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A B S T R A C T   

Storm surge is a genuine common fiasco coming from the ocean. Therefore, an exact forecast of surges is a vital 
assignment to dodge property misfortunes and to decrease a chance caused by tropical storm surge. Genetic 
Programming (GP) is an evolution-based model learning technique that can simultaneously find the functional 
form and the numeric coefficients for the model. Therefore, GP has been widely applied to build models for 
predictive problems. However, GP has seldom been applied to the problem of storm surge forecasting. In this 
paper, we propose a new method to use GP for evolving models for storm surge forecasting. Experimental results 
on datasets collected from the Tottori coast of Japan show that GP can evolve accurate storm surge forecasting 
models. Moreover, GP can automatically select relevant features when evolving storm surge forecasting models, 
and the models evolved by GP are interpretable.   

1. Introduction 

Storm surge, a rise in sea level due to low atmospheric pressure and 
strong winds, is a severe natural disaster coming from the sea. Storm 
surges are especially harmful when they happen at a high tide, 
combining the impacts of the surge and the tide (Lee, 2008). With over 
600 million individuals living in low-lying coastal zones, coastal surges 
have devastating societal impacts. For example, the most remarkable 
recorded storm surge in the United States was produced by Storm 
Katrina in 2005, which created a storm surge 9 m tall within the town of 
Cove St. Louis, Mississippi. The overall misfortune as a result of Katrina 
is evaluated to surpass $100 billion (Muis et al., 2016). Whereas 
high-impact occasions will, without a doubt, happen within the future, 
the advancement of the forecast of storm surge is able to enormously 
reduce the misfortune of lives and possibly lessen the sum of property 
harm (Kim et al., 2016, 2018; Thuy et al., 2016). 

A conventional approach to storm surge prediction is to utilize 
process-based numerical forecasting models, but this approach is often 
computationally expensive. An alternative way is to use (data driven) 
machine learning algorithms such as artificial neural networks (ANNs) 
for predicting surge levels using the features such as sea surface levels, 

winds, sea level pressures, and tropical cyclone characteristics (Kim 
et al., 2016). For instance, Lee (2008) proposed a neural network 
combined with a consonant examination to forecast storm surges in Suao 
Harbor station, Taiwan. The experimental results showed that storm 
surge is effectively anticipated using neural systems. De Oliveira at al 
(De Oliveira et al., 2009). proposed a neural network model to predict 
ocean level varieties related to meteorological occasions. The results 
showed that the model is able to capture the impacts of the climatic and 
maritime intuitions. You at al (You and Seo, 2009). combined neural 
networks and clustering algorithms to build a storm surge prediction 
model. The observed results demonstrated that the model can be used 
for effectively forecasting territorial storm surges. Kim at al (Kim et al., 
2016) demonstrated the impact of using different feature sets on an 
artificial neural network-based after-runner surge forecast model. The 
experimental results indicated that the combination of surge level, 
sea-level pressure, drop of sea-level pressure, longitude and latitude of 
typhoon, sea surface level, wind speed and wind direction comprises the 
optimal feature sets for predicting the surge level with the lead time of 
24 h in the area of Sakai Minato on the Tottori coast, Japan. 

Genetic programming (GP) is an evolutionary procedure to create 
solutions in the form of computer programs (Koza, 1992). The ability of 
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GP to learn the definition of a function itself from sample information 
makes it a great choice for symbolic regression. Therefore, GP has been 
widely used to build regression models for many real applications. For 
instance, based on predictions of stock-prices using GP, a possibly 
profitable trading strategy was proposed in (Kaboudan, 2000). Gaur and 
Deo (2008) proposed the use of GP to build a model for real-time wave 
forecasting. The estimates created by GP shown that it can be respected 
as a promising tool for future applications to ocean forecasts. Azama-
thulla and Ghani (2010) utilized GP to anticipate river pipeline scour, 
and the execution of GP was found to be more viable when compared 
with the results of regression equations and artificial neural systems 
modeling in anticipating the scour depth around pipelines. 

Recently, GP has also been applied to forecast storm surge. Sahoo 
and Bhaskaran (2019) proposed to use GP for predicting storm surge and 
inundation characteristics resulting from tropical cyclones. Experiments 
used datasets collected from the coast of Odisha adjoining the Bay of 
Bengal. Experimental results showed that both ANNs and GP perform 
very well as evidenced from their validation with actual data. However, 
GP has not been investigated to build models for storm surge forecasting 
with a lead time. Moreover, the ability of GP to automatically select 
features and build interpretable models for storm surge forecasting has 
not been studied. Therefore, this paper will investigate the ability of GP 
to build models for forecasting storm surge levels. 

1.1. Goals 

This paper aims to develop accurate and interpretable models for 
storm surge forecasting based on GP approach. The proposed method is 
compared with other common machine learning-based storm surge 
forecasting models to answer the following research questions:  

1. Whether the GP-based storm surge forecasting models can be more 
accurate than machine learning-based storm surge forecasting 
models;  

2. Whether GP can automatically select relevant features when building 
storm surge forecasting models.  

3. Whether storm surge forecasting models evolved by GP are 
interpretable. 

The rest of this paper is organized as follow. Section 2 gives a brief on 
GP and Machine Learning methods utilized in this paper. The proposed 

method and experiment design are shown in Sections 3 and 4. The re-
sults and analyses are displayed and examined in Section 5. Discussions 
are given in Section 6. Section 7 states conclusions and future work. 

2. Backgrounds 

2.1. Genetic Programming 

Genetic Programming (GP) is one of the foremost well known 
evolutionary algorithm methods motivated by natural selection to 
evolve solutions, as computer programs, to problems (Koza, 1992, 
1994). Within the 1990s, GP was primarily applied to mainly simple 
problems since it was rather computationally expensive. Nowadays, 
with the exponential development in CPU control and the changes of GP 
frameworks, it has broadly been utilized to solve various real-world 
problems. The applications of GP cover electronic design, diversion 
playing, quantum computing, and sorting (Koza, 1992, 1994). 

Fig. 1 depicts the pseudo-code of GP. The following components are 
required for the application of GP (Poli et al., 2008). 

2.1.1. Representation of candidate solutions 
In spite of the fact that, for GP, there are a number of ways proposed 

to represent candidate solutions, the most popular one is tree-based 
representation. To produce a populace of individuals, firstly, a GP user 
selects a function set and a terminal set. The function set is regularly 
chosen from arithmetic operations (e.g +, -, *,/), mathematical func-
tions (e.g., sin, cos, exp, log), Boolean operations (e.g., AND, OR, XOR, 
NOT) and conditionals (such as IF-THEN-ELSE). The terminal set 
frequently incorporates a number of features and a few constants. After 
that, a GP individual is built up recursively from the chosen functions 
and terminal sets (Koza, 1992; Poli et al., 2008). 

2.1.2. Initializing a population 
The reason for the initialization step is to initialize a population of 

seeding individuals that will be evolved in the later stages of evolution. 
In a tree-based GP framework, the grow, the full, and the ramped half- 
and-half strategies are the three primary methods for initializing the 
initial population. 

To produce an individual in the grow initialization, firstly, a function 
within the function set is arbitrarily chosen and is considered as the root 
node of the tree. Expecting that the arity of the chosen function is n, at 

Fig. 1. Pseudo-code of genetic programming.  
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that point n nodes are randomly generated from the function and ter-
minal sets as the children of the root node. In case a function is chosen, 
the recursive process is applied to that function. If a terminal is chosen, 
however, this branch of the tree is ended. The maximal depth of the tree 
is normally used to control the individual size. In full initialization, when 
building a tree, rather than choosing nodes from the function and ter-
minal sets, only functions are chosen from the function set until it comes 
to the maximal depth where terminals are finally randomly selected 
from the terminal set. 

For ramped half-and-half initialization, a half of the population is 
created by utilizing the grow strategy, while the other half is produced by 
the full strategy. This strategy is perhaps the most popular initialization 
procedure for GP (Poli et al., 2008). 

2.1.3. Genetic operators 
Crossover:. is the primary operator of GP. It produces new children 

that are created from parts embodied in each parent; hence, crossover 
makes variation within the population. For the execution of standard 
crossover, firstly, two parents are chosen according to a selection 
strategy, and after that one subtree is randomly chosen in each parent. If 
the two chosen subtrees are complied to the requirements (depth of the 
resultant children, syntactic closure property, etc.), the crossover oper-
ation is done by swapping them. At that point, the new offspring are 
included in the next generation (Koza, 1992). 

Mutation:. is an asexual operator, i.e. it works with only one parent. 
To start, a mutation point is randomly chosen. After that the subtree 
rooted at the mutation point is expelled. A randomly created subtree is 
used to replace the outgoing one (Koza, 1992). 

2.1.4. Fitness evaluation 
Each individual within the population is assigned a numerical value 

called fitness measuring its capacity to solve the problem. Additionally, 
fitness must also be computational efficiency (Koza, 1994; Poli et al., 
2008). Two frequently used fitness measures in GP are raw and stan-
dardized fitness. Raw fitness simply reflects the extent, to which an in-
dividual can solve the problem. Standardized fitness is calculated from 
the raw fitness so that the smaller fitness value, the better individual is in 
solving the problem (Koza, 1994; Poli et al., 2008). 

2.1.5. Selection mechanism 
Based on its fitness value, each individual in the population has a 

chance to be chosen for the breeding of the new population. The three 
most well known selection methods are tournament, fitness proportionate 
and ranked selection. 

In tournament selection, a randomly chosen subset of individuals 
from the population is compared with each other in terms of fitness. At 
that point, the fittest is chosen to go to the mating pool. The flexibility of 
tournament selection lies in the choice for the size of the tournament 
subset. Normally, tournament selection does not require excessive 
fitness comparisons of all individuals. Subsequently, it may avoid 
expensive processing time and is easily subjected to parallelization 
(Koza, 1994; Poli et al., 2008). 

In fitness proportionate selection, each individual is selected to the 
mating pool based on a likelihood that is proportionate to its fitness 
compared to the fitnesses of all individuals in the population. In spite of 
the fact that proportionate selection has been frequently utilized in GP 
and Genetic Algorithms, its behavior emphatically depends on the 
contrast between fitnesses of all individuals in the population (Koza, 
1994; Poli et al., 2008). 

In ranking selection, based on their fitness, all individuals are sorted. 
After that, based on the arranged order, each individual may be selected 
with a likelihood calculated from its rank (higher rank has higher chance 
to be chosen). Linear and exponential rankings are regularly utilized to 
index individuals. Although ranking selection strategy helps to reduce 
the shortcoming of proportionate selection, in a few cases, particularly 
within the exponential ranking, this strategy enlarges the contrasts 

between individuals with closed fitnesses; hence, the superior one might 
be chosen more frequently (Koza, 1994; Poli et al., 2008). 

2.2. Machine learning methods 

In this section, we will briefly portray four other machine learning 
methods tried out in our experiments. They are the Multi-Layer Per-
ceptron (), k-Nearest Neighbors (k-NN), Decision Trees (DCT), and 
Support Vector Regression (SVR), which are ordinarily called data- 
driven models for the capacity to capture the mapping between input 
and output variables (forecast problems) without studying directly the 
natural rules that dominate the mechanism of storm surges. These 
models are completely based on information obtained from the collected 
data. 

2.2.1. K-nearest neighbor 
The k-NN is a non-parametric machine learning method that bases its 

forecast on the target yielded by the k-nearest neighbors of the given 
inquiry point (Song et al., 2017). In detail, given a data point, we 
determine the value of Euclidean measure between that point and all 
points within the training set. After that, we select its closest k nearest 
neighbors. Then we set the prediction value as the average of the target 
output values produced by these k nearest neighbors. In particular, the 
prediction xt is defined as: 

xFt =
1
k

∑

t∈S(X,m)

xt (1)  

where S(X,m) expresses the k-nearest neighbor index set to the X(m)

attribute vector. Intuitively speaking, the forecast xF
t in Equation (1) is 

the sample average of the output surge level of the k-nearest neighbors 
to X(m). 

2.2.2. Support vector machines 
Support vector machines can be utilized for both classification and 

regression problems. When applied to a regression problem it is called as 
support vector regression (SVR). In consideration of a linear model for 
illustration, the forecast is formulated by: 

f (x)=wTx+ o, (2)  

where w, o and x denote the weight vector, the bias and the input vector, 
respectively. Let xm be the m-th training input vector and ym is the target 
output, m = 1,…,M. 

The following formula is used for the error function: 

J=
1
2
||w||2 +C

∑n

i=1

⃒
⃒
⃒
⃒ym − f (xm)

⃒
⃒
⃒
⃒

ε
(3) 

In this error function, the first term is used to penalizes the 
complexity of the model. The remaining term is called the ε-insensitive 
loss function, i.e. it does not penalize the errors below epsilon. 

For the linear case, the learnt function could be obtained by the 
minimization of Eq. (4) as follows. 

f (x)=
∑M

m=1

(
α*
m − αm

)
xTmx+ o (4)  

where αm and α*m are Lagrange multipliers. The training vectors that 
provide nonzero Lagrange multipliers are referred to as support vectors, 
and that is a key concept in the theory of SVR. Non-support vectors 
indirectly contribute to the solution, and the number of support vectors 
is the degree of the complexity of the model (Balabin and Lomakina, 
2011). This model can be extended to the non-linear case by kerneli-
zation with the introduction of the kernel function κ in a reproducing 
kernel Hilbert space (RKHS). 
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f (x)=
∑M

m=1

(
α*
m − αm

)
κ
(
xTmx
)
+ o (5) 

The widely used Gaussian kernel is employed in our experiments 
with SVR. Its width, δκ, is the standard deviation of the Gaussian 
function. 

2.2.3. Multi-layer perceptron networks 
The multi-layer perception network is by far the most common 

Artificial Neural Networks (ANN) model, which usually uses the error 
backward propagation technique to train the configuration of the 
network. The ANN architecture is made up of a number of hidden layers 
and a number of neurons in the input layer. In the output layer, either 
multiple or single neurons exist. ANNs with one hidden layer are usually 
utilized in hydrologic modeling (Dawson and Wilby, 2001; de Vos and 
Rientjes, 2005) on account that those networks are taken into consid-
eration to provide sufficient complexity to accurately simulate the 
nonlinear properties of the hydrologic process. The ANN model for 
forecasting is defined as: 

xFt = f (Xt,w, θ,m, h)= θ0 +
∑h

j=1
wout

j φ

(
∑m

i=1
wjixt + θj

)

, (6)  

where φ indicates the transfer function; wji is the weight of the link 
between the input layer’s i-th node and the hidden layer’s j-th node; θj is 
bias related to the j-th node of the hidden layer; wout

j is the weight 
associated with the link between the j-th node of the hidden layer and 
the node of the output layer; and θ0 is the bias at the output node. A 
suitable training algorithm is needed to find optimal w and θ in order to 
apply Equation (6) to surge level forecasting. 

2.2.4. Decision Tree-REF tree 
Reduces Error Pruning (REP) Tree Classifier is a decision-making tree 

learning algorithm based on the rule of splitting the training data using 
entropy based information gain and minimizing the error emerging from 
variance (Mohamed et al., 2012). REP Tree applies regression tree logic, 
and in altered iterations, it produces several trees. It chooses the best one 
of all spawned trees afterward. Then, it uses variance and knowledge 
gain to construct the regression/decision tree. The method also prunes 
the tree using a reduced-error pruning process that sorts numeric attri-
bute values once at the start of the model preparation. As in the C4.5 
algorithm (Quinlan, 2014), this algorithm also tackles the missing 
values by separating the related instances into parts. 

3. Genetic Programming for storm surge forecast 

3.1. Problem statement 

In the current research, we used the remotely transmitted hourly 
recorded meteorological and hydrodynamic data from the observation 
stations on the Tottori coast of Japan, which are exactly the same Kim 
et al. (2016). There are three types of features used to predict storm 
surge level:  

• meteorological parameters: wind speed (WS) (m/s), wind direction 
(WD) (degree), sea-level pressure (SLP) (hPa), and drop rate of sea- 
level pressure (DSLP) from average sea-level pressure at five sites. 
These parameters were collected from five local weather sites at 
Hamada, Matsue, Yonago, Ama, and Saigo operated by the Japan 
Meteorological Agency  

• typhoon-featured parameters: longitude and latitude (LG and LT) 
(degree), central atmospheric pressure (CAP) (hPa), and highest 
wind speed (HWP) near the typhoon center (m/s). The typhoon- 
featured parameters are gathered from three typhoons of Maemi 
(2003), Songda 2004, and Megi 2004. 

• hydrodynamic parameters: sea surface level (SSL) (m) (=the atmo-
spheric tidal level + the surge level) and surge level (m) (=observed 
sea surface level - atmospheric tidal level) (SL) 

The parameters mentioned above were taken as the input of the GP 
forecast model. The surge level is also used as the input parameter 
because the hourly surge level separated from a total sea surface level 
can be technically obtained from the stations and transferred to the 
present real-time operating system. In the output layer, the surge levels 
with the lead times of 5, 12 and 24 h are predicted. 

In order to train and test the GP-based surge forecast model with the 
input and output parameter sets mentioned in the previous paragraph, a 
chain of surge level forecasting experiments were performed with the 
measurement collected during Typhoons Maemi 2003, Songda 2004, 
and Megi 2004 (Kim et al., 2016). Data sets were collected at the hourly 
interval for 168h for each event. The parameters obtained during 
Typhoon Maemi 2003 and Songda 2004, respectively, were used for 
training. The data length is appropriate to a relationship between input 
and output for the training phase. The parameters obtained during Megi 
2004 were used for testing. Through the phases of training and testing, 
we developed the GP-based surge forecast models with 5, 12, and 24h 
lead times at Sakai Minato. It is noticed that all parameters were 
modified to have dimensional-less orders before training, resulting in 
falling within the range of [–1, 1] after rendering the parameters 
dimensional-less. 

3.2. GP-based surge level forecasting 

Here we outline a GP approach to predict the surge level. Several 
modifications have been made to the GP-based surge level forecasting, 
which is detailed in the following. All variables available within the data 
are included in the first set of elements in the terminal set. The second 
element is an ephemeral random constant (ERC) that will select a 
random number that is uniformly distributed. In [–1, 1], we allow our 
ERC to select a random number. The set of functions includes: Add 
(ADD), Subtract (SUB), Multiply (MUL), Divide (DIV), square root 
(SQRT), natural logarithm (base e) (LOG) and trigonometric functions 
(sin, cos). LOG, SQRT, and DIV functions are protected since zeroes and 
negative numbers are included in the results. If the input is zero or 
negative, zero will be returned by SQRT and LOG. If zero (denominator) 
is the second argument passed to DIV, zero is returned as well. Pro-
tecting these values will prevent the generation of NaN’s (not a number) 
and Inf (infinity). We make sure that the first child is either a function or 
a variable when initializing the population using the ramped-and-half, 
whereas the second child can either be a variable, an ERC or another 
function. This will prevent random numbers from dominating trees. 
Table 1 summarizes all the functions and terminals provided in this 
section. 

The fitness used for assessment will be based on the root mean 
squared error and the coefficient of correlation (CC) given by: 

Table 1 
GP parameter settings.  

Parameter Value 

Function set +, -, x,/(protected division), sin, cos, SQRT, LOG 
Variable terminals all features 
Constant terminals Random float values 
Population size 1024 
Initialization Ramped half-and-half 
Generations 50 
Crossover probability 60% 
Mutation probability 30% 
Reproduction rate 10% 
Selection type Tournament (size = 7)  
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fitness=NRMSE
(

1+
1
CC

)

(7)  

where NRMSE and CC are calculated by: 

NRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1

(
yobs,i − ypre,i

)√

(
yobs,max − yobs,min

) (8)  

CC=

∑n
i=1

(
yobs,i − yobs

)(
ypre,i − ypre

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
yobs,i − yobs

)2∑n
i=1

(
ypre,i − ypre

)2
√ (9)  

where n is the size of the training set, ypre,i represents the predicted surge 
level and yobs,i represents the actual surge level for the ith data point 
(time index). 

Every search process starts with a random set of trees being gener-
ated. Every tree’s objective function, shown in Equation (7), is then 
determined. Trees with better target values are picked using methods 
such as tournament selection. Two genetic operators are planning the 
chosen trees for the next iteration: crossover and mutation. The new 
trees that were produced are the input for the next iteration. This process 
continues to the maximum number of iterations or error satisfaction (e. 
g. equal zero). 

4. Parameter settings 

In all experiments, we used the implementation of GP in the ECJ 
library (A Java-based Evolutionary Computation Research System) 
(Luke et al., 2006). Table 1 shows the parameters of our GP systems. 
Thirty independent runs of GP were performed for each experiment, 
yielding diverse solutions at each run. These independent runs have 
different seeds generated by the computer pseudo-random number 
generator. We also utilized elitism in our evolutionary process, which 
copied the best individual of the current population to the next gener-
ation without changes. 

In machine learning, regression learning algorithms are frequently 
categorized into decision trees such as C4.5 (Quinlan, 2014), 
instance-based classifiers such as k nearest neighbor (kNN) (Weinberger 
et al., 2006), and function-based classifiers such as an artificial neural 
network (ANN) and SVM (Han et al., 2011). Hence, four regression al-
gorithms (C4.5 kNN, ANN, and SVM) were utilized in our experiments 
for the sake of comparison. We used the implementations of these 
regression learning methods in the WEKA library (Hall et al., 2009). The 
parameter settings of these algorithms are given in Table 2. 

5. Results and analyses 

5.1. Empirical evaluation of the proposed method 

In this experiment of storm surge forecast, it was found that the 
difference in performance between GP with the number of generations 

was significant, as seen in Fig. 2(a) and (b), and 2(c). We choose values 
of the number of generations in [50, 500]. 

First, the correlation coefficient of surge forecast with 5h-lead time is 
examined. In Fig. 2(a), GP achieves the best performance with the 
maximum number of generations of 200. It seems that, in this case, the 
more number of generation number leads to the decrease of the corre-
lation coefficient value. Next, in Fig. 2(b), with 12h-lead time, the cor-
relation coefficient value increases rapidly to 200 then decreases 
gradually. In the last case with 24h-lead time, in Fig. 2(c), after reaching 
the peak (at 200 − th generation), the difference between the maximum 
value and the rear values is relatively small. Experimenting with 
different maximum number of generations (50, 60, to 500), we noticed 
that patterns of results for GP in general show the best correlation co-
efficient value in the case of 200 generations. For this reason, we set this 
parameter (maximum number of generations) to 200 in all subsequent 
experiments. 

5.2. The comparison between the proposed method and the machine 
learning methods 

In this section, we look at the predictive error and coefficient cor-
relation value between algorithms. Four aforementioned machine 
learning models are chosen to compete with GP. In addition, we also 
compare GPs to the best ANN forecast models in (Kim et al., 2016) on 
each data set. We compare the results of each algorithm on 3 data 
samples. GP and ANN is in the form of a stochastic algorithm, so we test 
GP for 30 times before taking the median result from the set of the best 
individuals on the training set from each run. SVM, k-NN, and DCT are 
deterministic, and only one run was required. 

5.2.1. Accuracy of surge forecasts with the lead time of 5h 
For 5h-lead time, the results in Kim et al. (2016) indicated that the 

ANN-based surge model (ANN-B3), which were trained with a combi-
nation of storm surge, sea-level pressure, drop rate of sea-level pressure, 
longitude, latitude, sea surface level, and wind speed, is the best per-
forming model. Firstly, the accuracy of surge estimate with the 5h-lead 
time is assessed by comparing time series of the surge level and per-
ceptions amid Tropical storm Megi as appeared in Fig. 3. 

Taking a look at the testing results of the models in Fig. 3, the surge 
level outputs by ANN-B3, GP, and ANN are fairly good in comparison 
with the observations. However, we can find among these models, GP 
and k-NN achieved the best performance around the peak. 

5.2.2. Accuracy of surge forecasts with the lead time of 12h 
In this subsection, all forecast models for the lead time of 12h are 

assessed. In Kim et al. (2016), they found that the ANN-based surge 
model (ANN-B1) is the best model trained with features of storm surge, 
sea-level pressure, drop rate of sea-level pressure, longitude, and lati-
tude. As appeared in Fig. 4, the 12h lead time forecasts of SVM (SVR) 
and ANN-B1 generally overestimated the surge levels, whereas GP and 
ANN predicted the surge levels with thin deviations. Among them, kNN 
and DCT appear jutted surge levels close to the greatest surge level. 

5.2.3. Accuracy of surge forecasts with the lead time of 24h 
Lastly, we assess the accuracy of the estimate models with the lead 

time of 24h. Time series of the surge figures and perceptions for 
Typhoon Megi are shown in Fig. 5. The ANN-based surge model (ANN- 
B4) is the best ANN model in Kim et al. (2016), which was trained with 
storm surge, sea-level pressure, drop rate of sea-level pressure, longi-
tude, latitude, wind speed, wind direction. Overall, the forecasts of surge 
levels are rather inaccurate for all models. However, GP and ANN pro-
duced better forecasting values and relatively captured the trend of the 
data. By contrast, the models built by DCT and kNN are more fluctuated. 
For SVM and ANN-B4, it can be seen from Fig. 5 that they produced bad 
forecasts and failed to capture the data trend. 

Table 2 
Optimal parameters using weka for the four models: SVM, k-NN, ANN and C4.5 
for surge level forecasting.  

SVM  k-NN  

SVM Type epsilon-SVR k 7 
Cost 9.6974 distance Function Euclidean 
Gamma 6.8399   
Kennel type RBF   
Esilon 0.001   
ANN  C4.5  
hiddenLayers 5 minimum number of instances 2 
learningRate 0.3 unpruned no 
momentum 0.2 number of folds 3 
epochs 500    
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6. Discussions 

6.1. Discussion on accuracy 

To evaluate our evolved GP models in detail on the 5h-lead time 
forecasts compared to the other five learning methods, we calculated 
two records of the correlation coefficient (CC) and the normalized root 
mean square error (NRMSE) in rate as appeared in Fig. 6(a). It is 
observed that the value of CC in all of the models ranges from 0.93 to 

0.99, while that of NRMSE is from 5% to 12%. Among these models, the 
one evolved with GP has smallest error and the largest correlation 
coefficient. 

Similarly, in Fig. 6(b), the correlation coefficient (CC) and the 
normalized root mean square error (NRMSE) of all models for 12h-lead 
time surge level forecast are depicted. The CC values of the models 
mostly concentrated in the range of 0.94–0.98. These models also have 
the NRMSE values from 8% to 13%. Among them, GP shows the best 
performance for 12h-lead time forecasts. 

Finally, two records of CC and NRMSE are again calculated for all 
models in 24h-lead time forecasts. They are shown in Fig. 6(c). The CC 
values of most of the models are scattered from 0.86 to 0.96 and the 
NRMSE values are from 10% to 20%. Even though, the performance of 
GP based model deteriorates compared to the 6h- and 12h-lead time 
cases, it is still the best forecasting model among all with the values of 
CC and NRMSE as 0.96 and 10.8%, respectively. Overall, these experi-
ments and comparisons show that GP is the most effective method in 
building surge level forecasting model. 

To further confirm the superiority of GP evolved models, we per-
formed multiple statistical tests by using Friendman’s test (Demšar, 
2006) on NRMSE. Table 3 shows the rank of the algorithms by using 
Friedman’s test (smaller means better). It is obvious from Table 3 that 
GP is the best algorithm, followed by ANN, and others. The Friedman’s 
test shows that there exits significant differences between the methods. 
Therefore, we carry out the Holm test (Demšar, 2006) to perform pair 
tests between the two methods. With 5h-lead time, the Holm test shows 
that GP is significantly better than other methods except ANN. With 
12h-lead time, GP is not significantly better than kNN, ANN_B1 and 
SVM. With 24h-lead time, GP is not significantly better than DCT, ANN 
and SVM. 

Fig. 2. The differentiation of correlation coefficient values with the number of generations on 3 data sets.  

Fig. 3. Time series of observed and forecasted surge levels for Typhoon Megi 
with the lead time of 5h at Sakai Minato by 6 models. 

Fig. 4. Time series of observed and forecasted surge levels for Typhoon Megi 
with the lead time of 12 h at Sakai Minato by 6 models. 

Fig. 5. Time series of observed and forecasted surge levels for Typhoon Megi 
with the lead time of 24 h at Sakai Minato by 6 models. 
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In summary, storm surge forecasting models evolved by GP are 
generally more accurate than models built by the machine learning 
algorithms. 

6.2. Discussion on the evolved models 

The best models evolved by GP are shown in Table 4, where variables 
x1, x2, x3, x4, x5, x6, x7, x8, x9, and x10 stand for the attributes (features): 
SSL numeric, SLP numeric, DSLP numeric, WS numeric, WD numeric, LT 
numeric, LG numeric, CAP numeric, HWS numeric, SS numeric, 
respectively. 

It is clear from Table 4 that GP can automatically select features to 
evolve the best models. The model for the 5h-lead time forecasting uses 
four features: sea surface level, sea-level pressure, drop rate of sea-level 
pressure, and storm surge. The model for the 12h-lead time forecasting 
uses five features: sea-level pressure, drop rate of sea-level pressure, 
wind speed, longitude, and latitude. The model for the 24h-lead time 
forecasting only uses three features: sea-level pressure, longitude and 
latitude, and central atmospheric pressure. 

It can be seen from the best model for the 5h-lead time forecasting 
that the incorporation of the storm-feature parameter like the typhoon 
position is able to improve the accuracy of the forecasting model. 
Moreover, training the model with the local parameters can forecast the 
storm surge with the 5h lead time, and adding the storm-feature 
parameter can improve the accuracy of the model. 

With the best model for the 12h-lead time forecasting, the local pa-
rameters with the typhoon position are not enough to describe the storm 

surge with the 12 h lead time. Furthermore, adding the typhoon in-
tensity, which is explained by the central atmospheric pressure, to the 
local parameters with the typhoon position, the storm surge with the 
12h lead time can be accurately predicted. 

It also can be seen from Table 4 that the best model for the 24h-lead 
time forecasting combines the meteorological and typhoon-feature pa-
rameters. In the 24h forecast models, the hydrodynamic parameters are 
excluded for the 24h forecasting in contrast to the 5h and 12h forecast 
models. 

In summary, GP can automatically select features when evolving 
models, and the models evolved by GP is explainable. 

7. Conclusions and future work 

This paper has proposed a method to use Genetic Programming (GP) 
for building storm surge forecasting models. Meteorological, hydrody-
namic and typhoon-featured parameters were taken into Genetic Pro-
gramming to build models forecasting storm surge levels with the lead 
times of 5h, 12h and 24h. The proposed method was evaluated on the 
datasets collected from the observation stations on the Tottori coast. The 
experiments compared Genetic Programming with other common ma-
chine learning methods on the normal root mean squared error and the 
coefficient of correlation. The experimental results showed that not only 
Genetic Programming can achieve than smaller error, but also achieve 
higher coefficient of correlation than other machine learning methods. 
Statistical testing further confirmed that storm surge forecasting models 
evolved by GP are significantly better than support vector machines, k 
nearest neighbor and decision tree. Moreover, Genetic Programming can 
automatically select relevant features when evolving storm surge fore-
casting models, and storm surge forecasting models evolved by Genetic 
Programming are interpretable (in closed-form equations). 

Although this paper used Genetic Programming to build and test 
models on datasets from Tottori coast, the proposed method is inde-
pendent with these datasets from Tottori coast. Therefore, the proposed 
method will be applicable to build storm surge forecasting models for 
other coasts. 

In order to evolve more accurate models, the future work could 
investigate advanced Genetic Programming such as semantic Genetic 
Programming (Vanneschi et al., 2014) to evolve storm surge forecasting 
models. 
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Table 3 
Ranking the algorithms by Friedman’s test (smaller means better).  

5h-lead time 12h-lead time 24h-lead time 

Algorithm Ranking Algorithm Ranking Algorithm Ranking 

GP 2.742 GP 2.815 GP 2.567 
ANN 2.830 ANN 2.838 ANN_B4 2.875 
ANN_B3 3.279 DCT 3.102 kNN 3.050 
kNN 3.484 kNN 3.384 DCT 3.300 
DCT 3.764 ANN_B1 3.875 ANN 4.453 
SVM 4.899 SVM 4.983 SVM 4.753  

Table 4 
The simplified equations derived by GP for the surge level forecast.  

Dataset Equation 

5 h-lead time sin
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(sin(sin(sinx10) × x2)) ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x10*x3

√√
+ x1  

12 h-lead time 
x4 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x3 × log

̅̅̅̅̅̅̅̅̅̅̅
logx6

√

log(cos(x7 +
̅̅̅̅̅x3

√
× x2

3) + x3) × x2
2

√

24 h-lead time 
x8 × log

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

log
(

cos
x2

x6
× x6

)√
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