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ABSTRACT
Along with the rapid development in the field of artificial intelli-
gence (AI), especially deep learning, deep neural network (DNN)
applications are becoming more and more popular in reality. To be
able to withstand the heavy load from mainstream users, deploy-
ment techniques are essential in bringing neural network models
from research to production. Among the two popular computing
topologies for deploying neural network models in production are
cloud-computing and edge-computing. Recent advances in commu-
nication technologies, along with the great increase in the number
of mobile devices, has made edge-computing gradually become an
inevitable trend. In this paper, we propose an architecture to solve
deploying and processing deep neural networks on edge-devices
by leveraging their synergy with the cloud and the access-control
mechanisms of the database. Adopting this architecture allows low-
latency DNN model updates on devices. At the same time, with
only one model deployed, we can easily make different versions of
it by setting access permissions on the model weights. This method
allows for dynamic model licensing, which benefits commercial
applications.

CCS CONCEPTS
• Software and its engineering → Software version control; •
Computer systems organization → Embedded software.

KEYWORDS
Edge Computing, Artificial Intelligence, Dynamic Licensing, De-
ployment Architecture
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1 INTRODUCTION
Deep neural networks (DNNs) have become essential in real-world
applications, and thus started the quest for efficient DNN deploy-
ment architectures. There are two popular computing topologies
for this task: cloud computing and edge computing. Cloud com-
puting [13], a technology that has a long history and numerous
achievements, processes everything in the cloud, making it easy
for system upgrades, source code updates, and flexible scaling. De-
ploying DNN models to the cloud would also take advantage of the
powerful computing power of these systems; and having only one
centralized version for all users would simplify weight updates and
model performance monitoring. However, cloud computing also
has its limitations in terms of waste of system resources, as it cannot
make use of the computing power of edge devices. As a result, the
overall cost of maintaining a cloud system is very high. Accord-
ing to the prediction of Ericsson, in 2024, 45% of global internet
data will be generated by the Internet-of-Things (IoT) devices [16].
Transferring a great amount of data back-and-forth between edge
devices and the cloud is intractable as it causes excessive strain to
the network infrastructure. Furthermore, with the development of
hardware technology, edge-devices have more and more powerful
computing capabilities. For that reason, moving from cloud to edge
is historically inevitable.

Instead of cloud computing, pushing DNNs to the edge of the net-
work enhances both efficiency and personalization. The AI model
is still trained on the cloud to utilize its great computing power.
Afterward, the trained model gets compressed to work with more
computationally-limited hardware, then deployed to the edge de-
vices. This setting allows model updates to be distributed quickly,
simultaneously on all devices, and while trying to save as much
resources as possible. Besides, publishing a model with different
licenses is also an interesting issue for commercial applications,
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where a model can be shipped with different performances depend-
ing on the user’s license. In this paper, we propose a deployment
architecture to deploy the DNN model to edge-devices with four
advantages as follows:

• Efficient: In our architecture, we use an in-cloud database
to store the DNN model weights with their corresponding
layer names and indices. This design choice helps us cen-
trally manage different versions of weights and easily pushes
or updates the changes of DNN model. As a result, the de-
ployment and update process becomes more efficient.

• Low-Latency Update: Downloading all the weights of the
DNN model can take a long time on edge devices. This op-
eration is only needed the first time when we load model
weights onto the edge devices. However, for later updates,
we might not need to download all the model weights but
only the modified ones. Based on such analysis, we propose
an algorithm to download only modified weights to achieve
low-latency updates.

• Version Management: Managing versions is a common
taskwhen deploying aDNNmodel in production. Ourmethod
provides a solution to track changes with commit history,
update new versions, and rollback to an older version, similar
to Version Control Systems.

• Dynamic Licensing: This feature is especially meaningful
for commercial applications. Our method allows the model
owner to create unlimited licenses of their model with dif-
ferent accuracies but while requires only one set of weights
saved on the database.

The rest of the paper is organized as follows. Section 2 provides
a brief survey of related works. Next, in Section 3, we describe our
proposed method. Experiment settings, including dataset informa-
tion and data processing methods, are described in Section 4; while
experimental results are detailed in Section 5. Finally, Section 6
presents our conclusions.

2 RELATEDWORKS
2.1 Edge-based vs Cloud-based AI
Currently, model inferences are mostly performed in the cloud;
but as the diversity of DNN applications grows, other alternatives
to the centralized training and inference strategy are required to
lessen the burden on network infrastructures [12]. To that, we
opt for Edge Computing [19]: a distributed computing paradigm
where software-defined networks are built to decentralize data and
provide results expected to be the same as which of cloud comput-
ing [20]. Solving these problems, edge DNN aims to process DNN
models directly on edge devices. However, to utilize their innate
computing power, edge computing faces more resource allocation
problems, due to the inherent difference in hardware architecture,
the need to sample inputs from built-in peripherals, bandwidth con-
straints and more [18, 20]. To offset these problems, deployment on
edge-devices requires DNN models to be minimal enough for fast
inference and low-latency updates. As a result, it requires various
powerful optimizations to achieve the required system efficiency.
The difference between cloud-based and edge-based for DNN ap-
plication is demonstrated in Figure 1. The left figure shows the
cloud-based deployment with training, and the right figure shows

Figure 1: Cloud-based DNN (left) vs Edge-based DNN archi-
tecture (right)

the edge-based architecture where inference has been offloaded to
the edge devices.

2.2 Deep Neural Network (DNN)
A deep neural network is, in essence, a composition of more than
two non-linear, simpler functions, which can approximate any arbi-
trarily complex function [7] (Universal Approximate Theorem [2]).
Mathematically, a DNN is defined as:

fθ (x ) = fθn ◦ fθ2 ◦ fθ1 (x), (1)

where
θ = {θ1,θ2, . . . ,θn }

is its parameterization.
The most common task is classification, where the model would

output whether a data is of a particular class. To build a DNN for the
job, we first choose a model architecture that can find meaningful
patterns to output. Subsequently, all that is left to do is to learn the
parameters of that network through training.

To train a DNN model, a scalar objective function must be de-
fined to quantify the quality of the model; and thus optimizing this
function will improve the model’s performance as a result. In the
case of classification, we would minimize MLE as our loss function.
Optimizing this loss function using gradient-based methods [26] is
a common practice in deep learning algorithms. This “allows the
information from the cost to flow backward through the network
to compute the gradient” [7]. The optimal parameters (weights) are
approximated via the iteration method.

2.3 Model Compression Methods
Modern DNNs are expensive in both computation and memory
storage, which leads to difficulties in deployment on mobile devices.
Consequently, model compression – compressing large, complex
models into a lighter, simpler one without significant loss in accu-
racy – has become indispensable to the DNNs deployment.

2.3.1 Model Pruning. An enormously trained model in deep learn-
ing contains a large amount of redundancy [1] in the form of unim-
portant weights that have little contribution to the final output.
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Pruning is a method of model compression, lightening the archi-
tecture by cutting off those unimportant connections or weights,
trading a minor loss in quality for performance [1]. Methods of
identifying uninformative weights are varied: from using second-
order derivatives information [3], similarity in neurons [21], to the
state-of-the-art Movement Pruning [17] which use the change’s
magnitude in weight updating. Among these above complex meth-
ods, one stands out with its simplicity and effectiveness: Magnitude
Pruning [10] – eliminating weights which have magnitudes less
than some threshold, followed by fine-tuning to achieve the highest
possible accuracy on the (significantly) pruned model.

2.3.2 Quantization. Quantization is the method of reducing the
representation accuracy of the network’s weights by storing them
with lower numbers of bits. This leads to faster computation, de-
creases in-memory storage with a trade-off of lower accuracy. 8-bit
weight quantization [25] or 16-bit fixed-point with stochastic round-
ing representation [9] are well-known examples of this method, for
their effectiveness heavily outweighs their loss of accuracy [1].

2.3.3 Weight Sharing. DeepCompression [10] also introducesweight-
sharing that works well with quantization. This method can be ap-
plied after quantization. It divides the weights into k clusters, where
weights in one cluster are closed in magnitude, which afterward
will be set to be identical. Consequently, a reduction in storage and
computation occurs since one only needs to store a sparse cluster-
index matrix and a hashtable for quantized value-lookup instead of
a dense matrix.

2.4 Database and Query
2.4.1 Database. A database is a collection of data, typically describ-
ing the activities of and among related entities [15]. For different
problem requirements and types of information stored, various
types of databases are available for the task: relational database,
NoSQL database, graph database, etc. [24]. The most mature and
widely used database systems in production today are relational
database management systems, which can be found in most appli-
cations, such as e-commerce, social networks, retails, etc.

DNNs consist of neurons organized into layers of neurons and
the connections between them. This hierarchical architecture en-
courages us to represent a DNN with a relational database. Storing
a DNN in the database would make it easy to update weights, en-
suring weight constraints, and manage weight access permissions.

2.4.2 GraphQL. Querying from a database fast and efficiently is
impossible with the traditional RESTful API [6], so we opted for
a better choice for the job: GraphQL [22]. For all its popularity’s
worth, one aspect where REST API falls short is its strict inflexi-
ble specifications, where custom requests for various information
would require a lot of queries to different API endpoints. Not only
this would require a complicated control flow to support many
types of requests, but also combined latency of all these queries
introduces a noticeable lag. Moreover, if one endpoint were to fail,
the request would not be able to go through later endpoints – this
bottlenecking phenomenon is common with REST API. However,
these problems do not occur with GraphQL, being a client-oriented
query language with a flexible data structure that can adapt to any

type of client’s demands. GraphQL supports operations similar to
REST API, but with a hierarchical structure that is client-friendly.

3 PROPOSED METHOD
3.1 Our Architecture
3.1.1 Combining Edge-Devices with weights storage database. The
traditional Edge-AI architecture (mentioned in subsection 2.1) only
has two main partitions: edge devices and the cloud. The cloud in
this computing topology has the roles of training and storing DNN
models, managing model versions, storing user data, and model
licenses. That is a huge amount of tasks to manage; especially with
the model licensing, where the server needs to store a large number
of model versions. Imagine we have 10 versions of the model, each
of which has 10 different licenses: the cloud would have to store
100 copies of the model to accommodate that. This leads to a waste
of system resources. Therefore, we propose our new pipeline as
demonstrated in Figure 2. Our proposed architecture as the same as
an additional module of traditional edge computing in deployment
the DNN models. Instead of store all weight and DNN topology
in a server, we store the model weights in a database placed on a
different cloud. By splitting the traditional single unified cloud into
two with their dedicated tasks, we both lessen the workload and
let each server do one task and do it well. Moreover, we only store
incremental changes acrossmodel versions and only license-specific
indices of the production model version through our permission
management system. Our versionmanagement is further elaborated
in subsection 3.4.

3.1.2 UpdatingWeight Versions. Our system enables a flexible data-
base weight update when there is a newer version available. Our
procedure is as follows: we check the existence of each weight
variable of the new version and whether its value changed. If a
parameter is not yet in the table or its value is different from the
old one, a new entry in the Weight table will be created to store
it. Otherwise, no update in the database will be made. This simple

Figure 2: Our architecture with weight storage in database
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strategy allows significantly more time and storage efficiency in
weight-updating, compared to the traditional method of storing
parameters of each version in a separate table.

In the other direction, when the database has a newer version
than which on the edge device, the user may want to update his
version to the newest one (possibly as a response to a push notifica-
tion). In this situation, the device starts the update by sending our
storage server the current model version it has. Then, the server re-
sponds with values and indices of the weights that are either newly
created or updated. This process is very similar to the previous one,
but the benefits of not fetching unchanged weights to reduce extra
bandwidth are more noticeable: this be analyzed in more detail
later.

3.2 Model Compression Strategy
To deploy machine learning models to mobile devices, we lessen
the burden of computation and storage by compressing our models
before storing them in the database.

Figure 3 describes the pipeline of our model compression: Firstly,
we apply magnitude pruning on our models to cut off uninforma-
tive weights. Subsequently, we fine-tune models to obtain optimal
weights on the pruned architecture. Next, quantization (converting
weights from 64-bit to 8-bit representation) followed by weight
sharing is used to further compress the models. Despite its simplic-
ity, this pipeline results in highly effective model compression with
acceptable performance loss.

3.3 Weight Database Storage
After compressing models using our compression pipeline, we store
models’ weights into Postgres — our database of choice. In order to
connect to the Postgres database, we opt for GraphQL API instead
of REST API due to its advanced features that allow fast and precise
data access. Particularly, Hasura Engine, a GraphQL server, is uti-
lized connect to Postgres in realtime. We use Hasura for querying
data from the database, and Django for adding data to the data-
base. To harmonize with GraphQL syntaxes, we design our model
weight database with tables for Model, Layer, Weights, Version, and
Accuracy, as illustrated in Figure 4.

After reducing the model’s size with compression, we save the
optimized weights in our database along with their metadata: the
weight’s flattened index, weight value, date added, corresponding
layer and version table entries’ foreign keys.Weight arrays extracted
from the model instance with common deep learning frameworks
are in the same format, being a dictionary with layer names as
keys and weight arrays as values, greatly streamlining our storage
procedure. After flattening the weight arrays, we save the weights
in the aforementioned format. Thanks to model pruning, we only
need to save the nonzero weights of the resulting sparse matrices,
greatly saving our database’s space. This process is time-efficient
thanks to Django Object-Relational Mapper’s (ORM) bulk insert
mechanism.

Conversely, to load weight values from the database, we first
build an empty (zeroed) model with its architecture layer-by-layer
with their corresponding Layer’s table entries. Then, we load the
weight values and place them in the layers individually in the
locations indicated by their flattened indices.

3.4 Weight Version Control
During the design process, we might come up with with various
versions for one model. For example, during model selection, one
may try cross-validation to choose over a range of possible hyper-
parameters. Changing a hyperparameter set would change every
weight in that model, and the new version’s record in the database
would be a completely new entry. Another possibility is fine-tuning
models while freezing layers to incorporate minor improvements:
in this case only a subset of weights would change. In this case,
the new version only stores the indices and values of the changed
weights.

Model versions and their parameters are stored in the Version
and Weight tables respectively. In the Version database, there is
a status field of the Boolean type which determines whether the
major version is used for production. These major versions are
completely different from each other, so only one is in use at a time.
Then, for minor versions of the production model, each parameter
component is linked with its corresponding version ID for efficient
weight updates. Specifically, when a model gets an incremental
update, only the changed weights are stored in new entries, while
the others remain unchanged in theWeight database. This improves
model retrieving since updating a new version only requires a
fraction of the weights to be retrieved.

Accuracy table is connected with the Version, Layer,Model tables,
and most importantly, theWeight table. In Accuracy, for a particular
version accuracy value, we save a set of weight value ranges to
be used that would give us the desired performance. The idea is
that we artificially cause worse model performance by not using
weights in some particular magnitude ranges. With information
from the requesting user’s license, a version with the corresponding
accuracy will be shipped.

3.5 Weight Licensing
Given that machine learning models are our product, we need to
have a customer licensing mechanism for proprietary reasons. A
tangible example would be as follows: we offer a 3-layer-perceptron
model with 98% accuracy through a freemium business model. Us-
ing a permission control mechanism, we do not let free-tier users
to access weights of the first layers with magnitudes between 0.5
and 0.8; instead, these weights would be set to 0 (similar to the
pruning process). The model’s accuracy then drops to 70% in our
experiment.

The aforementioned Accuracy table contains masks over our
deployed machine learning model’s weights. The more weights the
mask hides, the worst accuracy a version has. To get weight indices
corresponding to some specific desired accuracy, all current de-
ployed model’s weight values are divided into equal-sized intervals
based on their magnitude. We perform gradual magnitude pruning
on the model, results in a corresponding gradual accuracy reduc-
tion. The pruning process terminates when the required accuracy
is observed. Algorithm 1 describes our method of retrieving pruned
models based on desired accuracy.

For customers with licenses that fall into our predefined tiers,
we use Static Licensing: we access the Accuracy table, which is
directly linked to theWeights table and stores the weight ranges for
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Figure 3: Model compression pipeline

Figure 4: Weight Database Schema

Algorithm 1 Pruning model based on accuracy
divide weight range into k smaller equal-sized intervals
initialize a list of cut-off intervals
for all intervals do
for all model’s layers do

cut off weights that have values in that interval
append interval into cut-off interval list
if accuracy of pruned model is close to the target then

break the pruning process
end if

end for
end for
return uncut interval lists

every layer and their corresponding accuracies. These weight range-
accuracy relationships are evaluated beforehand; and at deployment
only lookups are needed to ship the appropriate set of weights
according to the user’s subscription tier. On the other hand, if
the client requires custom performance tier, we turn to Dynamic
Licensing, which evaluates these ranges on-demand.

4 MAIN FEATURES OF OUR METHOD
4.1 Efficient Deployment
As mentioned in subsubsection 3.1.1, we break the work that is
traditionally all processed in one cloud server into two highly co-
herent tasks. Even with decent scaling solutions like Docker Swarm

or Kubernetes, if the basic worker instance has to work with both
training and shipping new weights, it will be a lot less efficient than
having separate instances doing their respective tasks.

4.2 Version Management
Our design stores weight incrementally, instead of a completely
new whole model every new version. With this, not only we make
the previously analyzed Efficient Deployment possible, we save
storage by only keeping changes and not the unchanged weights.
Moreover, this allows for skipping intermediate patches. Given
that every weight entry in our database is stored along with the
version it was last updated, the customer can query for all new
weights throughout his missed updates in one go, instead of having
to download individual version updates and apply them one-by-one
gradually.

4.3 Low-Latency Update
This approach’s contribution to fast evaluation is manifold: first,
the customer’s model evaluation is carried out within their device.
This is crucial for time-critical operations, such as self-driving cars,
where milliseconds matter. This is also important to always-on
systems, such as health gadgets with real-time illness detection – a
model evaluation server experiencing difficulty at theworst possible
time may cost lives. Moreover, the data for evaluation stays on the
customer’s device, which is a huge plus for the privacy-conscious.
For us, this also offloads work to the client’s device, which is getting
more and more capable as technology develops. Second, our setup
allows fast weight updates from our database server. This would
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greatly benefit interdisciplinarity that value timely updates of even
minuscule incremental performance, such as stock trading. For
large hedge funds, even just a 0.1% percent increase in accuracy
shipped 1 millisecond earlier could mean millions of dollars.

4.4 Dynamic and Static Licensing
Most businesses offer their service tiers in terms of speed and/or
availability, but here we introduce a new factor: accuracy. Most
trial users would want a not-too-accurate but fast free-tier service
since their applications would not need more than that, while their
patience is limited. Moreover, our design allows dynamic licensing
which lets the clients custom their version’s performance beyond
our predefined tiers. This allows flexibility to match whatever the
most budget-conscious client needs.

5 EXPERIMENTS
5.1 Experimental Settings
For our experiments, we use the following technologies:

• Django Framework: database connecter for inserting and
updating data into database with Django ORM [5].

• Keras [23], TensorFlow [8]: deep learning frameworks for
building DNN architectures.

• PostgreSQL [14]: a relational database backend,
• Hasura [11]: an instant GraphQL engine with built-in autho-
rization for querying weights,

• Docker [4]: machine virtualization for simulating real case
studies in this paper.

To verify our system’s effectiveness, we measure the amount
of space needed to store weights in our database with gradual
additions of various optimizations. The results of these experiments
are listed in Table 1.

5.2 Experimental Results

Table 1: The cost of memory storage

No. of params Full params Pruning 80% Pruning 80% +
Quantization

109386 13MB 2.92MB 2.34MB

101770 12MB 2.65MB 2.09MB

Table 1 shows our results in saving weights of models with
various optimizations. With more than 100,000 weights, saving all
weights in Postgres takes 13MB of space. Through pruning the
unimportant 80% of the weights and not storing their unused bits
with a more concise representation, the storage size reduces to
2.09MB.

6 CONCLUSION
In this paper, we successfully design an architecture utilizing an
In-cloud database for efficient deployment and centralization man-
agement. The merits of our procedure are additionally represented
by low-latency update (which only downloads modified weights
on to edge devices), flexible version managed (allows track on

history commitment changes, new version update, old version roll-
back), dynamic and static licensing (provides both ready-to-use and
custom-accuracy models). With this novel deployment architecture,
we hope our contributions will be beneficial to numerous DNN
applications.
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