg
t = rrag

t + rrtg
t (5)

rrag
t =

{
rarrival if

√
(xg

t )
2 +(yg

t )
2

0 otherwise
(6)

rrtg
t = rtgoalTg (7)

where, rrag
t is awarded when the robot approaching the goal,

and computed using Eq. 6; and when the robot maintain

approaching goal in a interval of time Tg it is awarded rrtg
t ,

which is calculated in Eq. 7.

G. A3C-based Socially Aware Navigation Framework

In this study, the A3C algorithm is used to train the

robot learning how to navigate socially in dynamic social

environments. To accomplish that, we use multiple robots

learning in parallel with each robot having its own network

parameters and a copy of the environment. The robots will

interact with their respective environments asynchronously,

and learning with each interaction. Each robot is controlled

by a global network. As each robot gains more knowledge, it

contributes to the total knowledge of the global network. The

presence of a global network allows each robot to have more

diversified training data.

Algorithm 1: A3C-based socially aware mobile robot

navigation algorithm

input : State size Ns, action size of the robot Na,

number of robot Nr, maximum global shared

episode Tmax, learning rate α .

output: The trained global shared policy network

1 begin
2 Initialize global shared policy network using Ns,Na
3 Initialize global shared value network using Ns
4 Initialize Nr pair of actor-critics with local policy

and value networks

5 Assign each actor-critic to a thread

6 Start Nr threads

7 repeat
8 Asynchronous update the global shared networks

using local gradients from each actor-critic

9 until all threads are terminated

The A3C-based socially aware navigation framework of the

robot is presented in Algorithms 1. The inputs of the algorithm

are the size of the state space Ns and the action size Na,

the maximum global shared episode Tmax, and the learning

rate α . While the output is the trained global shared policy

network, which then is used to choose the optimal action

of the robot. We first initialize the global shared policy and

value networks using the network architecture presented in

Section II-E (Lines 2 and 3 of the Algorithms 1). We also

initialize Nr pair of actor-critics (Line 4 of the Algorithms 1),

which is corresponding to Nr robots. Each robot is assigned

local policy and value networks, which their architecture are

similar to the global networks. We then assign each robot

to a thread, and start the threads (Lines 5 and 6 of the

Algorithms 1). The global shared networks are asynchronous

updated the using local gradients from each robot.

Algorithm 2 shows the learning process of each robot

(each thread). The inputs of the algorithm are the state space

st , action space A, maximum global shared episode Tmax,

maximum step of each episode tmax, frequency update tupdate
and discount factor γ . Whereas, the outputs are the accumulate

gradients of the policy network dθ and the value network

dθv, which are used to asynchronous update the global shared

networks. At the first of each episode, the local networks will

be updated with new weights from the global shared networks

(Line 4 of the Algorithm 2), and the robot will get the first

state (Line 5 of the Algorithm 2). The algorithm will loop until

tmax time step or the robot collides with humans, obstacles

(Line 6 of the Algorithm 2). In each loop, the robot first

selects the action according to the local policy network, then

performs this action, and receive new state and reward (Lines

7 and 8 of the Algorithm 2). At each tupdate or the robot

collides with the environment, the algorithm will calculate the

accumulate policy and value gradients, which are then used

to asynchronous update the weights for the global networks

(Lines 11–16 of the Algorithm 2).
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Algorithm 2: Actor-critic thread in A3C algorithm

input : State space st , action space A, maximum

global shared episode Tmax, maximum step of

each episode tmax, frequency update tupdate,

discount factor γ .

output: Accumulate gradients dθ and dθv
1 begin
2 Initialize memory M to capacity tupdate
3 for episode = 1,Tmax do
4 Update local networks using global shared

networks θ ′ ← θ and θ ′
v ← θv

5 Get current state st
6 while ((t < tmax) or (not terminal)) do
7 Select at according to policy π(at |st ;θ ′)
8 Perform action at , receive state st+1, reward rt
9 Store transition (st ,at ,rt ,st+1) in memory M

10 if (t mod tupdate == 0) or (terminal) then
// Accumulate gradients dθ, dθv

11 for i = 1, length(M) do
12 R ← ri + γR
13 A = R−V (si;θ ′

v)
14 dθ ← dθ +∇θ ′ logπ(ai|si;θ ′)A
15 dθv ← dθv +∂ (R−V (si;θ ′

v))
2/∂θ ′

v
16 end for
17 Asynchronous update θ , θv using dθ , dθv
18 Clear the memory M
19 end if
20 st ← st+1; t ← t +1

21 end while
22 end for

H. Training

1) Training Environment: In order to guide the robot learn

to avoid humans, social interactions, obstacles, and approach

goals, we have created a hallway-like scenario with walls,

interesting objects, humans, social interactions, and goals

based on the Stage robot simulator [19], as depicted in Fig. 6.

The moving humans, goals and objects are controled using

social force model proposed by Helbing et al. [4] and the

available software platform1.

2) Training Setup: The software core of the robot is based

on the Robot Operating System (ROS) [20]. The proposed

framework is implemented using Python and the Tensorflow

library2. We adopt the Adam optimization method [21] for

training the proposed model. We train the proposed socially

aware navigation framework on an Intel core i7 4.2 GHz CPU

desktop. The running time is 16 hours with about 1000 global

episodes. The parameters of the training and testing process

are empirically set in Table I.

3) Training Process: In order to help the robot easy to

learn, we divide the training process into three stages including

1http://pedsim.silmaril.org
2https://www.tensorflow.org

TABLE I
PARAMETERS SET IN TRAINING AND TESTING PROCESS

Parameter Value Parameter Value Parameter Value
α 0.001 γ 0.99 tupdate 20

Ns 722 Na 14 rps
0 0.9 [m]

tmax 500 ro
collision -5 rh

collision -10

rps
collision -0.2 rs

collision -0.2 rh
arrival 10

rtgoal 0.1 Nr 8

(i) static stage, (ii) semi-dynamic stage and (iii) dynamic stage.

In the static stage, all of the humans and goals in the scenario

are stationary. In the second stage, all goals in the scenario are

moving. In the final stage, the moving humans and the goals

are navigated around the scenario.

The output of the A3C-based motion control system is the

optimal control command of the robot at = [vt ,ωt ]. It is then

used to drive the differential drive robot platform to socially

navigate in dynamic social environments, providing the safety

and comfort for the human and socially acceptable behavior

for the robot.

III. SIMULATION RESULTS

To validate the proposed socially aware navigation frame-

work, we adopt the social individual index (SII) proposed by

Truong et al. [22]. The SII value is used to estimate the human

safety and comfort, and socially acceptable behaviours of the

mobile robot.

The mobile robot is requested to navigate around the

scenario while avoiding the humans and social interactions

in its vicinity. The simulation results are shown in Fig. 7. As

can be seen in Fig. 7, the SII value is smaller than 0.14 (the

blue line). It indicates that the robot often maintains a comfort

distance to the humans.

In summary, the simulation results clearly indicate that the

proposed socially motion model is capable avoiding humans

and human groups in socially acceptable manners while still

guaranteeing the human safety and comfort in crowded and

dynamic social environments.

IV. CONCLUSIONS

We have presented a socially aware navigation framework,

which enables a mobile robot to avoid humans and social

interactions in dynamic social environments, using deep re-

inforcement learning algorithm. The proposed framework is

composed of two main stages. In the first stage, the socio-

spatio-temporal characteristics of the humans including human

states and social interactions are extracted and projected onto

the 2D laser plane. In the second stage, these social dynamic

features are then feed into a deep neural network, which is

trained using the asynchronous advantage actor-critic (A3C)

technique, safety rules and social constraints. The trained

deep neural network is then used to generate the motion

control command for the robot. We incorporate the proposed

motion model into a conventional robot navigation system, and

verify it in a simulation and environment. The experimental

results show that, the proposed socially aware navigation
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Fig. 6. A hallway-like scenario with walls, interesting objects, humans, and goals. Eight robots (magenta dots), 8 typical social situations, 10 stationary people
(cyan dots), 6 moving people (dark blue dots), and two moving object (brown triangle and square), and 8 goals (green dots) are distributed in the scenario.
The robot is assigned a task to navigate to approach goals while avoiding humans and social situations: (1) a group of two standing people; (2) a group of
three standing people; (3) a group of four standing people; (4) a human–object interaction; (5) a group of two people moving cross the scenario; (6) a group
of two people moving forward; (7) a human–object moving forward; (8) a human–object moving cross the scenario.

Fig. 7. The social individual index (SII) value.

framework enables the mobile robot to avoid humans and

social interactions, providing socially acceptable behavior for

the robot.

In the future, we will evaluate performance of the proposed

framework in several social situations, especially in real-

world environments. In addition, we will extend our proposed

framework to three dimensional state space by using the RGB-

D image sequence as the input of the deep neural network.
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