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Abstract
Choo (Oper Res 32:216–220, 1984) has proved that any efficient solution of a linear fractional
vector optimization problem with a bounded constraint set is properly efficient in the sense
of Geoffrion. This paper studies Geoffrion’s properness of the efficient solutions of linear
fractional vector optimization problems with unbounded constraint sets. By examples, we
show that there exist linear fractional vector optimization problems with the efficient solution
set being a proper subset of the unbounded constraint set, which have improperly efficient
solutions. Then, we establish verifiable sufficient conditions for an efficient solution of a
linear fractional vector optimization to be a Geoffrion properly efficient solution by using
the recession cone of the constraint set. For bicriteria problems, it is enough to employ a
system of two regularity conditions. If the number of criteria exceeds two, a third regularity
conditionmust be added to the system.The obtained results complement the above-mentioned
remarkable theoremofChoo and are analyzed through several interesting examples, including
those given by Hoa et al. (J Ind Manag Optim 1:477–486, 2005).

Keywords Linear fractional vector optimization · Efficient solution · Gain-to-loss ratio ·
Geoffrion’s properly efficient solution · Unbounded constraint set · Direction of recession ·
Regularity condition
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1 Introduction

Linear fractional vector optimization problems (LFVOPs) havemany applications inmanage-
ment science. Due to their remarkable properties and theoretical importance, these problems
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have been studied intensively. Steuer [30, p. 337] has observed that linear fractional (ratio)
criteria are frequently encountered in finance: min{debt-to-equity ratio}, max{return to
investment}, max{output per employee}, min{actual cost to standard cost} (in Corporate
Planning); min{risk-assets to capital}, max{actual capital to required capital}, min{foreign
loans to total loans}, min{residental mortgages to total mortgages} (in Bank Balance Sheet
Management). Fractional objectives also occur in other areas of management: transportation
management, education management, and medicine management (see, e.g., [30]).

LFVOPs constitute a special class of multiobjective fractional optimization problems.
Note that, among the 520 articles cited by Stancu-Minasian in his ninth bibliography of frac-
tional programming [29], 38 papers are devoted to multiobjective fractional programming.

Connections of LFVOPs with monotone affine vector variational inequalities were firstly
recognized by Yen and Phuong [32].

Topological properties of the solution sets of LFVOPs and monotone affine vector vari-
ational inequalities have been studied by Choo and Atkins [8,9], Benoist [1,2], Yen and
Phuong [32], Hoa et al. [17–19], Huong et al. [20,21], and other authors. In particular, the
authors of [17] showed that for any positive integer m, there exists a LFVOPwith m objective
criteria which has exactly m connected components in the Pareto efficient solution set and in
the weak efficient solution set. Recently, based on some theorems from real algebraic geome-
try [4], we have been able to prove in [21] that the number of the connected components in the
Pareto efficient solution set (resp., in the weak efficient solution set) of any LFVOP is finite.
From a fundamental theorem of Robinson [26, Theorem 2] on stability of monotone affine
variational inequalities, Yen and Yao [34, Section 5] have derived several results on solution
stability and topological properties of the solution sets of LFVOPs. Numerical methods for
solving LFVOPs can be found in Steuer [30] and Malivert [25]. The interested readers are
referred to the survey paper of Yen [31] for more information about linear fractional and
convex quadratic vector optimization problems.

Very recently, Yen and Yang [33] have initiated a study on infinite-dimensional LFVOPs
and infinite-dimensional convex quadratic vector optimization problems via affine variational
inequalities on normed spaces.

Open questions concerning qualitative properties of finite-dimensional LFVOPs remain.
For instance, one still cannot prove or disprove the conjecture saying that the number of the
connected components in the Pareto efficient solution set (resp., in the weak efficient solution
set) of a LFVOP with m objective criteria does not exceed m.

Considering a general vector optimization problem, Geoffrion [13] noticed that certain
efficient solutions show unfavorable properties concerning the ratio of the rate of gain in one
cost over the corresponding rate of loss in another cost. To clarify this kind of pathologi-
cal behavior of the efficient solutions, he introduced [13, pp. 618–619] the notion properly
efficient solution. Later, several extensions of Geoffrion’s concept of proper efficiency were
given by Borwein [5], Benson [3], Henig [16], and other scholars. Discussions on the rela-
tionships among different types of properly efficient solutions can be found in the papers of
Benson [3] and of Guerraggio et al. [15].

Probably the paper by Choo [7] is the first work addressing Geoffrion’s concept of proper
efficiency for LFVOPs. We are indebted to one referee of an earlier version of the present
paper for making us familiar with the significant work [7], from which we have learned
that any efficient solution of a linear fractional vector optimization with bounded constraint
set is properly efficient in the sense of Geoffrion. The proof of this remarkable theorem
is enough complicated. To be more precise, Choo has used several technical lemmas and
original arguments based on the necessary and sufficient conditions for a feasible point of a
LFVOP to be an efficient solution, which will be recalled in Sect. 2 below.
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Chew and Choo [6, Example 3.6] showed that there exits a LFVOP with an unbounded
constraint set where none of the efficient solutions is properly efficient in the sense of Geof-
frion. Note that the efficient solution set of the problem coincides with the constraint set.
Apart from the just-cited example, up to now one still does not have any further information
about the difference between the efficient solution set and the Geoffrion properly efficient
solution set of a LFVOP with an unbounded constraint set.

By constructing suitable examples, we will show that there exist LFVOPs whose efficient
solution sets do not coincide with the unbounded constraint sets, which have improperly
efficient solutions (see Examples 2.6 and 4.7 below). Our main results give sufficient condi-
tions for an efficient solution of a LFVOP with an unbounded constraint set to belong to its
properly efficient solution set. These conditions require certain regularity conditions, where
the recession cone of the constraint set appears in a natural way. For bicriteria problems, it
is enough to employ a system of two regularity conditions. If the number of criteria exceeds
two, a third regularity condition must be added to the system. The obtained results comple-
ment the above-mentioned remarkable theorem of Choo and are analyzed through several
interesting examples, including those given by Hoa et al. [17].

The variational inequality characterization of the efficient solutions of LFVOPs, which
can be interpreted [32] as the approach to LFVOPs via the concept of vector variational
inequality (VVI for brevity), is the starting point of this research. In Proposition 4.2 below,
by using this characterization, we are able to prove that if the denominators of the objective
functions are all the same, then every efficient solution is a Geoffrion’s properly efficient
solution. The relations between the Pareto solutions of a VVI and the proper efficiency have
been explored by Crespi [10]. Since the Klinger properly efficient solution set of a LFVOP
coincides with its efficient solution set, from Theorems 5–7 of [10] one recovers the known
result [32, Remark 2] saying that the efficient solution set of LFVOP coincides with the
Pareto solution set of the corresponding affine VVI. Furthermore, from [13, Theorem 1]
and [10, Theorem 1] it follows that the Hurwicz properly efficient solution set of a LFVOP
is a subset of its Geoffrion properly efficient solution set. Applied to a LFVOP, Theorem 11
of [10] says that if all the objective functions of the problem are convex on the whole space
(this happens if and only if all the functions are affine), then the Benson properly efficient
solution set of the given LFVOP coincides with its Hurwicz properly efficient solution set.
As the former solution set is equal to the Geoffrion properly efficient solution set, this result
follows from [13, Theorem 2]. Thus, the results of the present paper cannot be derived from
the results of Crespi [10].

The contents of the rest of the paper are as follows. Section 2 recalls some definitions,
auxiliary results, and presents a pathological bicriteria LFVOPwhich has improperly efficient
solutions. Section 3 establishes the main results. They are analyzed in Sect. 4 where, among
other things, a three-criteria LFVOP having improperly efficient solutions is given. The last
section is devoted to some remarks and open questions.

2 Preliminaries

For x1, x2, x in R
n , the scalar product of the first two vectors and the Euclidean norm of

the third one are denoted, respectively, by 〈x1, x2〉 and ‖x‖. Vectors in Rn are interpreted as
columns of real numbers in matrix calculations but, for simplicity, sometimes they will be
described by rows of real numbers. The transpose of a matrix A is denoted by AT . By N we
denote the set of the positive integers.
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Consider linear fractional functions fi : Rn → R, i = 1, . . . ,m, of the form

fi (x) = aTi x + αi

bTi x + βi
,

where ai ∈ R
n, bi ∈ R

n, αi ∈ R, and βi ∈ R. Let K be a polyhedral convex set, i.e.,
there exist p ∈ N, a matrix C = (ci j ) ∈ R

p×n, and a vector d = (di ) ∈ R
p such that

K = {
x ∈ R

n : Cx ≤ d
}
. Our standing condition is that bTi x + βi > 0 for all i ∈ I and

x ∈ K , where I := {1, . . . ,m}. Put f (x) = ( f1(x), . . . , fm(x)) and let

� = {
x ∈ R

n : bTi x + βi > 0, ∀i ∈ I
}
.

Clearly,� is open and convex, K ⊂ �, and f is continuously differentiable on�. The linear
fractional vector optimization problem (LFVOP) given by f and K is formally written as

(VP) Minimize f (x) subject to x ∈ K .

Definition 2.1 A point x ∈ K is said to be an efficient solution (or a Pareto solution) of
(VP) if

(
f (K ) − f (x)

) ∩ ( − R
m+\{0}) = ∅, where R

m+ denotes the nonnegative orthant
in R

m . One calls x ∈ K a weakly efficient solution (or a weak Pareto solution) of (VP) if(
f (K ) − f (x)

) ∩ ( − intRm+
) = ∅, where intRm+ abbreviates the topological interior of Rm+.

The efficient solution set (resp., the weakly efficient solution set) of (VP) are denoted,
respectively, by E and Ew. According to [8,25] (see also [23, Theorem 8.1]), for any x ∈ K ,
one has x ∈ E (resp., x ∈ Ew) if and only if there exists a multiplier ξ = (ξ1, . . . , ξm) ∈
intRm+ (resp., ξ = (ξ1, . . . , ξm) ∈ R

m+\{0}) such that
〈 m∑

i=1

ξi

[(
bTi x + βi

)
ai − (

aTi x + αi )bi
]
, y − x

〉
≥ 0, ∀y ∈ K . (2.1)

If bi = 0 and βi = 1 for all i ∈ I , then (VP) coincides with the classical multiobjective
linear optimization problem (see Luc [24] and the references therein). By the above optimality
conditions, for any x ∈ K , one has x ∈ E (resp., x ∈ Ew) if andonly if there exists amultiplier
ξ = (ξ1, . . . , ξm) ∈ intRm+ (resp., a multiplier ξ = (ξ1, . . . , ξm) ∈ R

m+\{0}) such that
〈 m∑

i=1

ξi ai , y − x
〉
≥ 0, ∀y ∈ K . (2.2)

During the last four decades, LFVOPs have attracted a lot of attention from researchers;
see [7–9,17–22,25,30–34], Chapter 8 of [23], and the references therein. By the results of
Choo and Atkins [9], Benoist [1], Yen and Phuong [32], one knows that if K bounded, then
both solution sets E and Ew of (VP) are connected. Later, Hoa et al. [17] showed that if K is
noncompact, then both solution sets E and Ew of (VP) where m = n can have m connected
components. Stability properties of (VP) with f and K being subject to perturbations can be
found in [34]. Recently, by using some tools from real algebraic geometry, Huong et al. [21,
Theorem 4.5] have proved that both E and Ew are semi-algebraic sets inRn ; hence they have
finitely many connected components. However, as far as we know, the proper efficiency of
the solutions of (VP) has been studied just in the papers by Choo [7], Chew and Choo [6].

There are several notions of proper efficiency in vector optimization. The most fundamen-
tal ones have been suggested by Geoffrion [13], Borwein [5], Benson [3], and Henig [16]. It
is worthy to stress that the notion of properly efficient solution proposed by Geoffrion [13] in
1968 has a clear practical meaning in the form of a gain-to-loss ratio [13, p. 624] and it is the
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starting point for all subsequent studies on proper efficiency. Applied to (VP), Geoffrion’s
definition of properly efficient solution can be formulated as follows.

Definition 2.2 (See [13, p. 618]) One says that x̄ ∈ E is a Geoffrion’s properly efficient
solution of (VP) if there exists a scalar M > 0 such that, for each i ∈ I , whenever x ∈ K
and fi (x) < fi (x̄) one can find an index j ∈ I such that f j (x) > f j (x̄) and Ai, j (x̄, x) ≤ M

with Ai, j (x̄, x) := fi (x̄) − fi (x)

f j (x) − f j (x̄)
.

Geoffrion’s efficient solution set of (VP) is denoted by EGe. Geoffrion [13, p. 619] noticed
the following: For any x̄ ∈ E , x̄ /∈ EGe if and only if for every scalar M > 0 there exist
x ∈ K and i ∈ I with fi (x) < fi (x̄) such that, for all j ∈ I satisfying f j (x) > f j (x̄),
one has Ai, j (x̄, x) > M . This observation was made in [13] for general vector optimization
problems which may not belong to the class of LFVOPs.

Remark 2.3 The quantity Ai, j (x̄, x) given in Definition 2.2 is a gain-to-loss ratio. Namely,
it is the ratio of the gain fi (x̄) − fi (x) > 0 of the plan x over the plan x̄ in the i th criterion
by the loss f j (x) − f j (x̄) > 0 of x over x̄ in the j th criterion.

Remark 2.4 If (VP) is a linear vector optimization problem (that is, bi = 0 and βi = 1 for
all i ∈ I ), then EGe = E . This well-known result can be proved easily by using Theorem 1
from [13] and the optimality condition (2.2). Indeed, if x ∈ E , then there exists a multiplier
ξ = (ξ1, . . . , ξm) ∈ intRm+ such that (2.2) holds. So,

〈 m∑

i=1

ξi ai , y
〉
≥

〈 m∑

i=1

ξi ai , x
〉
, ∀y ∈ K .

Since fi (x) = aTi x + αi for all i ∈ I , this implies that

m∑

i=1

ξi fi (y) ≥
m∑

i=1

ξi fi (x), ∀y ∈ K .

Therefore, by [13, Theorem 1] one has x ∈ EGe. As the inclusion EGe ⊂ E follows
from Definition 2.2, we have thus proved that EGe = E .

As shown in the following example and some examples in Sect. 4, the equality EGe = E
still hods for many LFVOPs, which do not belong to the class of linear vector optimization
problems.

Example 2.5 Consider problem (VP) with m = 2, n = 1, K = {
x ∈ R : x ≥ 1

2

}
,

f1(x) = x−1 and f2(x) = x for all x ∈ K . It is easy to verify that E = [ 1
2 ,+∞)

. We

will show that EGe = E . Take an arbitrary point x̄ ∈ E and put M = max
{
x̄−2, x̄2

}
. If x

belongs to the set {x ∈ K : x > x̄}, then for i = 1 and j = 2 one has

Ai, j (x̄, x) = x̄−1 − x−1

x − x̄
= 1

x x̄
≤ 1

x̄2
≤ M .

Similarly, if x belongs to the set {x ∈ K : x < x̄}, then for i = 2 and j = 1 one has

Ai, j (x̄, x) = x̄ − x

x−1 − x̄−1 = x x̄ ≤ x̄2 ≤ M .

This proves that x̄ ∈ EGe; hence EGe = E .

123



Journal of Global Optimization

In addition to the example of Chew andChoo [6] cited in Sect. 1, the next example signifies
the existence of pathological LFVOPs which have Geoffrion’s improperly efficient solutions.

Example 2.6 Consider the problem (VP) with

K = {
x = (x1, x2) ∈ R

2 : x1 ≥ 0, x2 ≥ 0
}
,

f1(x) = −x2, f2(x) = x2
x1 + x2 + 1

.

Using the necessary and sufficient condition for the efficiency in (2.1), one can show that
E = {(x1, 0) : x1 ≥ 0}. Select any vector x̄ = (α, 0), α ≥ 0, from E . We will have
x̄ /∈ EGe, if for every scalar M > 0 there exist x ∈ K and i ∈ I with fi (x) < fi (x̄) such
that, for all j ∈ I satisfying f j (x) > f j (x̄),

Ai, j (x̄, x) = fi (x̄) − fi (x)

f j (x) − f j (x̄)
> M .

Given any M > 0, we choose i = 1 and select a point x = (x1, x2) ∈ K with x1 ≥
0, x2 > 0, x1 + x2 + 1 > M . Then, fi (x) < fi (x̄) and the unique index j ∈ I satisfying
f j (x) > f j (x̄) is j = 2. We have

A1,2(x̄, x) = 0 − (−x2)
x2

x1 + x2 + 1
− 0

α + 1
= x1 + x2 + 1 > M .

Thus, all the efficient points are improperly efficient in the sense of Geoffrion. In other words,
EGe = ∅, while E is unbounded.

In the sequel, to establish verifiable sufficient conditions for a point x̄ ∈ E to belong to
EGe, we will need the forthcoming lemma.

Lemma 2.7 (See, e.g., [25] and [23, Lemma 8.1]) Let ϕ(x) = aT x + α

bT x + β
be a linear fractional

function defined by a, b ∈ R
n and α, β ∈ R. Suppose that bT x + β �= 0 for every x ∈ K0,

where K0 ⊂ R
n is an arbitrary convex set. Then, one has

ϕ(y) − ϕ(x) = bT x + β

bT y + β
〈∇ϕ(x), y − x〉, (2.3)

for any x, y ∈ K0, where ∇ϕ(x) denotes the Fréchet derivative of ϕ at x.

The connectedness of K0 and the condition bT x + β �= 0 for every x ∈ K0 imply that
either bT x +β > 0 for all x ∈ K0, or bT x +β < 0 for all x ∈ K0. Hence, for any x, y ∈ K0,

one has
bT x + β

bT y + β
> 0. Given vectors x, y ∈ K0 with x �= y, we consider two points from

the line segment [x, y]:
zt = x + t(y − x), zt ′ = x + t ′(y − x) (t ∈ [0, 1], t ′ ∈ [0, t)).

By (2.3) we can assert that

(i) If 〈∇ϕ(x), y − x〉 > 0, then ϕ(zt ′) < ϕ(zt ) for every t ′ ∈ [0, t);
(ii) If 〈∇ϕ(x), y − x〉 < 0, then ϕ(zt ′) > ϕ(zt ) for every t ′ ∈ [0, t);
(iii) If 〈∇ϕ(x), y − x〉 = 0, then ϕ(zt ′) = ϕ(zt ) for every t ′ ∈ [0, t).
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This shows that ϕ is monotonic on every line segment or ray contained in K0.

Remark 2.8 The monotonicity of a linear fractional function on every line segment or ray
contained in its effective domain has some connection with the concept of increasing convex-
along-rays functions [28, Definition 2.1], which is defined for functions from R

n+ to R. This
concept is useful for global optimality conditions for a class of nonconvex optimization
problems [28, Section 4]. Note that a linear fractional function defined on R

n+ need not
to be an increasing convex-along-rays function. Crepsi et al. [11] showed that star-shaped
set and increasingly along rays functions have interesting applications in Minty variational
inequalities. In a subsequent paper [12, Definition 4.1], they showed how the concept of
increasingly along rays function [11, Definition 3] can be extended for vector functions.

To dealwithLFVOPs having unbounded constraint sets,wewill use the notion of recession
cone. Recall [27, p. 61] that a nonzero vector v ∈ R

n is said to be a direction of recession of
a nonempty convex set D ⊂ R

n if x + tv ∈ D for every t ≥ 0 and every x ∈ D. The set
composed by 0 ∈ R

n and all the directions v ∈ R
n\{0} satisfying the last condition, is called

the recession cone of D and denoted by 0+D. If D is closed and convex, then

0+D = {v ∈ R
n : ∃x ∈ � s.t. x + tv ∈ D for all t > 0}. (2.4)

The recession cone of a polyhedral convex set can be easily computed by using the next
lemma, which can be proved by a direct verification.

Lemma 2.9 If K = {
x ∈ R

n : Cx ≤ d
}
with C ∈ R

p×n and d ∈ R
p, and K is nonempty,

then 0+K = {
v ∈ R

n : Cv ≤ 0
}
.

We will need the following lemma, whose elementary proof is given for the sake of
completeness.

Lemma 2.10 Let C be a closed and convex set in R
n, x̄ ∈ C, and let {xk} be a sequence in

C\{x̄} with lim
k→∞ ‖xk‖ = +∞. If lim

k→∞
xk − x̄

‖xk − x̄‖ = v, then v ∈ 0+C.

Proof By (2.4), to obtain the desired conclusion we need to show that x̄ + tv ∈ C for an
arbitrarily given t > 0. Choose k1 such that ‖xk − x̄‖ > t for all k ≥ k1. Then, by the
convexity of C , vector

x̄ + t
xk − x̄

‖xk − x̄‖ = ‖xk − x̄‖ − t

‖xk − x̄‖ x̄ + t

‖xk − x̄‖ xk

belongs to C for every k ≥ k1. Passing the expression x̄ + t
xk − x̄

‖xk − x̄‖ to limit as k → ∞
and using the closedness of C , one gets x̄ + tv ∈ C . ��

3 Sufficient conditions for Geoffrion’s proper efficiency

First, we study Geoffrion’s proper efficiency for bicriteria LFVOPs.

Theorem 3.1 Suppose that m = 2 and x̄ ∈ E. If the first regularity condition
{
there exist no (i, j) ∈ I 2, j �= i, and v ∈ (0+K )\{0} wi th

〈∇ fi (x̄), v〉 = 0 and
〈∇ f j (x̄), v

〉 = 0
(3.1)
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and the second regularity condition
{
there exist no (i, j) ∈ I 2, j �= i, and v ∈ (0+K )\{0} such that

bTi v = 0, 〈∇ fi (x̄), v〉 ≤ 0,
〈∇ f j (x̄), v

〉
> 0

(3.2)

are satisfied, then x̄ ∈ EGe.

Proof Suppose that (3.1) and (3.2) hold at a point x̄ ∈ E , but x̄ /∈ EGe. Then, for every p ∈ N,
there exist x p ∈ K and i(p) ∈ I with fi(p)(x p) < fi(p)(x̄) such that, for all j ∈ I satisfying
f j (x p) > f j (x̄), one has Ai(p), j (x̄, x p) > p (see the observation after Definition 2.2). Since
the sequence {i(p)} has values in the finite set I , by choosing a subsequence, we may assume
that i(p) = i for all p, where i ∈ I is a fixed index. For each p, as x̄ ∈ E and fi (x p) < fi (x̄),
there must exist an index j(p) ∈ I\{i} satisfying f j(p)(x p) > f j(p)(x̄). Since the sequence
{ j(p)} has values in the finite set I\{i}, by considering a subsequence, we may assume that
j(p) = j for all p, where j ∈ I\{i} is a fixed index. Thus,

Ai, j (x̄, x
p) = fi (x̄) − fi (x p)

f j (x p) − f j (x̄)
> p (∀p ∈ N). (3.3)

If {x p} is bounded, then we can obtain a contradiction by arguing as in the proof of the
main theorem of Choo [7, p. 220].

If {x p} is unbounded then, by selecting a subsequence (if necessary), we may assume that

lim
p→∞ ‖x p‖ = +∞. Let v p = x p − x̄

‖x p − x̄‖ . Without loss of generality, we can suppose that

lim
p→∞ v p = v, where v is a unit vector. Since K is closed and convex, applying Lemma 2.10

gives v ∈ (0+K )\{0}. By Lemma 2.7,

fi (x̄) − fi (x p) = − bTi x̄ + βi

bTi x
p + βi

〈∇ fi (x̄), x
p − x̄

〉

= −‖x p − x̄‖ bTi x̄ + βi

bTi x
p + βi

〈∇ fi (x̄), v
p〉 .

(3.4)

Similarly,

f j (x p) − f j (x̄) = bTj x̄ + β j

bTj x
p + β j

〈∇ f j (x̄), x
p − x̄

〉

= ‖x p − x̄‖ bTj x̄ + β j

bTj x
p + β j

〈∇ f j (x̄), v
p〉 .

(3.5)

Hence,

Ai, j (x̄, x p) = − fi (x p) − fi (x̄)

f j (x p) − f j (x̄)

= − bTi x̄ + βi

bTi x
p + βi

.
bTj x

p + β j

bTj x̄ + β j
.
〈∇ fi (x̄), v p〉
〈∇ f j (x̄), v p

〉 .

Since bTk x̄ + βk > 0 for every k ∈ I , one sees that Ai, j (x̄, x p) tends to +∞ if and only if
the quantity

Āi, j (x̄, x
p) := −bTj x

p + β j

bTi x
p + βi

.
〈∇ fi (x̄), v p〉
〈∇ f j (x̄), v p

〉
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tends to +∞ as p → ∞. Note that

bTj x
p + β j

‖x p − x̄‖ = bTj (x
p − x̄)

‖x p − x̄‖ + β j

‖x p − x̄‖ + bTj x̄

‖x p − x̄‖ (3.6)

and
bTi x

p + βi

‖x p − x̄‖ = bTi (x p − x̄)

‖x p − x̄‖ + βi

‖x p − x̄‖ + bTi x̄

‖x p − x̄‖ . (3.7)

Therefore,

Āi, j (x̄, x p) = −
bTj (x

p − x̄)

‖x p − x̄‖ + β j

‖x p − x̄‖ + bTj x̄

‖x p − x̄‖
bTi (x p − x̄)

‖x p − x̄‖ + βi

‖x p − x̄‖ + bTi x̄

‖x p − x̄‖
.
〈∇ fi (x̄), v p〉
〈∇ f j (x̄), v p

〉 .

Since lim
p→∞ ‖x p‖ = +∞, one has lim

p→∞ ‖x p − x̄‖ = +∞. Thus, if (bTi v)
〈∇ f j (x̄), v

〉 �= 0,

then

lim
p→∞ Āi, j (x̄, x

p) = − (bTj v) 〈∇ fi (x̄), v〉
(bTi v)

〈∇ f j (x̄), v
〉 . (3.8)

This contradicts the condition lim
p→∞ Āi, j (x̄, x

p) = +∞. So, the denominator of the fraction

in (3.8) must be 0, i.e.,
(bTi v)

〈∇ f j (x̄), v
〉 = 0, (3.9)

where v ∈ (0+K )\{0}.
Since bTk x + βk > 0 for all k ∈ I and x ∈ K , one has

bTj x
p + β j

‖x p − x̄‖ > 0 for all p ∈ N.

Hence, passing (3.6) to limit as p → ∞, one obtains bTj v ≥ 0. As fi (x̄) − fi (x p) > 0 for
every p ∈ N, from (3.4) it follows that 〈∇ fi (x̄), v p〉 < 0 for all p ∈ N. Hence,

bTj v ≥ 0 and 〈∇ fi (x̄), v〉 ≤ 0.

Analogously, from (3.7) and (3.5) one can deduce that

bTi v ≥ 0 and
〈∇ f j (x̄), v

〉 ≥ 0.

Since the denominator of the fraction in (3.8) equals to 0 by (3.9), one of the following
situations must occur:

(d1) bTi v = 0 and
〈∇ f j (x̄), v

〉 = 0;
(d2) bTi v > 0 and

〈∇ f j (x̄), v
〉 = 0;

(d3) bTi v = 0 and
〈∇ f j (x̄), v

〉
> 0.

As the numerator of (3.8) can be either zero or a negative number, there are four possibilities:

(n1) bTj v = 0 and 〈∇ fi (x̄), v〉 = 0;

(n2) bTj v = 0 and 〈∇ fi (x̄), v〉 < 0;

(n3) bTj v > 0 and 〈∇ fi (x̄), v〉 = 0;

(n4) bTj v > 0 and 〈∇ fi (x̄), v〉 < 0.

If (d1) and (n1) occur, then one has
〈∇ f j (x̄), v

〉 = 0 and 〈∇ fi (x̄), v〉 = 0. This contradicts
condition (3.1), because v ∈ (0+K )\{0}.
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If (d1) and (n2) take place, then one has
〈∇ f j (x̄), v

〉 = 0 and 〈∇ fi (x̄), v〉 < 0. Since
v ∈ (0+K )\{0}, x̄ + tv ∈ K for every t ≥ 0. Therefore, thanks to Lemma 2.7, we have
f j (x̄ + tv) = f j (x̄) and fi (x̄ + tv) < fi (x̄) for every t > 0. As m = 2, this contradicts the
assumption x̄ ∈ E .

The case where (d1) and (n3) (resp., (d1) and (n4)) occur can be treated similarly as that
where (d1) and (n1) (resp., (d1) and (n2)) occur.

It is clear that the situations (d2)–(n1), (d2)–(n2), (d2)–(n3), and (d2)–(n4) also lead to a
conflict either with the first regularity condition or with the inclusion x̄ ∈ E .

Finally, observe that each one of the situations (d3)–(n1), (d3)–(n2), (d3)–(n3), and (d3)–
(n4) leads to the system

bTi v = 0, 〈∇ fi (x̄), v〉 ≤ 0,
〈∇ f j (x̄), v

〉
> 0,

where v ∈ (0+K )\{0}. This obviously contradicts the regularity condition in (3.2).
We have thus established the inclusion x̄ ∈ EGe and completed the proof. ��
Consider the problem in Example 2.6. For every efficient solution x̄ = (x̄1, 0), we have

∇ f1(x̄) = (0,−1)T , ∇ f2(x̄) =
(

0
1

x̄1+1

)
.

Hence, (3.1) is violated if one choses i = 1, j = 2 and v = (1, 0) ∈ (0+K )\{0}. Moreover,
condition (3.2) is also violated for i = 1, j = 2 and v = (v1, v2) with v1 ≥ 0 and v2 > 0.
Here, the violation of the regularity conditions of Theorem 3.1 is a reason for x̄ /∈ EGe.

Now, we study Geoffrion’s proper efficiency for LFVOPs having more than two objective
functions.

Theorem 3.2 In the case m ≥ 3, suppose that x̄ ∈ E. If (3.1), (3.2), and the third regularity
condition

{
there exist no triplet (i, j, k) ∈ I 3, where i, j, k are pairwise distinct,

and v ∈ (0+K )\{0} wi th 〈∇ fi (x̄), v〉 < 0,
〈∇ f j (x̄), v

〉 = 0, 〈∇ fk(x̄), v〉 > 0
(3.10)

are satisfied, then x̄ ∈ EGe.

Proof Suppose to the contrary that x̄ ∈ E and (3.1), (3.10), and (3.2) are satisfied, but
x̄ /∈ EGe. Then, as it has been shown in the proof of Theorem 3.1, there exist a sequence
{x p} ⊂ K\{x̄} and a pair (i, j) ∈ I 2, i �= j , such that (3.3) holds.

If {x p} is bounded, then the arguments used for proving the main theorem of Choo [7,
p. 220] lead us to a contradiction.

If {x p} is unbounded then, wemay assume that lim
p→∞ ‖x p‖ = +∞. Arguing as in the proof

of Theorem 3.1, we can find a vector v ∈ 0+K with ‖v‖ = 1, such that the denominator of
the fraction in (3.8) equals to 0. Hence, one of the three situations (d1)–(d3) must happen. As
the numerator of (3.8) can be either zero or a negative number, one of the four possibilities
(n1)–(n4) occurs.

The situations (d1)–(n1), (d1)–(n3), (d2)–(n1), (d2)–(n3) are prohibited by condition (3.1).
The situations (d3)–(n1), (d3)–(n2), (d3)–(n3), (d3)–(n4) are excluded by condition (3.2).

Indeed, in each one of these situations, one hasbTi v = 0, 〈∇ fi (x̄), v〉≤0, and
〈∇ f j (x̄), v

〉
>0.

Consider the situation (d1)–(n2). As v ∈ (0+K )\{0}, one has x̄ + tv ∈ K for every
t ≥ 0. Since 〈∇ fi (x̄), v〉 < 0 and

〈∇ f j (x̄), v
〉 = 0, by Lemma 2.7 we can assert that

fi (x̄ + tv) < fi (x̄) and f j (x̄ + tv) = f j (x̄) for every t > 0. Hence, noting that 0+K\{0},
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from (3.10) we have 〈∇ fk(x̄), v〉 ≤ 0 for every k ∈ I\{i, j}. Therefore, according to
Lemma 2.7, fk(x̄ + tv) ≤ fk(x̄) for any k ∈ I\{i, j} and t > 0. Picking any t ∈ (0,+∞),
we observe that the inequalities fk(x̄ + tv) ≤ fk(x̄) for all k ∈ I\{i} together with the
strict inequality fi (x̄ + tv) < fi (x̄) contradict the inclusion x̄ ∈ E . If one of the situations
(d2)–(n2), (d2)–(n4), and (d1)–(n4) occurs, we can obtain a contradiction by arguing similarly.

The proof is complete. ��

4 Further analysis

4.1 Choo and Atkins’ example

The sufficient conditions for Geoffrion’s proper efficiency given in Sect. 3 are verifiable. To
justify this assertion, we consider the well-known LFVOP having disconnected solution sets,
which was given by Choo and Atkins [9].

Example 4.1 (See [9, Example 2]) Consider problem (VP) with

K = {
x = (x1, x2) ∈ R

2 : x1 ≥ 2, 0 ≤ x2 ≤ 4
}
,

f1(x) = −x1
x1 + x2 − 1

, f2(x) = −x1
x1 − x2 + 3

.

Using the criteria for x ∈ E and x ∈ Ew recalled in (2.1), it is easy to show that

E = Ew = {
(x1, 0) : x1 ≥ 2} ∪ {(x1, 4) : x1 ≥ 2

}
.

Here we have b1 = (1, 1), b2 = (1,−1), and 0+K = {v = (v1, 0) : v1 ≥ 0}. For every
x̄ ∈ {(x̄1, 0) : x̄1 ≥ 2},

∇ f1(x̄) =
⎛

⎜
⎝

1

(x̄1 − 1)2
x̄1

(x̄1 − 1)2

⎞

⎟
⎠ , ∇ f2(x̄) =

⎛

⎜
⎝

−3

(x̄1 + 3)2−x̄1
(x̄1 + 3)2

⎞

⎟
⎠ .

Hence, for any vector v = (v1, v2),
{〈∇ f1(x̄), v〉 = 0
〈∇ f2(x̄), v〉 = 0

⇐⇒
{

v1 + x̄1v2 = 0
−3v1 + x̄1v2 = 0

⇐⇒
{

v1 = 0
v2 = 0.

So, condition (3.1) is satisfied. Similarly, (3.1) holds for every x̄ ∈ {
(x1, 4) : x1 ≥ 2

}
.

In addition, for every v = (v1, 0) ∈ (0+K )\{0}, one has bT1 v = bT2 v = v1 > 0. Thus,
condition (3.2) is satisfied. Therefore,

EGe = E = Ew = {
(x1, 0) : x1 ≥ 2} ∪ {(x1, 4) : x1 ≥ 2

}
.

4.2 LFVOPs havingmore than two connected components in the solution sets

To proceed furthermore, we need the following specific result.

Proposition 4.2 For a LFVOP in the form (VP), if the denominators of the functions fi are
all the same, then one has EGe = E.

123



Journal of Global Optimization

Proof Suppose that the denominators of fi coincide. To show that E = EGe, we fix any
x̄ ∈ E . By the necessary and sufficient optimality condition recalled in (2.1), there is a
multiplier ξ = (ξ1, . . . , ξm) ∈ intRm+ such that

〈 m∑

i=1

ξi

[(
bTi x̄ + βi

)
ai − (

aTi x̄ + αi )bi
]
, y − x̄

〉
≥ 0, ∀y ∈ K . (4.1)

For each i ∈ I , one has
〈
∇ fi (x̄), y − x̄

〉
= 1

p(x̄)

〈(
bTi x̄ + βi

)
ai − (

aTi x̄ + αi )bi , y − x̄
〉
,

where p(x̄) := (
bT1 x̄ + β1

)2 = · · · = (
bTm x̄ + βm

)2 (see the first equality in [23, p. 147]).
Hence, we can rewrite (4.1) equivalently as

〈 m∑

i=1

ξi p(x̄)∇ fi (x̄), y − x̄
〉
≥ 0, ∀y ∈ K .

Putting ξ̄i = ξi p(x̄) and noting that ξ̄i > 0 for i ∈ I , we get

〈 m∑

i=1

ξ̄i∇ fi (x̄), y − x̄
〉
≥ 0, ∀y ∈ K . (4.2)

Clearly, (4.2) shows that x̄ is satisfies the first-order necessary optimality condition for the
following scalar optimization problem

(P0) Minimize ϕ(x) :=
m∑

i=1

ξ̄i fi (x) subject to x ∈ K .

It is easy to verify that, in this example,ϕ(x) is a linear fractional function. Since∇ϕ(x̄) =
m∑

i=1

ξ̄i∇ fi (x̄), combining (4.2) with (2.3) yields ϕ(y) ≥ ϕ(x̄) for all y ∈ K . This means that

x̄ is a global solution of (P0). Then, by [13, Theorem 1] we can assert that x̄ ∈ EGe.
The proof is complete. ��
The efficient solution set of the problem considered in Example 4.1 has two connected

components. We now analyze a LFVOP whose efficient solution set has three connected
components.

Example 4.3 (See [17, p. 483]) Consider problem (VP) where n = m = 3,

K = {
x ∈ R

3 : x1 + x2 − 2x3 ≤ 1, x1 − 2x2 + x3 ≤ 1,
−2x1 + x2 + x3 ≤ 1, x1 + x2 + x3 ≥ 1

}
,

and

fi (x) =
−xi + 1

2

x1 + x2 + x3 − 3

4

(i = 1, 2, 3).

Here we have

a1 = (−1, 0, 0), a2 = (0,−1, 0), a3 = (0, 0,−1), α1 = α2 = α3 = 1

2
,

123



Journal of Global Optimization

and

b1 = b2 = b3 = (1, 1, 1), β1 = β2 = β3 = −3

4
.

Setting

C =

⎛

⎜⎜
⎝

1 1 −2
1 −2 1

−2 1 1
−1 −1 −1

⎞

⎟⎟
⎠ , d =

⎛

⎜⎜
⎝

1
1
1

−1

⎞

⎟⎟
⎠ ,

we see that K = {x ∈ R
3 : Cx ≤ d}. As it has been shown in [17],

E = Ew = {(x1, x2, x3) : x1 ≥ 1, x3 = x2 = x1 − 1}
∪{(x1, x2, x3) : x2 ≥ 1, x3 = x1 = x2 − 1}
∪{(x1, x2, x3) : x3 ≥ 1, x2 = x1 = x3 − 1}.

(4.3)

Setting p(x) = (
x1 + x2 + x3 − 3

4

)2, one has

∇ f1(x) = 1

p(x)

(
−x2 − x3 + 1

4
, x1 − 1

2
, x1 − 1

2

)
,

∇ f2(x) = 1

p(x)

(
x2 − 1

2
,−x1 − x3 + 1

4
, x2 − 1

2

)
,

∇ f3(x) = 1

p(x)

(
x3 − 1

2
, x3 − 1

2
,−x1 − x2 + 1

4

)
.

By Lemma 2.9, we get 0+K = {v = (τ, τ, τ ) ∈ R
3 : τ ≥ 0}. As bTi v �= 0 for any i ∈ I and

v ∈ 0+K\{0}, the second regularity condition (3.2) is satisfied for every x̄ ∈ E . To check
the first and the third regularity conditions in (3.1) and (3.10), fix any x̄ = (x̄1, x̄2, x̄3) ∈ E
with x̄1 ≥ 1 and x̄2 = x̄3 = x̄1 − 1. Note that

∇ f1(x̄) = 1

p(x̄)

(
−2x̄1 + 9

4
, x̄1 − 1

2
, x̄1 − 1

2

)
,

∇ f2(x̄) = 1

p(x̄)

(
x̄1 − 3

2
,−2x̄1 + 5

4
, x̄1 − 3

2

)
,

∇ f3(x̄) = 1

p(x̄)

(
x̄1 − 3

2
, x̄1 − 3

2
,−2x̄1 + 5

4

)
.

Hence, we have

〈∇ f1(x̄), v〉 = 5τ

4p(x̄)
> 0, 〈∇ f2(x̄), v〉 = − 7τ

4p(x̄)
< 0, 〈∇ f3(x̄), v〉 = − 7τ

4p(x̄)
< 0

for any v = (τ, τ, τ ) with τ > 0. Therefore, both conditions (3.1) and (3.10) are satisfied.
Thus, by Theorem 3.2 we can assert that x̄ ∈ EGe. The fact that the last inclusion holds for
any x̄ ∈ E follows from the description of E in (4.3) and the symmetry of our problem (VP)

w.r.t. the variables x1, x2, x3. This means that E = EGe.

Remark 4.4 In Example 4.3, since the denominators of fi are all the same for i ∈ I , by
Proposition 4.2 we have EGe = E = Ew . This result fully agrees with the one obtained by
using Theorem 3.2.
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Now, let us examine a LFVOP where the number of criteria can be any integer m ≥ 2.

Example 4.5 (See [17, pp. 479–480]) We consider problem (VP) where n = m, m ≥ 2,

K =
{
x ∈ R

m : x1 ≥ 0, x2 ≥ 0, . . . , xm ≥ 0,
m∑

k=1

xk ≥ 1
}
,

and

fi (x) =
−xi + 1

2∑m
k=1 xk − 3

4

(i = 1, . . . ,m).

Here we have

a1 = (−1, 0, 0, . . . , 0), a2 = (0,−1, 0, . . . , 0), . . . ,

am = (0, 0, 0, . . . ,−1), α1 = α2 = · · · = αm = 1

2
,

and

b1 = b2 = · · · = bm = (1, 1, 1, . . . , 1), β1 = β2 = · · · = βm = −3

4
.

Setting

C =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

...

0 0 0 . . . −1
−1 −1 −1 . . . −1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, d =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
...

0
−1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

we see that K = {x ∈ R
n : Cx ≤ d}. According to [17, p. 483], one has

E = Ew = {(x1, 0, . . . , 0) : x1 ≥ 1}
∪{(0, x2, . . . , 0) : x2 ≥ 1}
. . . . . . . . .

∪{(0, . . . , 0, xm) : xm ≥ 1}.
(4.4)

Since bi = (1, 1, 1, . . . , 1)T for i = 1, . . . ,m and 0+K = R
m+, if bTi v = 0 for some

v ∈ 0+K , then v = 0. This implies that the second regularity in (3.2) is satisfied. Setting

q(x) =
(

m∑

k=1

xk − 3

4

)2

, one has

∇ fi (x) = 1

q(x)

(
xi − 1

2
, . . . ,−

∑

k �=i

xk + 1

4
, . . . , xi − 1

2

)
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for any x ∈ K , where the expression−
∑

k �=i

xk+ 1

4
is the i th component of∇ fi (x). Especially,

for any x̄ ∈ E , where x̄ = (x̄1, 0, . . . , 0) and x̄1 ≥ 1, we get

∇ f1(x̄) = 1

q(x̄)

(
1

4
, x̄1 − 1

2
, . . . , x̄1 − 1

2

)
,

∇ f2(x̄) = 1

q(x̄)

(
−1

2
,−x̄1 + 1

4
,−1

2
, . . . ,−1

2

)
,

...

∇ fm(x̄) = 1

q(x̄)

(
−1

2
,−1

2
, . . . ,−x̄1 + 1

4

)
.

Clearly, all the components of ∇ f1(x̄) are positive, while all the components of the vector
∇ fi (x̄), i = 2, . . . ,m, are negative. So, for every v ∈ 0+K\{0}, one has 〈∇ f1(x̄), v〉 > 0
and 〈∇ fi (x̄), v〉 < 0 for i = 2, . . . ,m. Therefore, the conditions (3.1) and (3.10) are satisfied
for the efficient solution x̄ in question. Hence, by Theorem 3.2, x̄ ∈ EGe. The fact that the last
inclusion holds for any x̄ ∈ E follows from the description of E in (4.4) and the symmetry
of our problem (VP) w.r.t. the variables x1, . . . , xn . We have thus shown that E = EGe.

Remark 4.6 In Example 4.5, since the denominators of fi coincide for all i ∈ I , we have
EGe = E = Ew by Proposition 4.2.

4.3 More about the essentialness of the regularity conditions

The following counterexample shows that the regularity conditions in Theorem 3.2 cannot
be skipped.

Example 4.7 Consider problem (VP) with m = 3, n = 2,

K = {
x = (x1, x2) ∈ R

2 : x1 ≥ 0, x2 ≥ 0
}
,

f1(x) = −x1 − x2, f2(x) = x2
x1 + x2 + 1

, f3(x) = x1 − x2.

Using the optimality conditions recalled in (2.1), one can find that

E = {
x = (x1, x2) : x1 ≥ 0, x2 ≥ 0, x2 < x1 + 1

}

and

Ew = {
x = (x1, x2) : x1 ≥ 0, x2 ≥ 0, x2 ≤ x1 + 1

}
.

Let us prove that every point x̄ = (x̄1, 0) ∈ E is an improperly efficient solution in the sense
of Geoffrion. Given any M > 0, we choose i = 1 and select a point x = (x1, x2) from
K = R

2+ satisfying the conditions x1 ≥ x̄1, x2 > x1 − x̄1, x1 + x2 > M − 1. Then, one
has fi (x) < fi (x̄). Moreover, since f3(x) = x1 − x2 < x̄1 = f3(x̄), the unique index j ∈ I
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having the property f j (x) > f j (x̄) is j = 2. As

Ai, j (x̄, x) = f1(x̄) − f1(x)

f2(x) − f2(x̄)

= −x̄1 + x1 + x2
x2

x1 + x2 + 1
− 0

x̄1 + 1

= (x1 + x2 + 1)(−x̄1 + x1 + x2)
1

x2

= (x1 + x2 + 1)

(
1 + x1 − x̄1

x2

)
> M,

by the observation given after Definition 2.2 we have x̄ /∈ EGe. Now, we check the regularity
conditions in Theorem 3.2. For every x̄ = (x̄1, 0) ∈ E , we have

∇ f1(x̄) = (−1,−1), ∇ f2(x̄) =
(
0,

1

x̄1 + 1

)
, ∇ f3(x̄) = (1,−1).

Hence, there exist no (i, j) ∈ I 2, j �= i , and v ∈ (0+K )\{0} with 〈∇ fi (x̄), v〉 = 0 and〈∇ f j (x̄), v
〉 = 0. In particular, condition (3.1) is fulfilled. For (i, j, k) := (1, 2, 3) ∈ I 3 and

v := (1, 0) ∈ (0+K )\{0}, one has
〈∇ fi (x̄), v〉 < 0,

〈∇ f j (x̄), v
〉 = 0, 〈∇ fk(x̄), v〉 > 0.

Thus, condition (3.10) is violated. To see that (3.2) is not satisfied, it suffices to choose
(i, j) = (1, 3) ∈ I 2, v = (1, 0) ∈ (0+K )\{0}, and note that

bTi v = 0, 〈∇ fi (x̄), v〉 ≤ 0,
〈∇ f j (x̄), v

〉
> 0.

Now, take any x̄ = (x̄1, x̄2) ∈ E with x̄1 > 0. It is easy to verify that condition (3.1) is
satisfied. Since x̄2 ≤ x̄1 + 1, for (i, j, k) := (1, 2, 3) and v = (v1, v2) with v1 > 0 and

v2 = x̄2
x̄1 + 1

v1, we have v ∈ (0+K )\{0} and

〈∇ fi (x̄), v〉 < 0,
〈∇ f j (x̄), v

〉 = 0, 〈∇ fk(x̄), v〉 > 0. (4.5)

So, condition (3.10) is violated.
Finally, take any x̄ = (0, x̄2) ∈ E with x̄2 ∈ (0, 1). For (i, j, k) := (1, 2, 3) and

v = (v1, v2) with v1 > 0 and v2 = x̄2v1, we see that v ∈ (0+K )\{0} and (4.5) holds. Thus,
condition (3.10) is not fulfilled.

We have shown that, for every x̄ ∈ E , at least one of the three regularity conditions in
Theorem 3.2 is violated. So, the theorem cannot be used to assure that x̄ ∈ EGe.

5 Concluding remarks and open questions

By constructing two concrete examples (see Examples 2.6 and 4.7), we have proved that
there exist linear fractional vector optimization problems with unbounded constraint sets
whose Geoffrion’s efficient solution set differs from the efficient solution set, and the latter
is a proper subset of the constraint set. Our main results are two theorems giving suitable
sufficient conditions for an efficient solution of a LFVOP with an unbounded constraint set
to be a properly efficient solution in the sense of Geoffrion.

In the notation of Sect. 2, letting A (resp., B) be the matrix consisting of the rows aTi
(resp., bTi ) and α (resp., β) be the column vector consisting of the numbers αi (resp., βi ) for
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i ∈ I , one can represent (VP) by the data point (A, α, B, β,C, d) in the Euclidean space Rs

with s := 2(m × n + m) + p × n + p. In what follows, this space Rs is equipped with the
Lebesgue measure.

Below are some open questions in this topic.

(Q1) Is it possible to obtain necessary and sufficient conditions for the validity of the
equality E = EGe, or not?

(Q2) Does a Geoffrion’s improperly efficient solution in a LFVOP have any special prop-
erties?

(Q3) Is it true that, for almost all LFVOPs, one has E = EGe?
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