The 2020 12th International Conference on Knowledge and Systems Engineering (KSE)

IoT Malware Detection based on Latent
Representation

1% Cuong Nguyen Van
Le Quy Don Technical University
HaNoi, VietNam
cuongnguyen.lqd@gmail.com

24 Viet Anh Phan
Le Quy Don Technical University
HaNoi, VietNam
anhpv@mta.edu.vn

3" Van Loi Cao
Le Quy Don Technical University
HaNoi, VietNam
loi.cao @lqdtu.edu.vn

4" Khanh Duy Tung Nguyen
Le Quy Don Technical University
HaNoi, VietNam
tungkhanhmta@gmail.com

Abstract—This paper proposes a new approach for IoT mal-
ware detection system based on the analysis of IoT network
traffic features. First, we use an autoencoder network to gather
latent presentation of the input data. This is followed by a
classifier to identify whether an IoT network traffic is malware
or benign. We carry out a comprehensive comparison of different
input feature sets and figure out that using latent representation
is more effective than the original features. This proves that
autoencoder network can compress the IoT network traffic
features and keep only the most meaningful features. The model
latent representation and classifies IoT malware and benign with
high performance. Another finding is that our trained model can
detect new types of abnormal IoT network traffics which do not
appear in the training process.

Index Terms—IoT Malware, Malware detection, anomaly de-
tection, Autoencoder(AEs)

I. INTRODUCTION

Nowadays Internet of Things (IoT) systems have had im-
portant applications in a wide range of areas such as smart
home, elder care, infrastructure, and so on. The vision of
the IoT describes a future where many everyday objects are
interconnected through the global network. They collect and
share data with each other to allow widespread monitoring,
analyzation, optimization, and control [1]. It is expected that
50 billion devices will be available by 2020 [2]. However,
various studies have revealed that IoT devices and their
software are plagued with weaknesses [3] and vulnerabilities
(4], [5].

Since 2008, cyber-criminals have created malware to attack
IoT-devices, such as routers and other network equipments.
Several prominent cyber attacks happening in recent years,
attackers have used malware to gain access to such poorly
protected devices and perform distributed denial of service
(DDoS) attacks, expose users’ private data, steal identities,
or just cause inconvenience. This is somewhat confirmed by
the Mirai’s infamous attack and source-code release in 2016,
leaving over 1.2 million IoT devices infected with malware.
Figure 1 shows top 10 IoT threat verdicts in the first half of
2019.

978-1-7281-4510-5/20/$31.00 ©2020 IEEE

H12019

Trojan-Downloader Linux.NyaDrop.b 38.57%

Backdoor.Linux.Miraib 22.06%
Backdoor.Linux. Mirai.ba 12.11%
Backdoor.Linux.Mirai.ad [[111.92%
Backdoor.Linux.Mirai.au |[11]1.87%
Backdoor.Linux.Gafgytbj [11]1.38%
Trojan-Downloader Shell Agent.p [1]1.04%
Backdoor.Linux.Gafgyt.az []0.74%

Backdoor.Linux.Mirai.c []0.72%

Backdoor.Linux.Mirai.h [10.68%

0 5% 10% 15% 20% 25% 30% 35% 40% 45%

lkaspersky

Figure 1. TOP 10 IoT threat verdicts, first half of 2019

To reduce damage from malware infection by protecting
IoT devices from new and variant malware attacks, studies
on security issues for IoT devices and the detection of IoT
malware have been conducted. Granjal et al. [6] focused
on analyzing extant protocols and mechanisms to secure
communications for the IoT. Costin et al. [7] presented a
comprehensive survey and analysis of all currently known IoT
malware classes, without discussing IoT malware detection
approaches. Felt et al. [8] reviewed the 46 pieces of mobile
malware in the wild and collected dataset to evaluate the
effectiveness of mobile malware identification and prevention
methods. Additionally, a recent survey by Imran Makhdoom et
al. [9] is quite comprehensive when presenting security issues
and risks of threats to IoT devices. They emphasized that
inherent safety provided by the communication protocols does
not guard against harmful IoT malware and node compromise
attacks.

This paper presents a new approach to IoT malware detec-

177

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 16,2021 at 15:23:37 UTC from IEEE Xplore. Restrictions apply.

tion system based on analysis on IoT network traffic features.
The method used for abnormal detection is autoencoders
(AEs). This design was named as “autoencoder” by Japkowicz
et al. [10], who applied it for novelty detection in 1995. An
autoencoder is a neural network which learns to reconstruct its
input at the output layer. A narrow middle layer compresses re-
dundancies in the input data while non-redundant information
remains [10]. This effect resembles a non-linear PCA. We used
AEs as building blocks in deep neural networks [11], and after
training, the output layer is discarded, and the hidden layer is
used as a new feature representation.

In summary, the main contributions of this research include:

o First, we present the data reduction method used by
AEs model to detect abnormal IoT malware data and
compare with other data reduction methods (PCA, tSNE)
to evaluate the effectiveness.

o Second, we use several datasets as training data and
categorize them on these datasets. Then evaluate the
results, the ability to detect other abnormal IoT malware
data in the remaining datasets.

II. RELATED WORK

Recently, autoencoders (AEs) have been used as a feature
representation learners in hybrid anomaly detection mod-
els [12]-[18]. In such hybrid anomaly detection models, the
middle hidden layer of trained autoencoders is employed as
a new feature representation for enhancing the performance
of traditional anomaly detection methods, such as distance-
based/density-based anomaly detection techniques [12]. The
latent feature representation can be learned in supervised learn-
ing [18], semi-supervised learning [12]-[14] and unsupervised
learning [15], [16]. Once an AE has been trained on training
data (normal data, both labelled normal and anomalous data,
or unlabelled data), its decoder is discarded, the encoder is
used as a feature learner for the following anomaly detection
method in a hybrid model. The central idea is that the encoder
of a trained AE can represent the original input data into a
feature space which can be lower dimension, and discover
more robust features distinguishing normal behaviors from
anomalies.

Erfani et al. [16] employed a deep belief network (DBN)
for constructing a robust feature representation and for one-
class classifications (OCCs), such as One-class Support Vector
Machine (OCSVM) and Support Vector Data Description
(SVDD). The main objective is to solve the problem of high-
dimensional anomaly detection. Firstly, the DBN was pre-
trained in the greedy layer-wise fashion by stacking Restricted
Boltzmann Machines (RBMs) trained in unsupervised manner.
OCCs such as OCSVM and SVDD were then stacked on
top of the DBN. This hybrid can inherit the strengths of
high decision classification accuracy from these OCCs and
feature representation from DBNs. Eight high-dimensional
UCI datasets were employed to assessed the structure, and the
experimental results show that the hybrid model often out-
perform stand-alone OCSVM and SVDD.

Recently Cao et al. [12] introduced two regularized AEs,
namely SAE and DVAE for capture the normal behaviors of
network data. These regularizers AEs are attempted to put
normal data towards a small region at the origin of the latent
feature space, which can result in reserving the rest of the
space for anomalies occurring in the future. In this work, the
authors assumed that only normal samples are available for
training. These regularized AEs were designed to overcome
the problem of identifying anomalies in high-dimensional
network data.The latent representation of SAE and DVAE
was then used for enhancing simple one-class classifiers. The
proposed models were testified on eight well-known network
datasets. The experimental results confirmed that their models
not only can yield a better performance, but also are less
sensitive on a wide range of parameter settings in comparison
to stand-alone OCCs, and those of other feature representation
methods.

Alternatively, in supervised manner, Vu et al. [18] proposed
Multi-distribution VAE (MVAE) to represent normal data
and anomalous data into two different regions in the latent
feature space of VAE. Originally, variational autoencoders
(VAEs) learn to map input data into a standard Gaussian
distribution A(0, 1) in its middle hidden layer. In MVAE, the
class labels, normal and anomaly, are incorporated into the loss
function of VAE to force normal data and anomalous data into
two different regions. These regions have the same Gaussian
distribution shape with ¢ = 1, but different mean values.
The proposed model was evaluated on two publicly network
security datasets, and it produces promising performance.

In this work, we attempt to construct a latent representation
for identifying IoT malware in supervised manner. This means
that we first train autoencoders on unlabelled data (both
benign, malware,and C&C) to map the original data into a
low dimensional feature space. Supervised learning methods
are then stacked on top of the AE encode. The main objective
is to investigate the behaviors of the AE latent representation
according to the ratio between benign, malware and C&C in
the training data.

III. PROPOSED APPROACH

Our proposed approach for IoT malware detection consists
of two phases: Training phase and Inference phase (as shown
in Figure 2). In the training phase, an autoencoder is trained
in unsupervised manner to construct a latent representation
in the middle hidden layer of the AE. Following this, the
latent feature space is employed to represent labelled data for
effectively building multi-class classifiers for identifying IoT-
based malware. In the inference phase, the querying data is
passed to the encoder part of the AE. The output of the encoder
is fed into the classifiers for detecting whether the querying
data is malware or benign. More details are presented in the
subsection III-A and III-B

A. Constructing Latent Representation

In this subsection, we show how to construct a latent
representation of AEs which facilitates binary classifiers in

178

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 16,2021 at 15:23:37 UTC from IEEE Xplore. Restrictions apply.

Latent representation

Training phase -
—>
ML model
/ \
Inference phase
\ 7/
\ / malware
—> Classifier
LT benign
/ \

Figure 2. IoT malware detection process

distinguishing IoT-based malware from benign. Ordinary au-
toencoders consist of two parts: encoder (called fy) and
decoder (called g4), where § and ¢ are the parameters of
the encoder and decoder respectively. AEs are aimed to
learn reconstructing the input data at the output layer. In
other words, the encoder compresses the input data X into
a much lower latent feature space, Z = fp(X). Inversely,
the decoder attempts to reconstruct the original input data
from the latent data Z, X = g4(Z). The parameters 6 and
¢ are learned during the training process by minimizing the
discrepancy between the original input and its reconstruction,
called reconstruction error (RE). The training algorithm of AEs
can be shown in Algorithm 1.

Algorithm 1 Training autoencoder algorithm
INPUT: Dataset X = z1, =2 ...
OUTPUT: Parameters 6, ¢
0, ¢ < Initialize parameters
repeat
RE = 5 3200 [l = fo(ge(x:))|”
0, ¢ < Update parameters using gradients of RE
until convergence of parameters 6, ¢

TN

Our idea is to train an AE in unsupervised manner to obtain
a latent representation. This means that, a training data set
consisting of both malware and benign (without labels) is used
for training the AE in unsupervised manner. Once the training
process completed, the encoder, fy, is employed to extract
meaningful features from the input features. Suppose we have
a training data set:

D = (Iwyz),?' = 1aN

where N is the number of data samples, and y; is the label of
data. Latent data of each n; can be easily obtained by using
the encoder fy: z; = fo(x;). Thus, we can have data set

D/: (Ziayi)ai: 1aN

Now, we can use the data set D’ for construct binary classifiers
instead of the original training data set D.

The latent representation is a compressed version of the
original feature space, which can represent the input data
in lower dimension, and reserve meaningful information of
the data. Therefore, the latent representation can help bi-
nary classification methods, such as Decision Tree, K-nearest
Neighbors, and Support Vector Machine, efficiently learn to
capture the characteristics of benign as well as malware. Thus
binary classifiers operated on the latent representation may
perform better than that on the original feature space.

We also evaluated our proposed model in comparison to
other feature reduction methods, such as Principal Component
Analysis (PCA) [19] and t-Distributed Stochastic Neighbor
Embedding (tSNE) [20]. More details of the comparison will
be discuss in the experiments, and the Results and Discussion
sections.

B. Training Classifiers

The subsection describes how to construct binary classifiers
on the latent representation. As mentioned above, we train
binary classification algorithms on the latent data (D’) instead
of on the original training data set (D). In this paper, three
popular classification methods, namely Support vector ma-
chine [21], K-nearest Neighbors [22], and Decision Tree [23],
are employed for identifying IoT-based malware. We use D’
to build three binary classifiers. We then construct a hybrid
between the encoder (fy) and each of these classifiers. For
querying stage, the testing data is passed the encoder, and the
output of encoder is fed into these classifiers. The hybrid will
assign a label (either benign or malware) to each of querying
samples. The detail of the implementation is described in
Section IV. We evaluate our proposed model on publicity
IoT dataset with 23 scenarios. The experimental results and
discussion are presented in Section IV and V.

IV. EXPERIMENTS
A. Dataset

The dataset namely [0oT-23 is published by Stratosphere
Laboratory [24]. IoT-23 is a new dataset of network traffic
from Internet of Things (IoT) devices. It has 20 malware
captures executed in IoT devices, and 3 captures for benign
IoT devices traffic. The malicious captures were generated by
executing malware of Mirai, Torii, Hide and Seek, Hajime and
others in Raspberry Pi. The benign captures are the traffics
from three different IoT devices including a Philips HUE
smart LED lamp, an Amazon Echo home intelligent personal
assistant and a Somfy Smart Door Lock.

Table I shows the instance number for each malicious
scenario. Each data sample is represented by 23 features
extracted from a network flow in which the flow generated by
the malware is labelled as abnormal. It can be seen in Table I,
many scenarios are unbalanced such as D03 D04, D05, D07,
D08, D10, D11, D12, D14, D15, D16, D17, and D19 whereby
abnormal flows are minorities.

179

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 16,2021 at 15:23:37 UTC from IEEE Xplore. Restrictions apply.

Table 1
TWENTY MALICIOUS SCENARIOS

DataSet Malware Normal Abnormal DataSet Malware Normal Abnormal
D01 Hide and Seek 4151 14110 D11 Mirai 67332 1560870
D02 Mubhstik 3519 16631 D12 Okiru 600 6263
D03 Linux.Mirai 1097 29323 D13 IRCBot 4065 1866
D04 Hakai 317 1741 D14 Trojan 2093 6
D05 Linux.Hajime 14963 237 D15 Mirai 609 69853
D06 Kenjiro 4483 6567 D16 Mirai 124 18
D07 Torii 1222 9 D17 Mirai 527 40201
D08 Torii 946 9 D18 Mirai 1969 5594
D09 Kenjiro 9809 4705 D19 Mirai 198 2402
D10 Mirai 687 4001 D20 Hide and Seek 191 108

Three categorical features including protocol, service, and
connection state, are transformed into one-hot-encoding. In
the experiments, thirteen features are selected and normalized
into [-1, 1] to build malware detection models. Each scenario
is split into three sets of training, validation, and test by the
ratio of 3:1:1.

B. Experimental Settings

We conducted the experiments with different scenarios to
confirm two points: 1) the ability to generate sophisticated
features of the proposed method, 2) the consistent behavior
of malware among different devices. Scenario 1. All training
sets from DOl - D20 are gathered to train the autoencoder
by the unsupervised manner. In this step, label information
is ignore. We then apply the encoder to generate the latent
representations for feature vectors.

The quality of the feature generator was assessed by the
performance of several machine learning models such as sup-
port vector machines (SVM), k-nearest neighbors (kNN), and
decision tree (DT) on original data, and new representations
generated by the proposed model, PCA, and tSNE.

Scenario 2. The research question is that whether or not
malware behavior is the same in different IoT devices. To
verified the question, we merge training sets of DOl - D03
into a single one to build prediction models. After that, we
run the prediction on the test sets.

For the implementation, we use Keras framework [25] with
Tensorflow backend for the autoencoder, scikit-learn library
[26] for PCA, tSNE, support vector machines, random forest,
and decision tree.

The autoencoder network is comprised of nine fully con-
nected layers with the symmetric structure. The neurons of
the layers from the input to the output are 32-24-12-6-3-6-
12-24-32. The middle layer is latent representations with the
size of 3. This means that the feature vectors are reduced to
the dimension of 3. To find the best configurations for PCA,
tSNE, SVM, and DT, we apply the grid search algorithm.

V. RESULTS AND DISCUSSION
A. The quality of latent representations of the autoencoder

Tables II and III compare the methods according AUC
and F1 on unbalanced and balanced datasets, respectively.
Generally, the proposed method can produced sophisticated
representations for the data. As the results, it achieves the best
results on most of datasets except D10, D11, D14, D19 for
the unbalanced and DO1 for the balanced. Table II shows that
the unbalanced data problem is challenging for any methods,
especially for the datasets with just a few samples of minority
classes like DO7 and D14. Thus, we will focus to analyze the
quality of the classifiers on the balanced datasets.

Although the AE can reduce the feature dimension signifi-
cantly, the data characteristics are remained. In the comparison
with the original features, AE boosts the AUC and F1 of the
classifiers on all balanced datasets notably. For example, DT’s
performance on D06 is improved 2.94% of AUC and 1.12% of
F1; on D09 the improvement is 3.48 % of AUC and 0.32% of
F1. On unbalanced datsets, the AE also remains the classifiers’
performance . Interestingly, the latent representations of AE
just has the dimension of 3, while that of the original is 32.

Comparing with other dimension reduction algorithms like
PCA and TSNE, AE has retained meaningful properties of the
data. As seen in Table III, The DT classifiers with features
generated by AE achieve the higher AUC and F1 than those
with features produced by PCA and tSNE. This phenomenon
is also kept in the cases of kNN and SVM classifiers.

B. The ability to detect unknown malware

Our purpose is to verify the similarity of the behavior
among malware and among devices. Table IV presents the
performance comparison. In AE-3 columns, the classifiers are
trained on the training sets of DO1-D03, and tested on the test
sets of the corresponding datasets. From the results, we can
see that malware in different IoT malware has shown similar
behavior. Although, just training with the malware of Hide
and Seek (DO01), Muhstik (D02) and Linux.Mirai (D03), the
classifiers can detect other malware types with a high accuracy.
The performance even is better than the original data.

180

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 16,2021 at 15:23:37 UTC from IEEE Xplore. Restrictions apply.

Table 11

THE COMPARISON OF METHODS ACCORDING TO AUC, F1 ON UNBALANCED DATA.

Dataset Algorithm DT kNN SVM

) Method None PCA tSNE AE None PCA tSNE AE None PCA tSNE AE
D03 AUC 99.55 99.55 99.51 99.55 99.55 99.55 99.77 99.55 99.1 98.99 99.71 98.85
F1 9998 99.98 99.95 99.98 9997 99.97 99.97 99.97 9997 99.97 99.97 99.97

D04 AUC 100 100 100 100 100 100 100 100 100 100 100 100
F1 100 100 100 100 100 100 100 100 99.85 99.85 100 100

D05 AUC 100 100 100 100 100 100 100 100 100 100 100 100
F1 100 100 100 100 100 100 100 100 100 100 100 100

D07 AUC 99.8 99.8 50 100 99.59 99.8 99.8 100 100 99.59 99.59 100
F1 66.67 66.67 0 100 66.67 33.33 66.67 100 66.67 66.67 66.67 100

D08 AUC 99.73 99.73 100 99.73 99.82 99.82 99.56 99.56 100 99.65 100 100
F1 85.71 85.71 100 85.71 85.71 85.71 85.71 85.71 85.71 85.71 85.71 100
D10 AUC 98.38 98.81 97.94 98.37 98.42 9842 98.43 96.5 99.24 99.25 99.19 97.48
F1 99.57 9938 99.32 99.07 99.69 99.57 99.69 99.38 99.69 99.63 99.69 99.32
DIl AUC 100 98.36 99.86 99.46 99.9 99.86 99.73 99.46 100 99.8 99.96 99.96
F1 99.99 99.96 100 99.99 9998 99.98 100 99.97 9999 99.99 99.99 99.99

D12 AUC 100 99.59 100 99.59 100 100 100 100 100 99.93 100 100
F1 100 99.96 100 99.96 100 9996 99.96 99.96 100 99.96 100 99.96

D14 AUC 100 100 50 50 100 100 50 50 100 0 93.45 100

F1 100 100 0 0 0 0 0 0 0 0 0 0

D15 AUC 95.62 96.76 9432 96.48 97.36 9736 9736 97.36 9987 99.86 99.62 99.77
F1 99.89 9991 99.87 9991 99.9 99.91 99.9 99.91 99.91 99.9 9991 9991

D16 AUC 100 100 96.3 100 100 100 100 100 100 100 0 100
F1 100 100 66.67 100 100 100 100 100 100 100 0 100

D17 AUC 99.54 99.54 96.78 100 99.54 99.54 99.54 98.62 99.08 94.08 99.39 100
F1 9999 99.99 99.94 99.98 9999 99.99 99.99 99.98 9999 9995 99.99 99.98
D19 AUC 99.9 100 94.34 99.9 100 100 100 100 99.79 97.92 100 99.89
F1 99.9 100 99.49 99.9 100 99.9 100 99.9 99.9 99.59 100 99.9

Table III
THE COMPARISON OF METHODS ACCORDING TO AUC, F1 ON BALANCED DATA.
Algorithm DT kNN SVM

Method None PCA tSNE AE None PCA tSNE AE None PCA tSNE AE
DO1 AUC 91.09 9331 81.22 91.31 9147 9121 91.05 91.73 9536 94.63 9393 94.76
F1 9359 9461 90.59 93.92 9335 9327 9341 94.4 94.86 94.7 94.6 94.81

DO2 AUC 99.78 100 99.87 100 100 100 100 100 100 99.86 100 100
F1 99.96 100 99.93 100 100 100 100 100 100 99.99 100 100

D06 AUC 91.95 91.09 91.19 94.89 98.15 98.15 98.09 98.09 97.63 97.68 98.26 97.33
F1 92.78 92.9 93.16 93.9 93.97 93.97 94.02 93.77 92.93 92.1 94.04 9293
D09 AUC 85.2 83.76 74.6 88.68 86.63 86.82 86.54 87.9 86.42 80.7 88.19 84.37
F1 7332 7442 64.85 73.64 71.83 72.11 72.03 74.52 7432 74.04 74.11 74.08

D13 AUC 100 100 99.15 100 99.94 100 99.94 100 100 98.72 99.93 100
F1 100 100 98.77 100 99.73 99.73 99.73 99.86 100 89.55 99.86 100

D18 AUC 99.72 100 99.69 100 100 100 100 100 100 100 100 100
F1 99.91 100 99.56 100 99.91 100 100 100 99.78 99.47 100 99.78

D20 AUC 95.24 90.23 78.39 95.24 9524 9493 93.1 97.62 99.39 100 10.38 100
F1 95 89.47 72.22 95 89.47 90 75.68 89.47 87.18 89.47 0 89.47

Specifically, for known malware on D01, D02 and D20,
AE-3 are on the top due to the use of the bigger training
dataset. On the remaining datasets (D06, D09, D13 and D18),
although malware is knownn for AE-3 and known for others,
AE-3 outperforms the original significantly. For example, on
D09, the DT classifier is improved 2.69% of AUC and 0.56%
of F1; the kNN is improved 0.65% of AUC and 2.64%.

VI. CONCLUSION

In this work, we leverage the autoencoder to produce
sophisticated representations for IoT malware detection. Our
experiments on a real dataset of IoT malware have confirmed

181

two important points 1) the autoencoder is beneficial to
compress IoT malware features and 2) our method can detect
the unknown malware efficiently.

ACKNOWLEDGEMENTS

This research is funded by the Vietnam National Founda-
tion for Science and Technology Development (NAFOSTED)
under grant number 102.05-2018.306.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 16,2021 at 15:23:37 UTC from IEEE Xplore. Restrictions apply.

Table IV
THE PERFORMANCE OF THE CLASSIFIERS TRAINED ON DATASETS OF DO1-D03 WITH THE FEATURES GENERATED BY AE.

Dataset/ Algorithm DT kNN SVM
Malware Method None AE AE-3 None AE AE-3 None AE AE-3
D01 AUC 91.09 9131 90.51 9147 91.73 91.79 9536 9476 95.09
Hide and Seek F1 93.59 9392 9324 93.35 94.4 94.3 94.86 9481 94.77
D02 AUC 99.78 100 100 100 100 100 100 100 100
Mubhstik F1 99.96 100 100 100 100 100 100 100 99.99
D06 AUC 9195 94.89 94.99 98.15 98.09 97.84 97.63 9733 9745
Kenjiro F1 92.78 93.9 93.24 9397 9377 93.98 9293 9293 9274
D09 AUC 85.2 88.68 87.89 86.63 87.9 87.28 86.42 84.37 84.17
Kenjiro F1 7332 73.64 73.88 71.83 7452 7447 7432 74.08 74.04
D13 AUC 100 100 99.98 99.94 100 99.87 100 100 98.98
IRCBot F1 100 100 99.73 99.73 99.86 99.46 100 100 99.04
D18 AUC 99.72 100 90.51 100 100 91.79 100 100 95.09
Mirai F1 99.91 100 93.24 99.91 100 94.3 99.78 99.78 94.77
D20 AUC 9524 9524 96.34 9524 97.62 97.07 99.39 100 95.12
Hide and Seek Fl 95 95 9524 89.47 8947 92.68 87.18 89.47 92.68
REFERENCES systems. In 2019 11th International Conference on Knowledge and
Systems Engineering (KSE), pages 1-5. IEEE, 2019.

[1] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich [15] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter.
Chlamtac. Internet of things: Vision, applications and research chal- Outlier detection using replicator neural networks. In International
lenges. Ad hoc networks, 10(7):1497-1516, 2012. Conference on Data Warehousing and Knowledge Discovery, pages 170~

[2] Dave Evans. The internet of things: How the next evolution of the 180. Springer, 2002.
internet is changing everything. CISCO white paper, 1(2011):1-11, [16] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and
2011. Christopher Leckie. High-dimensional and large-scale anomaly detection

[3] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide using a linear one-class svm with deep learning. Pattern Recognition,
Balzarotti. A large-scale analysis of the security of embedded firmwares. 58:121-134, 2016.

In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pages [17] Chunfeng Song, Feng Liu, Yongzhen Huang, Liang Wang, and Tieniu
95-110, 2014. Tan. Auto-encoder based data clustering. In Iberoamerican congress on

[4] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Automated pattern recognition, pages 117-124. Springer, 2013.
dynamic firmware analysis at scale: a case study on embedded web [18] Ly Vu, Van Loi Cao, Quang Uy Nguyen, Diep N Nguyen, Dinh Thai
interfaces. In Proceedings of the 11th ACM on Asia Conference on Hoang, and Eryk Dutkiewicz. Learning latent distribution for distin-
Computer and Communications Security, pages 437-448, 2016. guishing network traffic in intrusion detection system. In ICC 2019-

[5] Ang Cui and Salvatore J Stolfo. A quantitative analysis of the 2019 IEEE International Conference on Communications (ICC), pages
insecurity of embedded network devices: results of a wide-area scan. 1-6. IEEE, 2019.

In Proceedings of the 26th Annual Computer Security Applications [19] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component
Conference, pages 97-106, 2010. analysis. Chemometrics and intelligent laboratory systems, 2(1-3):37—

[6] Jorge Granjal, Edmundo Monteiro, and Jorge S4 Silva. Security for 52, 1987.
the internet of things: a survey of existing protocols and open research [20] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
issues. [EEE Communications Surveys & Tutorials, 17(3):1294-1312, t-sne. Journal of machine learning research, 9(Nov):2579-2605, 2008.
2015. [21] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

[7]1 Andrei Costin and Jonas Zaddach. Iot malware: Comprehensive survey, learning, 20(3):273-297, 1995.
analysis framework and case studies. BlackHat USA, 2018. [22] Andy Liaw and Matthew Wiener. Classification and regression by

[8] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and randomforest. R News, 2(3):18-22, 2002.

David Wagner. A survey of mobile malware in the wild. In Proceedings [23] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81—
of the 1st ACM workshop on Security and privacy in smartphones and 106, 1986.
mobile devices, pages 3—14, 2011. [24] Stratosphere. Stratosphere laboratory datasets, 2015. Retrieved March

[9] Imran Makhdoom, Mehran Abolhasan, Justin Lipman, Ren Ping Liu, 13, 2020, from https://www.stratosphereips.org/datasets-overview.

and Wei Ni. Anatomy of threats to the internet of things. IEEE [25] Frangois Chollet et al. Keras. https://keras.io, 2015.
Communications Surveys & Tutorials, 21(2):1636-1675, 2018. [26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
[10] Nathalie Japkowicz, Catherine Myers, Mark Gluck, et al. A novelty O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
detection approach to classification. In IJCAI, volume 1, pages 518- plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
523. Citeseer, 1995. esnay. Scikit-learn: Machine learning in Python. Journal of Machine
[11] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen- Learning Research, 12:2825-2830, 2011.
sionality of data with neural networks. science, 313(5786):504-507,
2006.
[12] Van Loi Cao, Miguel Nicolau, James McDermott, et al. Learning neural
representations for network anomaly detection. IEEE transactions on
cybernetics, 49(8):3074-3087, 2018.
[13] Van Loi Cao, Miguel Nicolau, and James McDermott. A hybrid
autoencoder and density estimation model for anomaly detection. In
International Conference on Parallel Problem Solving from Nature,
pages 717-726. Springer, 2016.
[14] Thanh Cong Bui, Minh Hoang, Quang Uy Nguyen, et al. A clustering-
based shrink autoencoder for detecting anomalies in intrusion detection
182

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 16,2021 at 15:23:37 UTC from IEEE Xplore. Restrictions apply.

