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Abstract
The finishing honing process is an effective machining to enhance surface properties. The objective of this work is to optimize 
the machining parameters, including the tangential speed (H), linear speed (L), and grit size (G) for minimizing the average 
roughness (Ra), maximum height roughness (Ry), and machining time (TM). The honing experiments were performed with 
the aids of an industrial machine and the Box–Behnken experimental matrix. The nonlinear relationships between machining 
parameters and honing responses were developed using response surface method models. Subsequently, two optimization 
techniques, including the desirability approach and non-dominated sorting genetic algorithm II (NSGA II), were used to 
solve the trade-off analysis among three technological responses and find the optimal factors. Finally, the machining time 
reductions were assessed in consideration of constrained roughness properties. The obtained results showed that surface 
roughness and machining time were strongly influenced by abrasive grit size, followed by the tangential speed and linear 
speed. The optimal values of the H, L, and G were 36.0 m/min, 9.5 m/min, and 220 FEPA, respectively. The reductions in 
the average roughness, maximum height roughness, and machining time are 53.13%, 8.93%, and 13.95%, respectively, as 
compared to common values used. Moreover, the genetic algorithm-based approach could be employed to produce reliable 
values in comparison with the desirability approach. The outcome is expected as a technical solution to enhance the surface 
properties and productivity of the finishing honing process.
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1 Introduction

Honing is a fine machining process using a head equipped 
with abrasive stones for improving surface properties. The 
honing tool performs simultaneously rotational and oscil-
latory axial motion in order to produce the cross-hatched 
lay pattern [1]. The abrasives using the honing pressure 
are held against the workpiece surface in order to remove 
the material. This process is used to remove the machin-
ing waviness and improve the geometric form as well as 
surface roughness. This process can bring various attractive 
advantages, including low surface roughness, cost savings, 
and narrow dimensional as well as geometric tolerances [2]. 

The pre-machining operations, such as turning, drilling, 
and boring processes, are necessary in order to ensure the 
technical requirements. The key process parameters of the 
honing operation are the tangential speed, linear speed, hon-
ing pressure, and the characteristics of coolants. Moreover, 
the factors related to the abrasive stones include the type of 
abrasive, grain size, and density of abrasive. It can be stated 
that the machining characteristics of the honing operation 
are influenced by a great number of factors. Therefore, the 
selection of optimal factors to improve honed quality and 
productivity is an urgent demand.

The parameter-based optimizations have been consid-
ered for different honing operations by many researchers to 
enhance the surface properties and productivity. The influ-
ences of various grit sizes and pressures on the material 
removal rate and stone wear for the internal honing pro-
cess of steel components were analyzed [3]. The obtained 
results indicated that the material removal rate was primarily 
affected by the grit size, pressure, and honing time, while the 
tool wear rate depended on the grain size and pressure. Saljé 
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et al. considered internal and external honing operations [4]. 
The authors stated that an increment in the ratio tangen-
tial force over normal force caused an increased roughness, 
while the material removal rate was linearly increased with 
an increase in the tangential force. An artificial neural net-
work was employed to model the roughness properties of the 
Abbott–Firestone curve, including Rk, Rpk, Rvk, Mr1, and Mr2 
[5]. A set of experimental trials were conducted to construct 
predictive models. The outcomes revealed that the proposed 
models could be effectively applied to predict the rough-
ness criteria within the parameter ranges. Bai and Zhang [6] 
optimized the machining conditions, including the honing 
pressure, speeds, and cross-hatch angle to enhance the mate-
rial removal rate. The author stated that the highest material 
removal rate was obtained at a cross-hatch angle between 
40° and 60°. The honing pressure was the most effective 
factor on the roughness. The impacts of the tangential speed, 
linear speed, pressure, honing time, and plateau-honing time 
on the roughness parameters of the Abbott–Firestone curve 
[7]. The outcomes revealed that the pressure and honing 
time were the most effective contributions on the surface 
finish. A predictive model of the surface roughness has been 
developed in terms of the tangential speed, linear speed, 
honing pressure, grain size, and density of abrasive using 
a neural network [8]. A multilayer perceptron was used in 
conjunction with a backpropagation training to construct 
and train the model. The outcomes revealed that the devel-
oped model could be effectively used to predict the response 
value. The Taguchi method was used to determine the opti-
mal parameters, including the linear speed, grain size, and 
a number of strokes for minimizing the roughness [9]. The 
authors stated that the roughness was primarily affected by 
the grain size, followed by the linear speed and number of 
strokes, respectively. The variety of the roughness criteria 
under the effects of process parameters, including the hon-
ing pressure, linear speed, and grain size, was analyzed [10]. 
Moreover, four measuring strategies were implemented to 
characterize the roughness of the honed surface. The author 
emphasized that the roughness criteria were affected by the 
grain size, followed by the honing pressure, while the linear 
speed has a slight impact. The roughness variability of the 
honed surface was produced with different strategies. The 
second-order models of the roughness and material removal 
rate of the rough honing operation were developed in terms 
of the grain size, density of abrasive, tangential speed, and 
linear speed [11]. The findings indicated that the roughness 
model was primarily influenced by grain size, pressure, den-
sity, and tangential speed. The material removal rate was 
primarily influenced by grain size and pressure, followed by 
tangential speed and density. The particle swarm algorithm 
was applied to optimize the process parameters, including 
the spindle speed, feed rate, oscillation time, and spark out 
time for improving machining quality [12]. The predictive 

models of the total profile deviation, total helix deviation, 
and total cumulative pitch deviation were developed. The 
results indicated that the profile errors could be minimized 
using the optimal factors.

As a result, different machining parameters, including 
the tangential speed, linear speed, honing pressure, grain 
size, and density of abrasive, cross-hatch angle, and honing 
time, were optimized in the published works. The common 
responses are the material removal rate, average rough-
ness, machining deviations, and roughness properties of the 
Abbott–Firestone curve (Rk,  Rpk,  Rvk, Mr1, and Mr2). Moreo-
ver, different optimization techniques, such as Taguchi and 
artificial neural networks, were employed to select the opti-
mal factors. However, the limitations of the aforementioned 
publications can be listed as follows:

Most of the published works considered the average 
roughness (Ra) as an important indicator of the honed sur-
face characteristics. Practically, maximum height roughness 
(Ry) is necessary to consider as an important technical out-
come due to an efficient description of the surface properties 
[13].

The selection of optimal factors to simultaneously 
enhance the roughness properties (e.g., Ra and Ry) and pro-
ductivity (e.g., total machining time) for the finishing honing 
operation has not been addressed in the published works. 
The development of an efficient optimization approach to 
solve the trade-off between the surface properties and pro-
duction rate is necessary due to the complex relationship.

The assessment of the effectiveness of different optimiz-
ing approaches for the honing operations has not been con-
sidered in the aforementioned works. The optimal result has 
the risk with regard to the local solution due to the inappro-
priate approaches, which makes the honing process optimi-
zation inadequate and inefficient.

Most of the previous researchers attempted to minimize 
roughness properties. Practically, the roughness criteria are 
commonly predefined as a technical constraint for a specific 
machining purpose. Therefore, it is unnecessary to minimize 
the roughness values in practical machining cases to save 
machining time and costs.

To fulfill the mentioned research gaps, a multi-objective 
optimization of the finishing honing process (FHP) has been 
considered in this paper for decreasing machining time (TM) 
with predefined surface roughness criteria, including Ra and 
Ry. The material, namely 40X was chosen as the workpiece 
due to wide applications in molding, automotive, aerospace, 
and marine industry. The predictive models of the Ra, Ry, 
and TM were proposed using the response surface method 
(RSM). The selection of optimal factors was obtained with 
the aids of the desirability approach (DA) and non-domi-
nated sorting genetic algorithm II (NSGA-II). This paper is 
expected as a significant contribution to exhibit the impacts 
of machining parameters on the roughness properties and 
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machining time as well as help the FHP operators select the 
appropriate conditions.

2  Optimization method

2.1  Optimizing issues

In the current work, three technical responses, including the 
surface roughness  Ra,  Ry, and the machining time  TM, are 
simultaneously optimized using a hybrid approach.

According to ISO 4287,  Ra presents the arithmetical mean 
roughness of the profile deviations, which are calculated as 
the absolute value regarding the mean line of the roughness 
profile.  Ry denotes the measured distance between the peaks 
and valleys of the sampled line in the y-direction.

The average roughness value is calculated as

where  Rai is the arithmetic roughness at the ith position.
The maximum height roughness value is computed as

where  Ryi is the maximum height roughness at the  ith 
position.

The machining time  TM is calculated as

where ta, th, and to are the time of air movement, honing, and 
overrunning, respectively.

For the honing process, the process parameters (tangential 
speed, linear speed, and honing pressure), the tool charac-
teristics (grain size and/or grit size, the density of abrasive, 
and kind of abrasive), and the fluid properties (kind of fluids, 
pressure, and delivery method) can be considered as pro-
cessing inputs. In this work, three key parameters, including 
the tangential speed, linear speed, and grit size, are listed as 
the optimized parameters. The other parameters, including 
the honing pressure (4 Mpa), the abrasive characteristics 
(depending on the employing abrasive), and fluid proper-
ties (depending on the chosen fluid), are considered as the 
contents in the machining period.

The parameter levels are exhibited in Table 1. The param-
eter ranges are selected based on the characteristics of the 
honing machine and the recommendations of the abrasive 
manufacturer. These values are confirmed using mechanical 
handbooks and the available literature [1–12]. Moreover, the 
ranges are common values used in the production of the deep 
hole using the finishing honing process.

The optimizing issue can be described as follows:

(1)Ra =
Ra1 + Ra2 + Ra3 + Ra4 + Ra5

5

(2)Ry =
Ry1 + Ry2 + Ry3 + Ry4 + Ry5

5

(3)TM = ta + th + to

Find X = [H, L, G].
Minimize machining time TM.
Constraints: Ra ≤ Raupper; Ry ≤ Ryupper.
20  ≤  H  ≤  40   (m/min) ;  4  ≤  L  ≤  12   (m/min) ; 

150 ≤ G ≤ 220 (FEPA).

2.2  Optimization framework

The systematic procedure for machining experiments and 
parameter optimization is depicted in Fig. 1.

Step 1: The honing experiments are performed in order 
to obtain the necessary data using the Box-Behnken matrix. 
This approach is used to generate the design matrix, save 
the experimental costs, and ensure the modeling accuracy 
[14, 15].

Step 2: The predictive models of the Ra, Ry, and TM are 
then developed regarding the process inputs using RSM 
models [16, 17].

RSM is a popular technique, which is widely employed 
to revolve the optimization issues due to its simplicity. This 
method is an appropriate approach when the number of 
design variables is small (less than 10) and the target is not 
highly nonlinear.

The second-order quadratic model is an effective correla-
tion to exhibit the nonlinear data, which is expressed as

where k and ε are the number of variables and error, respec-
tively. βi, βii, and βij are the regression coefficients.

After linearization, the model is expressed in the matrix 
form, as follows:

where

(4)y = �0 +

k∑
i=1

�i.xi +

k∑
i=1

�ii.x
2

i
+

k−1∑
i=1

k∑
j=i+1

�ij.xi.xj + �

(5)y = X.� + �

(6)y =

⎧⎪⎨⎪⎩

y1
y2
.

yn

⎫⎪⎬⎪⎭
;X =

⎧⎪⎨⎪⎩

1 x11 . x1n
1 x21 . x2n
. . . .

1 xn1 . xnp

⎫⎪⎬⎪⎭
;� =

⎧⎪⎨⎪⎩

�0
�1
.

�n

⎫⎪⎬⎪⎭

(7)y = X.� + �

Table 1  Machining parameters and their values

Symbol Parameters Level-1 Level 0 Level + 1

H Honing tangential speed 
(m/min)

20 30 40

L Linear speed (m/min) 4 8 12
G Grit size (FEPA) 150 180 220
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xij denote the  ith observation or level of variable xj.
n is the number of experiments.
p is the number of polynomial terms.
The regression coefficients are expressed as

The fitted regression model is expressed as

Step 3: Generation of optimal parameters using RSM-DA 
[18, 19].

The performance considered is transformed into the func-
tion of the desirability Di (0 ≤ Di ≤ 1). The maximum out-
come of the targeted desirability (D) is employed to select 
the optimal solution.

For the maximizing purpose, the Di is calculated as

For the minimizing purpose, the Di is estimated as

For the aimed purpose, the Di is calculated as

(8)𝛽 = (XT .X)−1.XT .y

(9)ŷ = X.𝛽

(10)Di =

⎧⎪⎨⎪⎩

0, Y(x)i ≤ L(x)i
(
Y(x)i−L(x)i

H(x)i−L(x)i
)w, L(x)i < Y(x)i < −H(x)i

1, Y(x)i ≥ H(x)i

(11)Di =

⎧⎪⎨⎪⎩

0, Y(x)i ≤ L(x)i
(
H(x)i−Y(x)i

H(x)i−L(x)i
)w, L(x)i < Y(x)i < −H(x)i

1, Y(x)i ≥ H(x)i

For the range, the Di is calculated as

where Li presents a low response. Hi denotes the high 
response. Ti presents targeted performance. wi is the assigned 
weight.

For each performance, the desirability value is calculated 
as

where m presents the number of measured responses.
Step 4: Generation of optimal parameters using RSM-

NSGA II [20].
NSGA-II is a multi-objective optimizing technique, 

which is well-suited for highly nonlinear and discontinuous 
design spaces. NSGA-II provides a set of non-dominated 
solutions, which can be used to solve the trade-off between 
conflicting functions. The operation steps of NSGA-II can 
be listed as follows (Fig. 2):

(12)Di =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
Y(x)i − L(x)i

T(x)i − L(x)i

�w1

, L(x)i < Y(x)i < T(x)i

�
Y(x)i − H(x)i

T(x)i − H(x)i

�w2

, T(x)i < Y(x)i < H(x)i

0, otherwise

(13)Di =

{
1, L(x)i < Y(x)i < H(x)i

0, otherwise

(14)D =

� m

ΠD
ri
i

i=1

�1∕
∑

ri

Fig. 1  Optimization approach 
for generating optimal param-
eters
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The initialization of population: The population size is 
performed on the ranges and constraints of the problem 
issue.

Non-dominance sorting of the population: To resolve a 
multi-objective optimization issue, some special cases are 
proposed and compared to other dominance methods. These 
cases are necessary to rank using a new criterion that sorts 
again relative to other points. The population (P) is divided 
into m subsets, such as  P1,  P2, …,  Pm. The subset  Pk+1 is 
dominated by the individual  Pk. The double-loop computa-
tion is used to generate the parameters (ni and si) of each 
individual. The individual  pi is calculated as

The population  Pk is solved as

where ni and pi are the number of individuals in the popula-
tion for dominating and the number of individuals being 
dominated by pi.

Estimation of crowding distance: Swarm distance rank-
ing is used to ensure the distribution and diversity of each 
individual, which is calculated as

where f1 and f2 are the objectives.  P[i]d represents the swarm 
distance of the ith individual and  P[i]f is on behalf of a func-
tion value of the sub-objective f of the ith individual.

(15)pi =
{
i∕ni, i ∈ {1, 2, ...,N}

}

(16)pk =
{
Allindividual∕ni − k + 1, k = 2, 3, ...,m

}

(17)
P[i]d =

|||P[i + 1]f1 − P[i − 1]f1
||| +

|||P[i + 1]f2 − P[i − 1]f2
|||

Selection of parents from the population using binary 
tournament selection: The fittest candidates are selected 
using the binary tournament selection. The lower-ranked 
solution is chosen when two random solutions are compared.

Generation of offspring using crossover and mutation 
operations: In the crossover operation, new strings having 
high fitness are generated. In the mutation operation, new 
strings with a minimum mutation probability are produced.

Sorting the current population and selection of the best 
individual: The weak individuals are replaced to form a new 
generation. The loop is performed until the maximum num-
ber of generations is fit.

Step 5: Comparison of optimization results.
The optimal values of the varied factors and honing per-

formances are compared to evaluate the effectiveness of 
employed optimization approaches.

3  Honing experiments and measurements

The experimental setup and measuring results of the finish-
ing honing process are shown in Fig. 3. The vertical honing 
machine labeled SKZ 500 using a hydraulic feeding system 
is employed to perform honing experiments (Fig. 3a). The 
device allows the variations of the rotation speed as well as 
the linear speed of the honing head and the pressure of abra-
sive stones. The machine supplied by Naiembung (Germany) 
has a single spindle and three degrees of freedom. The pow-
ers of the spindle motor and coolant pump are 12 kW and 
1.2 kW, respectively. The maximum values of the machin-
ing length and hole diameter are 5000 mm and 360 mm, 

Fig. 2  Operation procedure of 
NSGA-II
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respectively. The vertical movement of the honing head is 
generated using a hydraulic feeding system. The functional 
operations of the honing machine are controlled by a PLC 
system.

The hollow cylinders 40X having a hollow cylinder 
of 56 mm, an inside diameter of 40 mm, and a length of 
230 mm are used in this study (Fig. 3b). The hardness of 
the hardened workpiece is around 32 HRC. The specimen 
is pre-machined using sequential steps, including the drill-
ing, piercing, and boring processes. The initial values of the 
average roughness and maximum height roughness of the 
pre-machined workpiece are 2.52 µm and 4.02 µm. Each 
specimen is honed at a length of 230 mm.

The honing head having a diameter of Φ34+0.025 mm 
is used in conjunction with four abrasives to perform the 

experimental trails. Three different grit sizes employed of 
the abrasives are 150 FEPA, 180 FEPA, and 220 FEPA, 
respectively. The corresponded values of the mean diam-
eters are 125 µm, 82 µm, and 68 µm, respectively. The 
stones labeled AS-9 produced by Boride Engineered Abra-
sives are employed in all experiments. The AS-9 is an alu-
minum oxide finishing stone to machine electrical discharge 
machining (EDM) scale surfaces and remove machining 
marks. The AS-9 provides a fast and smooth cutting action 
in the machining period.

The experimental tests are carried out under wet machin-
ing conditions using high-pressure labeled VBC cool 
E-660 V oil. New abrasives are adopted for each machining 
experiment to avoid any possible interference and ensure the 
same honing conditions.

Fig. 3  Experiments and meas-
urements a Honing experiment 
b Workpiece c Measuring 
roughness
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The surface roughness Ra and Ry are measured by a tester 
Mitutoyo SJ-401, as shown in Fig. 3c. The roughness values 
are measured in five positions. The radius diamond point of 
5 µm is linearly moved on the honed surface and the sam-
pling length of 3 mm is used for all specimens. The probe 
of the roughness tester moves along the length to record the 
roughness values and produce the digital outputs. The range 
of 0.05–40 µm and the resolution of 0.01 µm are employed 
to ensure measuring accuracy. The standard for measure-
ment of surface roughness is ISO 4287.

4  Results and discussions

The experimental data of the honing process are shown in 
Table 2.

4.1  ANOVA results

ANOVA analysis is employed to evaluate the significance of 
the RSM models and process parameters. The varied inputs 
having p-values less than 0.05 are significant factors. The 
significance of the predictive model is assessed using the R2, 
adjusted R2, and predicted R2 values. The R2 value denotes 
the total variation of the RSM model in terms of the ana-
lyzed data. The adjusted R2 value describes the variety of 

the RSM model with significant factors. The predicted R2 
value presents the total variation of the RSM model with 
any new input.

ANOVA results of the average roughness model are 
shown in Table 3. As a result, the H, L, G, H2, and L2 are 
considered as significant terms. The percentage contribution 
of 13.05% revealed that G is the most effective factor with 
regard to single terms. The contributions of H and L are 
11.12% and 4.94%, respectively. The linear speed (H2) can 
be considered as the highest influenced variable in terms of 
quadratic terms, with a contribution of 37.82%, followed by 
L2 with 33.02%. The other terms with p-values higher than 
0.05 are insignificant terms.

The R2 value of 0.9956 indicated that 99.56% of experi-
mental data confirm the compatibility with the data pre-
dicted by the average roughness model. The adjusted R2 
value of 0.9899 revealed that the average roughness model 
presents a variation of 98.99% regarding significant factors. 
The predicted R2 value of 0.9398 indicated that the model 
could explain 93.98% of the variability in predicting new 
observations.

ANOVA results of the maximum height roughness model 
are shown in Table 4. As a result, the H, L, G, H2, L2, and G2 
are significant terms. The grit size is the most influenced fac-
tor with regard to the single term due to the percentage con-
tribution of 6.74%, followed by the tangential speed (5.74%) 

Table 2  Experimental results No H (m/min) L (m/min) G (FEPA) Ra (μm) Ry (μm) TM (s)

The obtained data for developing predictive models
1 20.0 8.0 150 0.45 1.91 490.9
2 30.0 4.0 150 0.44 1.90 513.1
3 40.0 12.0 180 0.37 1.83 425.3
4 20.0 8.0 220 0.31 1.77 584.6
5 30.0 8.0 180 0.18 1.52 519.8
6 30.0 8.0 180 0.19 1.53 519.8
7 20.0 4.0 180 0.59 2.05 592.8
8 20.0 12.0 180 0.52 1.98 526.2
9 30.0 8.0 180 0.19 1.51 519.8
10 40.0 8.0 220 0.21 1.67 506.5
11 40.0 4.0 180 0.46 1.92 494.6
12 30.0 12.0 150 0.36 1.82 444.8
13 30.0 8.0 180 0.19 1.48 519.8
14 30.0 8.0 180 0.20 1.49 519.8
15 30.0 4.0 220 0.32 1.78 604.3
16 30.0 12.0 220 0.24 1.70 542.5
17 40.0 8.0 150 0.35 1.81 392.4
The obtained data for developing predictive models
18 25.0 5.0 180 0.38 1.76 562.6
19 32.0 7.0 180 0.21 1.54 511.3
20 35.0 9.0 220 0.12 1.55 530.9
21 38.0 11.0 150 0.35 1.83 289.8
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and linear speed (2.55%). Additionally, the quadratic term of 
linear speed (L2) can be considered as the highest influenced 
factor with a contribution of 42.29%; this was followed by 
H2 with 38.61%, and  G2 with 4.05%.

The R2 value of 0.9950 revealed that 99.50% of the total 
variations were explained by the Ry model. The adjusted R2 
value of 0.9886 indicated that the maximum height rough-
ness model presents a variation of 98.86% regarding sig-
nificant factors. The predicted R2 value of 0.9656 indicated 
that the RSM model presents a variation of 9656% with any 
new data.

ANOVA results of the machining time model are shown 
in Table 5. As a result, all single terms (H, L, G) and quad-
ratic terms (H2, L2, G2) and the interaction term (HG) were 
considered as significant factors. Especially, G is the most 
effective parameter due to the highest contribution (40.29%). 
The percentages of H and L are 36.14% and 18.12%, respec-
tively. Additionally, the percentages of H2, L2, and G2 were 
3.92%, 1.09%, and 0.20%, respectively.

The R2 value of 0.9977 revealed that 99.77% of the total 
variations were explained by the machining time model. 
The adjusted R2 value of 0.9948 indicated that the machin-
ing time model presents a variation of 99.48% regarding 

significant factors. The predicted R2 value of 0.9633 indi-
cated that the machining time model could explain 96.33% 
of the variability in predicting new observations.

To confirm the ANOVA results, the Pareto charts of all 
considered factors are generated based on the F-values. The 
aim of the Pareto charts is to rank in descending order the 
effects of the honing parameters and their interactions on the 
technological outputs. The Pareto charts of Ra, Ry, and TM 
were shown in Fig. 4a, b, c, respectively. It can be stated that 
the Pareto charts are similar to the ANOVA results.

Additionally, the data points lie on the straight lines and 
did not show any particular trend, as exhibited in Fig. 5. It 
can be stated that there is a good agreement between pre-
dicted and measured values. Therefore, the fidelity of the 
RSM models proposed for three machining responses is 
acceptable.

To confirm the model precision, the experiments are per-
formed at various random parameters. Figure 6 depicts the 
comparisons between the predicted and experimental values. 
It can be stated that high consistency is obtained, indicating 
the acceptable accuracy of the RSM models.

Table 3  ANOVA results for the 
average roughness model

Source Sum of squares Mean square F-value p-value Contribution (%) Remark

Model 0.26991 0.02999 174.9390  < 0.0001 Significant
H 0.02880 0.02880 168.0000  < 0.0001 11.12 Significant
L 0.01280 0.01280 74.6667  < 0.0001 4.94 Significant
G 0.03380 0.03380 197.1667  < 0.0001 13.05 Significant
HL 0.00010 0.00010 0.5833 0.4700 0.04 Insignificant
HG 0.00000 0.00000 0.0000 1.0000 0.00 Insignificant
LG 0.00000 0.00000 0.0000 1.0000 0.00 Insignificant
H2 0.08550 0.08550 498.7500  < 0.0001 33.02 Significant
L2 0.09792 0.09792 571.2061  < 0.0001 37.82 Significant
G2 0.00003 0.00003 0.1535 0.7069 0.01 Insignificant
R2 = 0.9956; Adjusted R2 = 0.9899; Predicted R2 = 0.9398

Table 4  ANOVA results for 
the maximum height roughness 
model

Source Sum of squares Mean square F-value p-value Contribution (%) Remark

Model 0.54130 0.06014 154.78451  < 0.0001 Significant
H 0.02880 0.02880 74.11765  < 0.0001 5.74 Significant
L 0.01280 0.01280 32.94118 0.0007 2.55 Significant
G 0.03380 0.03380 86.98529  < 0.0001 6.74 Significant
HL 0.00010 0.00010 0.25735 0.6275 0.02 Insignificant
HG 0.00000 0.00000 0.00000 1.0000 0.00 Insignificant
LG 0.00000 0.00000 0.00000 1.0000 0.00 Insignificant
H2 0.19373 0.19373 498.56308  < 0.0001 38.61 Significant
L2 0.21221 0.21221 546.13274  < 0.0001 42.29 Significant
G2 0.02034 0.02034 52.34017 0.0002 4.05 Significant
R2 = 0.9950; Adjusted R2 = 0.9886; Predicted R2 = 0.9656
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4.2  Parametric influences

For the finishing honing process, the minimization of the 
average roughness is preferred to enhance the machined 
quality. Figure 7 exhibited the interactive effects of the pro-
cess parameters on the average roughness.

The impacts of the tangential and linear speeds on the 
average roughness are shown in Fig. Figure 7a. As a result, 
an increase of the tangential and/or linear speeds result in 
a decreased surface roughness. After the minimal point at 
the middle range (0), the roughness is increased with an 
increment in the tangential and/or linear speeds. This phe-
nomenon can be explained as follows. An increment in the 

Table 5  ANOVA results for the 
machining time model

Source Sum of squares Mean square F-value p-value Cont Remark

Model 48,749.0213 5416.5579 338.1198  < 0.0001 Significant
H 17,643.8113 17,643.8113 1101.3861  < 0.0001 36.14 Significant
L 8844.5000 8844.5000 552.1034  < 0.0001 18.12 Significant
G 19,671.3613 19,671.3613 1227.9525  < 0.0001 40.29 Significant
HL 1.8225 1.8225 0.1138 0.7458 0.00 Insignificant
HG 104.0400 104.0400 6.4945 0.0382 0.21 Significant
LG 10.5625 10.5625 0.6593 0.4435 0.02 Insignificant
H2 1914.7605 1914.7605 119.5258  < 0.0001 3.92 Significant
L2 532.8947 532.8947 33.2651 0.0007 1.09 Significant
G2 100.0658 100.0658 6.2464 0.0410 0.20 Significant
R2 = 0.9977; Adjusted R2 = 0.9948; Predicted R2 = 0.9633

Fig. 4  Pareto charts for the honing responses a Pareto chart for the average roughness model b Pareto chart for the maximum height roughness 
model c Pareto chart for the machining time model



 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2020) 42:604 

1 3

  604  Page 10 of 17

speed causes an increase in the temperature of the honing 
region, resulting in a decrease in the strength and hardness 
of the sample. Consequently, the chip is easily detached from 
the machined surface, resulting in a decrease in the rough-
ness [9, 21, 22]. Moreover, the machine tool vibration may 
suppress at an increased speed, leading to stable machin-
ing. Therefore, the roughness is decreased when the speed 
increases from the lowest to the middle levels. In contrast, 
further speed may cause an excessive machining tempera-
ture, which leads to the work-hardening in the machined 
sample. The strength and hardness of the machined sam-
ple may be increased and the chip is hardly removed from 
the machined workpiece. Higher roughness is consequently 
produced [9, 22]. Moreover, excessive speed may result 
in machining instability, and hence, higher roughness is 
obtained.

The impact of the grit size on the average roughness is 
shown in Fig. 7b. As a result, the roughness is decreased 

with an increment in the grit size. The grit size indicates the 
abrasive grade on the abrasive side. A higher grit number 
indicates a smaller abrasive grain and a finer abrasive prod-
uct [9, 11, 21–23].

The similar effects of machining parameters on the Ry 
can be found in Fig. 8a, b.

For the finishing honing process, the minimization of the 
machining time is preferred to enhance productivity. Fig-
ure 9a, b indicated that the machining time is a sensitive 
variation with machining parameters.

The impacts of the tangential and linear speeds on the 
machining time is shown in Fig. Figure 9a. It can be stated 
that an increase in the tangential head and/or linear speed 
leads to a machining time reduction. Higher speed causes an 
increase in the machining pressure on the workpiece surface. 
High amounts of the material are removed, which causes a 
reduction in the machining time.

Fig. 5  Investigation of the model soundness of the honing responses a For the average roughness model b For for the machining time model c 
For the maximum height roughness model
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The impact of the grit size on the machining time is 
shown in Fig. 9b. It can be stated that an increase in the grit 
size leads to a machining time reduction. Small grit size 
indicates a higher grain size, which can be used to obtain 
a higher amount of material removal. In other words, high 
amounts of the material are processed at a low grit size. In 
contrast, higher grit size causes a reduction in the grain size, 
and amount of the material removal is decreased. Higher 
machining time is required to complete experimental tests.

The comparison of the R-profiles between the pre-
machined and honed surfaces is shown in Fig. 10. Obviously, 
the honing process brings the lower roughness.

4.3  Development of predictive models

The predictive models of the average roughness, maximum 
height roughness, and machining time were developed with 
regard to machining parameters using RSM and experimental 
data. The regression coefficients of insignificant terms were 
eliminated based on ANOVA results. Consequently, the regres-
sion models showing the Ra, Ry, and  TM are expressed as follows:

Fig. 6  Investigation of the model accuracy of the honing responses a For average roughness model b For maximum height roughness model c 
For machining time model



 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2020) 42:604 

1 3

  604  Page 12 of 17

(18)Ra = 2.58622 − 0.0905H − 0.15875L − 0.0011G + 0.001425H2 + 0.00953L2

(19)Ry = 6.84982 − 0.1337H − 0.23075L − 0.02285G + 0.00215H2 + 0.01403L2

+0.000057G2

(20)TM = 275.95561 + 5.53804H − 21.20357L + 2.35923G − 0.01688HL + 0.01457HG

+0.011607LG − 0.21325H2 + 0.70313L2 − 0.00398G2

Fig. 7  The interactive effects of the process parameters on the average roughness a  Ra versus H and L b Ra versus H and G 

Fig. 8  The interactive effects of the process parameters on the maximum height roughness a Ry versus H and L b Ry versus H and G 
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4.4  Optimization results

The developed equations showing the relationship between 
process parameters and honing responses are used to find 
optimal parameters with the aids of the desirability approach 
and NSGA-II. The ramp function graphs of machining 
parameters and honing responses using the desirability 
approach are shown in Fig. 11a. The optimal values of the 
H, L, and G are 35.0 m/min, 8.0 m/min, and 180 FEPA, 
respectively. The corresponded values of the Ra, Ry, and TM 
are 0.20 µm, 1.55 µm, and 474.7 s, respectively. Figure 11b 
presents the bar graph of desirability for the inputs and the 
outputs together with combined desirability of 0.84421. As 
a result, the reductions in the average roughness, maximum 
height roughness, and machining time are 37.50%, 7.74%, 
and 13.78%, respectively (Table 6).

Additionally, the Pareto fronts generated by NSGA-II are 
shown in Fig. 12, in which pink points are feasible solu-
tions. The operation parameters of the NSGA-II are listed in 
Table 7. It can be stated that it is not possible to simultane-
ously achieve minimum machining time and roughness. As 
a result, the reduction in the average and/or maximum height 
roughness leads to an increment in the machining time.

It can be inferred from Fig. 12 that when the machin-
ing time is in the lowest value, i.e., 370 s, the average and 
maximum height roughnesses are 0.43 µm and 1.95 µm, 
respectively. When the machining time increases from 380 to 
540 s, the roughness properties significantly enhance; where 
the average roughness decreases from 0.34 µm to 0.12 µm 
and maximum height roughness decreases from 1.78 µm to 
1.50 µm. It means that an increment in the machining time 
effectively leads to an improvement in roughness properties.

The optimal values of the H, L, and G are 36.0 m/min, 
9.5 m/min, and 220 FEPA, respectively. The corresponded 
values of the Ra, Ry, and TM are 0.15 µm, 1.53 µm, and 
475.8 s, respectively. The reductions in the average rough-
ness, maximum height roughness, and machining time are 
53.13%, 8.93%, and 13.95% (Table 8). As a result, NSGA-II 
generates the lower optimal values of the honing responses, 
compared to the desirability function. It can be stated that 
the RSM-NSGA II can provide better performance than the 
RSM-DA.

In order to prove the effectiveness of the proposed 
approach, a confirmatory experiment is conducted at the 
optimal solution. The comparative results are shown in 
Table 9. The small errors indicate that optimal results are 
strongly correlated with the experimental data. The devel-
oped approach can be extensively applied to the optimization 
of different honing operations. The reductions in the Ra and 

Fig. 9  The interactive effects of the process parameters on the machining time a TM versus H and L b TM versus H and G 

Fig. 10  Comparisons between pre-machined and honed surfaces
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Ry are by 94.05% and 61.94%, respectively, as compared to 
the characteristics of the pre-machined surface.

Practically, it is unnecessary to simultaneous minimiz-
ing three objectives, in which the roughness criteria (Ra and 
Ry) are commonly predefined as the technical requirements. 
Furthermore, it can be stated that it is hard to determine the 
optimal machining parameters for different technological 
outputs based on practical experience or operating guide. 
As a result, the Pareto fronts showing global relations among 
the technological responses (Fig. 12) can be used to deter-
mine the maximum machining time and optimal parameters 
with the predefined constraints of the roughness properties. 
The representative scenarios with constrained roughness 
properties were shown in Table 10.

5  Conclusions

This work presented a multi-responses optimization of 
machining parameters in the finishing honing process to 
decrease the machining time, the average roughness, and 
maximum height roughness. The processing inputs were 
the tangential speed, linear speed, and the grit size of the 
abrasive. The RSM models of the technical performances 
were proposed in terms of the process parameters. Two opti-
mization approaches, including the DA and NSGA-II, were 
employed to select the optimal factors. The main conclu-
sions of this work can be drawn as follows within parameters 
considered:

1. The predictive models have been developed for the 
roughness properties and machining time of the finish-
ing honing process. The analyzed outcomes indicated 

Fig. 11  Optimization results 
using DA a Ramp function 
graph for multi-objective 
optimization b Bar graph of 
desirability for multi-objective 
optimization

Table 6  Optimization results 
generated by RSM-DA

Optimization parameters Responses

Method H (m/min) L (m/min) G (FEPA) Ra (µm) Ry (µm) TM (s)

Values used 25.0 6.0 180 0.32 1.68 550.6
DA 35.0 9.0 180 0.20 1.55 474.7
Improvement (%)  − 37.50  − 7.74  − 13.78
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that the RSM models for the honing responses have been 
found soundness and reliable. The proposed models of 
the honing performances have shown an acceptable pre-
cision for predictive purposes.

2. The roughness values were initially decreased with 
increased tangential speed and/or linear speed until it 
reaches the optimal point and then with higher param-
eters, the roughness values were increased. Additionally, 
an increased grit size of the honing abrasive results in 
a smoother surface. The machining time is decreased 
with an increased tangential and/or linear speed. Higher 
honing productivity can be observed at a low grit size.

3. For the average roughness model, the grit size has the 
highest contribution (13.05%) regarding the single term, 
followed by the tangential speed (11.12%) and linear 
speed (4.94%), respectively. The quadratic terms, includ-
ing the H2 (37.82%) and L2 (33.02%), have significant 
contributions to the average roughness model.

4. Similarly, the grit size is the most effective factor 
(6.74%) on the maximum height roughness model, fol-
lowed by the tangential speed (5.74%) and linear speed 
(2.55%). The quadratic terms, including the L2 (42.29%), 
H2 (38.61%), and G2 (4.05%), have effective impacts on 
the maximum height roughness model.

5. For the machining time model, the grit size (40.29%) 
has the highest contribution, followed by the tangen-
tial speed (36.14%) and linear speed (18.12%), respec-
tively. The quadratic terms, including the H2 (3.92%), L2 
(1.09%), and G2 (0.20%), significantly contribute to the 
machining time model.

6. The optimal values of the H, L, and G are 36.0 m/min, 
9.5 m/min, and 220 FEPA, respectively. The average 
roughness, maximum height roughness, and machin-
ing time are decreased by 53.13%, 8.93%, and 13.95%, 
respectively, as compared to the common values used.

7. Solving multi-objective optimization issue using NGSA-
II could be ensured the global optimal results and better 
values, as compared to the desirability approach. The 
proposed approach for decreasing the machining time 
with predefined surface roughness is versatile and real-
istic in the honing processes in comparison with single 
objective or simultaneous three response optimization.

Fig. 12  Optimization results using NSGA II a Pareto front generated 
by NSGA-II for TM and Ra b Pareto front generated by NSGA-II for 
TM and Ry

Table 7  Parameter value of NSGA-II algorithm

Parameters Value

Population size 100
Maximum number of iterations 200
Deviation of fitness function 10–10

Coefficient of Pareto fraction 0.3

Table 8  Optimization results 
generated by RSM-NSGA II

Optimization parameters Responses

Method H (m/min) L (m/min) G (FEPA) Ra (µm) Ry (µm) TM (s)

Values used 25.0 6.0 180 0.32 1.68 550.6
NSGA-II 36.0 9.5 220 0.15 1.53 473.8
Improvement (%)  − 53.13 -8.93  − 13.95
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This work is expected to contribute toward improving the 
surface quality and production rate of the honing process. 
The holistic optimization of the honing process considering 
more surface characteristics, such as the machining tempera-
ture and residual stress can be considered in future works.
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