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Abstract— In this paper, we propose a social timed elastic
band (STEB)-based navigation framework which enables a
mobile service robot to safely and socially avoid a human in
dynamic social environments. The main idea of the proposed
framework is to incorporate the socio-spatio-temporal char-
acteristics of the humans including human position, motion
related to the robot, and social rules into a conventional
online trajectory planing algorithm. We evaluate the developed
framework through a series of simulation experiments. The
simulation results show that the proposed framework is fully
capable of autonomously driving the mobile robot to avoid the
individual humans in dynamic social environments, providing
the safety and comfort for the humans and the socially
acceptable behaviours for the mobile robot.

I. INTRODUCTION

The ability to navigate autonomously in dynamic social
environments such as museums, airports, shopping malls,
and urban environments is crucial for mobile service robots.
In order to achive that, a number of socially aware robot
navigation systems [1], [2] and [3] have been proposed in
recent years. The existing socially aware robot navigation
frameworks can be roughly divided into two categories based
on the method of incorporating human information and social
constraints into the navigation systems: (i) social costmap-
based approaches and (ii) motion planning system-based
techniques. In the former, the navigation systems embed
the human information and social rules into the costmap
function. While in the later, the social constraints are directly
incorporated into the motion planning systems.

Regarding the social costmap-based techniques, a number
of mobile robot navigation systems have been proposed
in recent years [4], [5], [6] and [7]. In these systems the
authors utilize the 2-D Gaussian and linear techniques to
model the human information and social rules as social
costmap. They then utilize the path planning algorithms
[8], [9] and dynamic window approach technique [10] to
generate a feasible path and a motion control command for
the robots. The robots equipped with these algorithms are
capable of safely and socially avoiding the humans in the
robot’s vicinity, and providing socially acceptable behaviors
for the mobile robots, such as avoiding personal space and
social interaction space, passing a person on the right side,
and overtaking the person on the left side. However, this
approach is time consuming, and it is highly computationally
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difficult to find a feasible path in crowded and dynamic
environments [6] and [11].

Regarding the motion planning system-based techniques,
several socially aware mobile robot navigation frameworks
have been recently proposed [12], [13], [14] and [15]. These
frameworks incorporate human information and social rules
into the conventional motion planning techniques, such as
social fore model [16] and velocity obstacles [17]. Although,
these approaches have been successfully applied in real-
world environments, the systems do not directly take into
account the motion dynamics of the mobile robots. Hence,
it might be difficult to directly utilize the output control
command to control the mobile robots in the real-world
environments, especially for non-holonomic mobile robots.
To deal with that problem, recently Khambhaita et al. [18]
presents a cooperative trajectory planning system using the
robots kinodynamic constraints and social constraints includ-
ing possible future collision, compatibility of human-robot
motion direction, and proxemics.

In this paper, we propose a human-like motion system
for socially aware mobile robot navigation framework using
kinodynamic constraints and social rules including the per-
sonal space, passing a person on the right hand side. In order
to accomplish that, we incorporate the social constraints into
the conventional timed elastic band (TEB) model [19], which
is an online trajectory planing algorithm. The advantage of
the TEB technique is that, it takes into account the robot
dynamics including the velocity and acceleration limitations,
kinodynamic and nonholonomic constraints of the mobile
robots, and the safety distance of the obstacles and their
geometric. In addition, the TEB model is formulated in a
weighted multi-objective optimization framework. Therefore,
it is easy to extend by incorporating additional objectives
and constraints [20]. Particularly, we incorporate the social
rule, which is passing the humans on the right hand side,
into the objective function of the conventional TEB model,
and propose a social timed elastic band (STEB) model.
In addition, instead of using only the human position, the
personal space is utilized as the input of the proposed STEB
algorithm. The mobile robot equipped with the proposed
STEB model is able to socially avoid humans and safely
navigate towards the given goal.

The rest of the paper is organized as follows. Section II
presents the proposed social timed elastic band technique.
The results in a simulation environment are described in
Section III. We provide the conclusion of the paper in
Section IV.
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II. PROPOSED FRAMEWORK

A. Problem Description
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Fig. 1. An example scenario of a dynamic social environment including
a mobile robot and a moving human. The robot is requested to navigate to
the given goal while avoiding a person p1 moving towards the robot. The
green curved line is the intended social trajectory of the mobile robot.

We consider a dynamic social environment with the pres-
ence of a mobile robot and N humans in the robot’s vicinity,
as shown in Fig. 1. The robot is requested to navigate from
the initial pose ss = [xs,ys,θs,vs,ωs]

T to a given goal sg =
[xg,yg,θg,vg,ωg]

T while safely avoid the humans during its
navigation. We assume the robot state sr = [xr,yr,θr,vr,ωr]

T ,
where [xr,yr]

T is the position, θr is the orientation, vr is
the linear velocity, and ωr is the angular velocity. We also
assume that, there are N people appearing in the vicinity of
the robot P = {p1,p2, ...,pN}, where pi is the ith person. The
state of the person pi is represented as si

p = [xi
p,y

i
p,θ i

p,v
i
p]

T ,
where [xi

p,y
i
p]

T is the position, θ i
p is the orientation, and vi

p
is the linear velocity. The radius of the robot and human are
rr and rh, respectively.

B. Timed Elastic Band Technique

Timed elastic band (TEB) is an online trajectory planning
algorithm for online collision avoidance, and has been suc-
cessfully applied in dynamic environments [19], [20] and
[21]. In this section, the conventional TEB algorithm are
briefly presented. Assume that a discretized trajectory B is
defined in terms of a finite-dimensional parameter vector
including of an ordered sequence of mobile robot states
sk = [xk

r ,y
k
r ,θ k

r ]
T , with k = 1, 2, ..., N and time stamps ΔTk

with k = 1, 2, ..., N-1. Thus the set of parameters B subject
to optimization is defined as follows:

B = [s1,ΔT1,s2,ΔT2, ...,sN−1,ΔTN−1,sN ]
T (1)

where, ΔTk represents the time interval that the mobile robot
has to require to transit between two consecutive poses sk
and sk+1. The robot’s trajectory B subject to:

0 ≤ ΔTk ≤ ΔTmax,
hk(sk+1,sk) = 0, (Nonholonomic kinematics)
ok(sk)≥ 0, (Clearance from surrounding obstacles)
νk(sk+1,sk,ΔTk)≥ 0, (Limitation of robot’s velocities)
αk(sk+1,sk,sk−1,ΔTk,ΔTk−1) ≥ 0 (Limitation of robot’s

accelerations)
The total transition time is approximated by T ≈∑N−1

k=1 ΔTk,
ΔTmax is an upper limit of ΔTk in order for the robot moving
smoothly in the real time. The aforementioned equality and

Algorithm 1: Timed elastic band algorithm
input : robot state sr, start pose ss, goal pose sg, set

of obstacles O

output: Control command ur
1 begin

2 G ← createGraph(sr, ss, sg, O);
3 D ← depthFirstSearch(G);
4 H ← computeH-Signature(D, G);
5 R ← removeRedundantPath(D, H, G);
6 T ← initializeTrajectories(R, G);
7 for each trajectory Bp ∈ T do

8 V ← objectiveFunction(); � using Eq. 2
9 B∗

p ← Optimizer(Bp,O,V); � Solve Eq. 3
10 B∗ ← storeLocalOptimalTrajectory(B∗

p);
11 end for

12 Vc ← newObjectiveFunction(); � using Eq. 5
13 B̂

∗ ← Optimizer(B∗,O,Vc); � Solve Eq. 4
14 Return ur = [υr,ωr]

T ;

inequality equations represent the constraint of the envi-
ronment with the robot, such as nonholonomic kinematics,
clearance from obstacles and bounds on velocities and ac-
celerations. All of the constraints are incorporated into the
objective function Eq. 2 as additional penalty terms.

V (B) =
N−1

∑
k=1

[ ΔT 2
k +δh‖hk‖2

2 +δv‖min{0,νk}‖2
2+

δo‖min{0,ok}‖2
2 +δα‖min{0,αk}‖2

2 ] = wT f (B) (2)

where, the remainder of Eq. 2 is expressed in terms of the
dot product, in which w captures individual weights and f (B)

contains individual cost terms. With objective function V (B)
the overall optimization problem is defined by:

B∗ = argmin
B

V (B) (3)

The TEB approach utilized the Levenberg-Marquardt algo-
rithm [22] to solve Eq. 3, and obtained the optimal robot tra-
jectory B∗. Finally, the desired control commands are directly
extracted from the optimal trajectory B∗. The classical TEB
technique [20] has been applied in real-world environment
and has achieved considerable success. However, it still has
a drawback of only optimizing a single trajectory leading to
stuck to a locally optimal trajectory somewhere, especially in
dynamic environments. To tackle this problem, recently the
TEB approach was extended to parallel trajectory planning
in spatially distinctive topologies [19] and [21], which enable
the robot to switch to the current globally optimal trajectory
among the candidate trajectories of distinctive topologies.

Algorithm 1 presents the extension TEB technique [19]
and [21], which consists of three major steps: (i) exploration
(Lines 2-6 of the Algorithm 1), (ii) optimization (Lines 7-
11 of the Algorithm 1) and (iii) selection (Lines 12-13 of
the Algorithm 1). The input of the Algorithm 1 includes the
robot state sr, start pose ss, goal pose sg and set of obstacles
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Algorithm 2: Proposed social timed elastic band
input : robot state sr, start pose ss, goal pose sg, set

of obstacles O, set of humans P

output: Control command ur
1 begin

2 G ← createGraph(sr, ss, sg, O,P);
3 D ← depthFirstSearch(G);
4 H ← computeH-Signature(D, G);
5 R ← removeRedundantPath(D, H, G);
6 T ← initializeTrajectories(R, G);
7 for each trajectory Bp ∈ T do

8 V ← objectiveFunction(); � using Eq. 2
9 B∗

p ← Optimizer(Bp,O,P,V); � Solve Eq. 3
10 B∗ ← storeLocalOptimalTrajectory(B∗

p);
11 end for

12 Vc ← newObjectiveFunction(); � using Eq. 5
13 Ṽc = Vc +ΔV; � using Eq. 6
14 B̂

∗ ← Optimizer(B∗,O,P, Ṽc); � Solve Eq. 4
15 Return ur = [υr,ωr]

T ;

O, and the output is the control command ur = [υr,ωr]
T

of the mobile robot. In the exploration step, a graph G

is generated to connect from ss to sg by forward directed
edges. The graph is then filtered using depths-first search
algorithm to keep only the acyclic graph. Finally, the H-
Signature [23] technique is utilized to filter redundant paths
that have the same H-Signature; as a result, a set of M
primitive candidate paths that belong to alternative distinctive
topologies are obtained. In the second step, locally optimal
trajectories for all M alternative topologies are planned in
parallel by using the TEB optimization with respect to the
objective function Eq. 2, which generates M locally optimal
trajectories respectively B∗

p, with p = 1, 2, ..., M. In the
final step, the best TEB B̂

∗
or the least-cost trajectory is

selected from the set of alternatives B∗
p obtained by solving

the following equation, which reveals the global minimizer.

B̂
∗
= arg min

B∗
p∈{B∗

1,B
∗
1,...,B

∗
M}

Vc(B
∗
p) (4)

where, the objective function Vc(B
∗
p) is presented as follows:

Vc(B
∗
p) = wT

c fc(B
∗
p) (5)

C. Proposed Social Timed Elastic Band Algorithm

The extension TEB technique has been successfully ap-
plied in real-world environment, and achieved considerable
success [19] and [21]. However, in the TEB planner the
humans are treated like regular obstacles, which results in
an unintelligent robot’s behavior. Figure 1 shows a scenario,
in which the mobile robot equipped with the TEB technique
might generate an optimal trajectory, presented as the ma-
genta curve, which may not be social and comfortable. The
main idea is to take the advantages of the TEB technique, and
incorporate the socio-spatial characteristics of the humans,
thus a social timed elastic band (STEB) model is proposed, as

Algorithm 3: Compute ΔV (B)

input : Robot position pr = [xr,yr]
T , goal position

pg = [xg,yg]
T , position and orientation of ith

person pi = [xi
p,y

i
p]

T and θ i
p, dmin,δ1,δ2

output: ΔV (B)
1 begin

2 v = dmin
[−(yg−yr),(xg−xr)]√
(xg−xr)2+(yg−yr)2

;

3 ps1 = pi −v;
4 ps2 = pi +v;
5 θ1 = atan2(yg − yr,xg − xr);
6 Δθ = θ1 −θ i

p;
7 if cos(Δθ)<−

√
3

2 then

8 ps = SelectLe f tPoint(ps1,ps2,p
i,pg);

9 else

10 ps = pi;
11 dpteb = distanceT EB(ps,B

∗
p);

12 dprg = distanceRG(pi,pr,pg);
13 ΔV (B) = δ1 tanh(dpteb)(1− tanh(δ2dprg));
14 Return ΔV (B);

presented in Algorithm 2. To accomplish that, in the objective
function presented in Eq. 5, an additional factor using social
constraints is added, as illustrated in Eq. 6.

Ṽc(B
∗
p) =Vc(B

∗
p)+ΔV (B) (6)

where, ΔV (B) is computed using Algorithm 3. The input of
the Algorithm 3 consists of the states of robot and humans,
the robot’s goal, and the minimum distance from the robot to
the humans dmin, and two predefined factors δ1 and δ2. We
first determine a pair of points for each person including one
left point and one right point (Lines 2-4 of the Algorithm 3).
Then the algorithm determines whether the robot’s action is
passing on the right hand side or not (Lines 5-10 of the
Algorithm 3). If the robot’s action is passing the person on
the right we select the left point of the person (Lines 7-8 of
the Algorithm 3), and else the robot’s action is normal (Line
9-10 of the Algorithm 3). We then compute the minimum
distance from the selected point ps to the all candidate robot’s
trajectories B∗

p (Line 11 of the Algorithm 3), and compute the
distance from the person position to the line going through
the robot and goal positions (Line 12 of the Algorithm 3).
Finally ΔV (B) is computed using the equation in Line 13
of the Algorithm 3. It is noted that, the difference between
Algorithms 1 and 2 is lines 13 and 14 of the Algorithm 2.

D. System Integration

Once the social robots trajectory is generated by the
proposed STEB algorithm, the motion control command
ur=[υr, ωr]

T is extracted and used to drive the mobile robot
to safely and socially avoid the humans in the robot’s vicinity.
In this study, we utilize a two-wheel differential drive mobile
robot platform, with the state of the robot at the time k is
sk

r = [xk
r ,y

k
r ,θ k

r ]
T . Therefore, the state of the mobile robot at
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the time (k+1) is governed by the following equation:

⎡
⎣

xk+1
r

yk+1
r

θ k+1
r

⎤
⎦=

⎡
⎣

xk
r

yk
r

θ k
r

⎤
⎦+

⎡
⎢⎣

vr
r+vl

r
2 cos(θk)dt

vr
r+vl

r
2 sin(θk)dt

vr
r−vl

r
L dt

⎤
⎥⎦ (7)

where, vr
r and vl

r are the linear velocity commands of the
right and left wheels of the robot, respectively, and L denotes
the wheelbase of the robot. The wheel speeds vr

r and vl
r are

computed using the velocity control command ur as follows:

vr
r = υr +

Lωr

2
dt (8)

vl
r = υr − Lωr

2
dt (9)

III. EXPERIMENTS

To verify the effectiveness of the proposed social timed
elastic band technique, we have implemented and tested it
in a simulation environment. The software of the proposed
framework is implemented using the C/C++ programming
language. The entire navivation framework is developed
based on the Robot Operating System (ROS) [24]. The
conventional TEB package1 was inherited and modified for
developing the proposed STEB model.

A. Simulation Setup

In this study, we examine the proposed STEB model in
a simulation environment. To accomplish that, we create
scenarios, as shown in the first and fourth rows in Fig. 2. The
initial pose of the robot is ss = [−5,0,0]T , and the goal pose
is sg = [5,0,0]T . The mobile robot is requested to navigate
from the initial pose to the goal pose while socially avoiding
a person moving towards the robot.

In order to demonstrate the performance of the proposed
STEB model, we compare it with the conventional online
trajectory planning algorithm TEB [19]. In addition, to
validate the proposed socially aware navigation framework,
we adopted the social individual index (SII) proposed by
Truong et al. [25]. The SII value is utilized to measure the
physical safety and psychological safety of each individual
human. The robot behavior is considered as comfort if the
SII value is smaller than 0.14. Whereas, it is physical safety
if the SII value is between 0.14 and 0.54. The mobile robot
crashes into the person if the SII value is greater than 0.54.

B. Simulation Results

A video clip of our simulation results can be found at this
link2.

The simulation results are shown in Fig. 2, in which the
first and fourth rows show the snapshots of the scenarios. The
trajectory of the mobile robot generated by the conventional
TEB model is red curve, whereas the social robot’s trajectory
is blue curve when the robot equipped with the proposed
STEB model; the second and fifth rows depict the trajectory

1http://wiki.ros.org/teb_local_planner
2https://youtu.be/bK6RITke0VA

of the robot and the person; and the third and last rows
illustrate the SII value along the robot’s trajectory.

As can be seen in the first, second, fourth and fifth rows in
Fig. 2, the mobile robot equipped with the proposed STEB
technique successfully pass the moving person on the right
hand side. In contrast, the mobile robot selects the optimal
trajectory (red curve) if it is installed the conventional TEB
model. Therefore, it will pass the moving person on the left
hand side.

In addition to the social rule of passing the humans on the
right hand side, we also incorporate the personal space into
the proposed STEB model to demonstrate the effective of the
propose method. The first, second and third rows in Fig. 2
show the simulation results of the proposed STEB model
with the personal space, while the STEB model without the
personal space is illustrated in the fourth, fifth and sixth
rows. As can be seen in the third row in Fig. 2, the mobile
robot often maintains a comfort distance to the humans.
On the contrary, although the mobile robot equipped with
the propose STEB technique successfully pass the moving
person on the right hand side, its trajectory is very close to
the person, as shown in the sixth row in Fig. 2.

In summary, the simulation results illustrate that, the robot
equipped with the proposed STEB model is capable of
socially avoiding dynamic humans in the robot’s vicinity,
and safely navigate to the given target.

IV. CONCLUSIONS

We have presented a social timed elastic band-based navi-
gation framework which enables a mobile robot to safely and
socially avoid humans in dynamic social environments. The
main idea of the proposed framework is to incorporate the
socio-spatio-temporal characteristics of the human and social
social constraints into the conventional online trajectory
planing algorithm. We evaluate the developed framework
through a series of simulation experiments. The simulation
results show that the proposed framework is fully capable
of autonomously driving the mobile robot to avoid the
humans in dynamic social environments, providing the safety
and comfort for the humans and the socially acceptable
behaviours for the mobile robot.

In the future, we will implement and install the proposed
framework on our mobile robot platform and evaluate it
based on a variety of scenarios, particularly those with
different social situations and dynamic environments.
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