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Abstract

Linkage Tree Genetic Algorithm (LTGA) is an effective Evolutionary Algorithm (EA)
to solve complex problems using the linkage information between problem variables.
LTGA performs well in various kinds of single-task optimization and yields promising
results in comparison with the canonical genetic algorithm. However, LTGA is an un-
suitable method for dealing with multi-task optimization problems. On the other hand,
Multifactorial Optimization (MFO) can simultaneously solve independent optimiza-
tion problems, which are encoded in a unified representation to take advantage of the
process of knowledge transfer. In this paper, we introduce Multifactorial Linkage Tree
Genetic Algorithm (MF-LTGA) by combining the main features of both LTGA and
MFO. MF-LTGA is able to tackle multiple optimization tasks at the same time, each
task learns the dependency between problem variables from the shared representation.
This knowledge serves to determine the high-quality partial solutions for supporting
other tasks in exploring the search space. Moreover, MF-LTGA speeds up convergence
because of knowledge transfer of relevant problems. We demonstrate the effectiveness
of the proposed algorithm on two benchmark problems: Clustered Shortest-Path Tree
Problem and Deceptive Trap Function. In comparison to LTGA and existing methods,
MF-LTGA outperforms in quality of the solution or in computation time.
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1. Introduction

Linkage Tree Genetic Algorithm has been shown to scale excellently on a variety
of discrete, Cartesian-space, optimization problems [1, 2]. Linkage Tree Genetic Al-
gorithm (LTGA) determines the linkages between problem variables in the population,
then clusters relevant variables to build a linkage tree. In each generation, the linkage5

tree is used to create crossover masks to prevent disruption between high-quality linked
genes, and different partial structures of two good parent solutions can be juxtaposed to
construct a new good solution. LTGA performs well in various problems: Permutation
Flowshop Scheduling Problem [2, 3], Nearest-neighbor NK landscapes [4], MAX-SAT
problem [5, 6], Deceptive trap function [7], Multidimensional Knapsack Problem [8],10

etc. and outperforms traditional Genetic Algorithm (GA). However, the linkage tree is
built from a single combinatorial optimization problem without transferred knowledge
from other relevant problems.

Combinatorial optimization problems in real-life like Jobs scheduling, Cloud com-
puting etc. require solving many tasks simultaneously. Arising from the need to solve15

a large number of user requests in Cloud Computing, Multifactorial Evolutionary Al-
gorithm (MFEA) proposed by Gupta, et al. [9] can solve multiple independent opti-
mization problems simultaneously using a single population of solutions in the unified
search space. The unified search space encompasses the shared knowledge for all of
the tasks and the knowledge belonging to the particular optimization task. Transferring20

knowledge between different tasks occurs through adjusting and exchanging shared
genetic material in the unified search space. In the process of transferring knowledge,
good partial solutions of each task are used to support the others tasks. Leveraging the
supportive genetic material requires calculating the commonality between all tasks for
effective knowledge transfer.25

Inspired by the idea of Multifactorial Optimization (MFO) and LTGA, we exploit
the advantages of crossover mechanism of LTGA and the implicit genetic transferring
of MFO. We adopt the idea that many problems are represented in the unified search
space, building linkage tree for each task exploits the knowledge from the other tasks.
In particular, the linkage tree indicates the distances between problem variables. These30

variables corresponding to each problem are the partial structure of individuals in the
shared representation. The distance between two sets of variables indicates the depen-
dence between them.

In this paper, we introduce Multifactorial Linkage Tree Genetic Algorithm (MF-
LTGA) by combing the main features of LTGA and MFO: Linkage tree is used to de-35

termine the relationship between problems variables, which is used to leverage shared
information among optimization problems. The assortative mating step is modified to
combine crossover mechanism of LTGA and vertical cultural transmission of MFEA:
A linkage tree is selected corresponding to a particular task then the crossover operator
is applied to generate new offspring based on that linkage tree. The vertical cultural40

transmission in MF-LTGA serves to transfer the phenotype of parents to their offspring.
The effectiveness of MF-LTGA is shown in comparison to LTGA and existing al-

gorithms on the canonical Clustered Shortest-Path Tree Problem (CluSPT) [10] and
Deceptive Trap Function (DTF). The results indicate that MF-LTGA is superior to
LTGA in computation time, and quality of the solution.45
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The main contributions of this paper are:

• We propose a mechanism combining key features of LTGA and MFO, which we
call MF-LTGA.

• We modify process for building the linkage tree based on unified search space to
exploit both information between problem variables and transfer knowledge of50

independent tasks.

• We introduce an assortative mating mechanism to enhance the compatibility be-
tween the main features of MFO and LTGA.

• We propose a crossover operator to keep the key advantages of MFO and LTGA
as well as maintain population diversity.55

• The experimental results show that the our algorithm is more efficient than exist-
ing methods.

This paper is organized as follows. Section 2 introduces related works. Background
of MFO and LTGA is briefed in Section 3. Section 4 describes the MF-LTGA algo-
rithm. Section 5 presents and discusses experimental results. The paper concludes in60

Section 6 with discussions of the future extension of this research.

2. Related works

Linkage Tree Genetic Algorithm (LTGA) was introduced by Thierens [11] and is
one of the newest variants of Evolutionary Algorithm (EA) [12, 13]. LTGA learns
the linkage between the problem variables and groups of variables by building a hier-65

archical clustered tree using a proximity distance metric. In each generation, LTGA
builds a linkage tree and then uses that tree to generate new offspring. LTGA has been
successfully applied to various types of problems which we review next.

In [1], Bosman et al. proposed LTGA to solve permutation optimization problems
by employing a random key encoding of permutations. To evaluate the dependency be-70

tween two variables, two factors were proposed: the first factor, called relative-ordering
information, focuses on the order of two genes while the second factor, called adja-
cency information, focuses on the proximity of the two genes.

In [11], Bouter et al. applied LTGA to solve the deceptive mk − trap function. The
authors use the mutual information for evaluating the dependency between variables75

and build the linkage tree of a population of solutions.
In [14], Goldman, et al. introduced a benchmark problem, deceptive step trap

problem for testing LTGA. To reduce the time complexity when calculating the entropy
between all possible clusters, the authors also proposed the linkage between clusters.
Instead of finding the entropy of an entire cluster, the new measure only finds the80

entropy between all pairs of independent problem variables in the population.
To improve the convergence of LTGA, Bosman, et al. [15] proposed Forced Im-

provements which is used when a solution cannot be improved. A different linkage
model, Linkage Neighbors (LN) was also proposed. An advantage of the LN model
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compared to the Linkage Tree model is that it is well-suited to represent overlapping85

linkage relations.
Recently, the concept of Multifactorial Optimization (MFO) [16] has been intro-

duced by Gupta et al. in [9] as a new optimization paradigm toward evolutionary
multitasking with a single population of individuals. In contrast to traditional evolu-
tionary search paradigm, MFO conducts evolutionary search concurrently on multiple90

search spaces corresponding to the optimization problems, each possessing a unique
function landscape. The efficacy of MFO has been confirmed by a set of continuous
and combinatorial optimization problems in [2, 17].

MFO has been applied to various algorithms which we review next. Feng, et al. [18]
proposed two new mechanisms for combining Multifactorial Evolutionary Algorithm95

(MFEA) with Particles Warm Optimization Algorithm (PSO) (called MFPSO), Differ-
ential Evolution Algorithm (DE) (called MFDE). In the new algorithms, the authors
designed new assortative mating schemes while the other components such as unified
individual representation, vertical cultural transmission, etc., are kept the same as in
the original MFEA.100

Xie, et al. [19] introduced a hybrid algorithm combining MFEA and PSO (call HM-
FEA) in which PSO plays the role of local search in the MFEA. A difference between
HMFEA and the original MFEA is that the PSO is added after genetic operation of
MFEA and applied to the intermediate-pop in each generation. To adjust dynamically
the velocity and guarantee that the convergence velocity is not too fast, an adaptive105

variation adjustment factor gα is proposed. The factor gα is used to control the velocity
of each particle.

In [20], Wen and Ting combine the MFEA with Genetic Programming (GP) for
learning an ensemble of decision trees. In this algorithm, each task is associated with
one run of GP. To generate diverse decision trees, their algorithm further scrambles the110

dataset for each task by randomly mapping the feature indexes. The tasks will then
work on the dataset with different feature sequences.

Zhong. et al. [21] proposed a multifactorial GP (MFGP) paradigm toward evolu-
tionary multitasking GP. MFGP consists of a novel scalable chromosome encoding
scheme and new evolutionary mechanisms for MFO based on self-learning gene ex-115

pression programming.
Although MFO and LTGA were developed for solving various types of problems,

there have been no studies that combine the strengths of MFO and LTGA into a new
algorithm. Therefore, this paper proposes mechanisms to take the advantages of both
MFO and LTGA into a new algorithm. The experimental results demonstrate the effec-120

tiveness of the new algorithm.

3. Preliminaries

This section provides a brief background of the Multifactorial Optimization paradigm
and the Linkage Tree Genetic Algorithm.

3.1. Multifactorial Optimizations125

In [9], Gupta et al. introduced Multifactorial Optimization as an evolutionary
multi-tasking paradigm that optimizes multiple tasks simultaneously. Unlike tradi-
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tional methods, MFO solves multiple tasks within only a single task. To achieve this,
individuals are represented in unified search space and MFO calculates the skill of in-
dividual and splits the population into different groups: each individual is placed in130

the group corresponding to the task it performs best. The ability to solve problems in
multitasking environments not only allows MFO to utilize genetic materials created in
a specific group but also useful for another task.

To evaluate an individual, Gupta et al. [9] define the following properties for every
individual pi in population P:135

• Factorial Cost: The factorial cost ψi
j of an individual pi on task T j is computed

by its fitness or objective value on a particular task T j.

• Factorial rank: Factorial rank ri
j is the rank of pi on task T j, relative to all other

individuals in P.

• Scalar Fitness: Scalar fitness ϕi of pi is based on its best rank over all tasks; i.e.140

ϕi = 1/min{ri
1, ri

2, . . . , ri
K}.

• Skill Factor: Skill factor τi of pi is the one task, amongst all other tasks in MFO,
with which the individual is associated. This may be defined as τi = argmin j{ri

j}.

In order to calculate fitness of an individual, individuals are decoded in different
tasks to obtain “Factorial Cost”. Individuals are evaluated by its correlation with other145

individuals based on “Factorial Cost” to find the most suitable task called “Skill Fac-
tor”.

3.2. Linkage Tree Genetic Algorithm

Recently, a powerful linkage-learning EA, LTGA, was proposed by Dirk Thierens [11].
LTGA maximizes the effectiveness of the crossover operator through discovering and150

exploiting the relationship between problem variables during the evolutionary search-
ing. To store linkage information, LTGA uses an additional hierarchical tree, called
linkage tree. A cluster of problem variables that LTGA believes to be linked is repre-
sented by a node in the linkage tree. In each generation, the linkage tree is rebuilt by
selecting a set of solutions from the current population before determining the relation-155

ship between problem variables in that set.

3.2.1. Constructing Linkage Tree
LTGA aims to identify the variables that make a dependent set, then uses an ag-

glomerative hierarchical clustering algorithm to proceed bottom-up. Hierarchical clus-
tering algorithm constructs Linkage information between variables, and stores it as a160

Linkage Tree. Each node in the Linkage Tree is a cluster of genes that are close to
each other. At its first stage, the algorithm considers each gene to be a dependent clus-
ter, before repeatedly joining the two closest clusters to create a bigger one until all
genes are in the same cluster. The size of population may impact the accuracy of the
information the linkage tree represents. The larger the population size, the higher the165

possibility of good solutions appearing in it. Therefore, the linkage tree constructed
from larger population may better reflect the relations between the genes. However, for
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larger population, the construction of linkage tree would be more consuming in terms
of computational resources and the number of evolutionary operations on each genera-
tion would be higher. Hence, it is necessary to choose an appropriate population size in170

order to keep a balance between the linkage information accuracy and computational
resources consumption.

The details are shown in Algorithm 1:

Algorithm 1: Hierarchical Clustering
Input: A set of solutions from the current population
Output: A Linkage tree

1 Compute the proximity matrix using metric D.
2 Assign each variable to a single cluster.
3 Repeat until one cluster left:
4 Join two closest clusters Ci and C j into Ci j.
5 Remove Ci and C j from the proximity matrix.
6 Compute the distance between Ci j and all clusters.
7 Add cluster Ci j to the proximity matrix.

Figure 1: An example of hierarchical clustering algorithm on 7 genes.

An example of hierarchical clustering is shown in Figure 1: The first two closest
genes x1 and x2 are joined into a cluster x1x2, clusters x1, x2 are removed from the175

proximity matrix. In the next iteration, LTGA considers the distances between the new
cluster x1x2 and the other clusters, then combines the closest pair of clusters from the
current population. After each generation, LTGA rebuilds the linkage tree from current
population.
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3.2.2. Crossover operator180

Each cluster in the Linkage Tree is used as a crossover mask, the variables in a
cluster are swapped between parent pair to generate two new offspring. If one of the
offspring is better than its parents, then those offspring become parents for the next
crossover for the remaining crossover masks. LTGA performs operations through 2l−1
clusters in Linkage Tree, the order of visiting clusters to perform crossover operations185

impacts the quality of the final solution.
The outline of Linkage Tree Genetic Algorithm is presented in Figure 2.

4. Multifactorial Optimization with Linkage Tree Genetic Algorithm

In this section, we introduce the combination of Multifactorial Optimization (MFO)
and Linkage Tree Genetic Algorithm (LTGA) which we call Multifactorial Linkage190

Tree Genetic Algorithm (MF-LTGA).
MFO is designed for conducting multitasking with the exchange of information

among individuals through two key components: assortative mating and vertical cul-
tural transmission. In a standard genetic algorithm and MFO, the solution representa-
tion and the crossover operator need to be designed to achieve good solution. However,195

this design will be difficult to achieve if there is insufficient domain knowledge. Dif-
ferent from the genetic algorithm, LTGA possesses unique solution reproduction and
update operations through linkage models which learn the relationship between the
problems variable through estimation of distribution.

MF-LTGA is our proposal by combining LTGA and MFO in order to capture the200

advantages of both algorithms to improve the quality of the solution. To hybridize
MFO and LTGA, new assortative mating schemes are required. In addition, some
operators like unified individual representation, vertical cultural transmission, etc., also
need to change to adapt to LTGA. The workflow in Figure 3 describes the outline of
our proposed algorithm, in which we maily focus on the two steps: build linkage tree205

and perform associative mating based on linkage tree. MF-LTGA start with a initial
population of individuals which is presented in a unified search space. The assortative
mating of MF-LTGA serves as the genetic operator to reproduce next generation as well
as Multifactorial Evolutionary Algorithm (MFEA). However, the assortative mating
of MF-LTGA is performed based on linkage tree which learns a probabilistic model210

of the current population of solutions. In addition, unlike MFEA, vertical cultural
transmission is determined in assortative mating because it depends on tree selection.
The pseudo code of MF-LTGA is presented in Algorithm 2. In what follows, the design
of the MF-LTGA is detailed.

4.1. Linkage Tree Building215

A key strength of LTGA is its ability to learn the relationship between the problem
variables. To maintain this strength when applied to a multi-tasking environment, either
a linkage tree is built for all tasks, or linkage trees are built separately for each task.
Building only a single tree for all tasks can not provide the dependency between the
variables because the relationship between two variables in one task might be different220
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Figure 2: The outline of Linkage Tree Genetic Algorithm
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Figure 3: The scheme of Multifactorial Linkage Tree Genetic Algorithm

Algorithm 2: Multifactorial Linkage Tree Genetic Algorithm (MF-LTGA)

1 Generate an initial population of size n;
2 Evaluate all individuals on every task in the multi-tasking environment, and

obtain the skill factor of each individual;
3 t ← 0;
4 while stopping conditions are not satisfied do
5 Build linkage tree . Refer to Algorithm 3;
6 Perform assortative mating based on linkage model on current-pop to

generate an intermediate-pop . Refer to Algorithm 4;
7 Update the scalar fitness of all the individuals in intermediate-pop . Refer

subsection 3.1;
8 Select the fittest individuals from intermediate-pop to form the next

generation;
9 t ← t + 1;

10 end
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from that in another task. Therefore, this paper applies the second approach. The
pseudo code of the building linkage tree in MF-LTGA is given in Algorithm 3.

In Algorithm 3, for each task, we firstly generate a selected population including
individuals whose Skill Factor is in that task. Next, each individual in the selected
population is decoded to a solution for this task which will be added to a population,225

called task-population. Finally, linkage tree is built based on task-population in the
same way in [11].

Algorithm 3: Linkage tree building in MF-LTGA
Input: P: A population of individuals in unified search space; k: Number of

tasks.
Output: Linkage tree Ti for task i, i = 1, . . . , k.

1 foreach task i do
2 Choose individuals from P which have skill factor of task i to generate

selected-population (C);
3 Decode all individuals of selected-population (C) to generate

task-population (Pi);
4 Build the linkage tree (Ti) based on task-population (Pi);
5 end
6 return Ti, i = 1, . . . , k

4.2. Assortative Mating

The pseudo code of the assortative mating in MF-LTGA is given in Algorithm 4.
Firstly, current-population is partitioned into pairs of individuals which are considered230

as parents. Next, with each pairs of parents, we select randomly a single task for eval-
uation, because evaluating every individual for every problem being solved will often
be computationally too expensive. However, comparisons and evaluations only on se-
lected task may lead to a loss on good individuals of unselected tasks. These individual
that has unselected skill factor might be an outstanding solution for that particular task235

and could produce good offspring on that task. Therefore, we need to create a backup
population which contains the individuals that does not have their skill factor tasks se-
lected. Next, the pair of parents will have crossover operator applied based on the tree
of the selected task to generate offspring. As a result, the offspring imitate selected task,
so that vertical cultural transmission is integrated into the assortative mating. Finally,240

offspring-pop and backup-pop are concatenated to form an intermediate-pop.

4.3. Crossover Operator

In this part, we will clarify the crossover operator based on linkage tree. The pseudo
code of the crossover operator is presented in Algorithm 5. In the new crossover oper-
ator, we traverse the linkage tree top-down to set the crossover mask. With each mask,245

parent pair is crossed using crossover mask to generate a pair of offspring which is eval-
uated on the selected task to compete with the parent pair. If one of the children is better
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Algorithm 4: Assortative Mating in MF-LTGA
Input:
• P: A population of individuals in unified search space;

• k: Number of tasks;

• Linkage tree Ti for task i, i = 1, . . . , k.

Output: A new population of individuals in unified search space

1 Build a set of selected parents (S ) by randomly partitioning population (P)
into pairs of individuals;

2 foreach pair (pi, p j) in S do
3 τi ← skill factor of pi;
4 τ j ← skill factor of p j;
5 τ← τi;
6 if τi , τ j then
7 τ← A random skill factor from {τi, τ j};
8 if τ = τi then
9 Add p j to backup population (B);

10 end
11 else
12 Add pi to backup population (B);
13 end
14 end
15 Parents pi and p j crossover in task τ based on Tτ to generate two offspring

oi and o j . Refer to Algorithm 5;
16 Two offspring oi and o j imitates selected skill factor τ ;
17 Add best individual of {oi, o j} to offspring population (O);
18 end
19 Concatenate offspring-pop and backup-pop to form an intermediate-pop

(O ∪ B);
20 return intermediate-pop;

11



than both parents then the offspring pair replaces the parent pair, and MF-LTGA con-
tinues to traverse the linkage tree with the new pair. If none of the two children is better
than their parents, MF-LTGA continues its tree traversal with the parent pair. Each in-250

dividual pi is assigned with a positive integer nei reflecting the number of generations
that individual has existed in the population. However, an individual could exist in the
population for many generations without producing any better solutions. Therefore,
we propose a mechanism for replacing these bad individuals by new individuals. More
specifically, such an individual will be punished whenever it fails to improve; once255

its punishment record reaches a certain limit, called individual-punishment-threshold
(IPT), it is replaced by a new individual. By eliminating this kind of unimprovable
individuals, IPT has positive impact on the diversity of the population as well as time
consumption. The value selection of IPT is discussed in details in section 5.

Algorithm 5: Crossover Operator in MF-LTGA
Input:
• Parents pi and p j;

• maxp: individual-punishment-threshold;

• Linkage tree Tτ for task τ;

Output: Two offspring oi and o j;

1 is improved← False;
2 foreach node ti in Tτ do
3 Set crossover mask to node ti;
4 Cross pi and p j using crossover mask to generate offspring oi and o j;
5 if one offspring better than both parents then
6 Replace parents pi and p j by offspring oi and o j;
7 is improved← True;
8 end
9 end

10 if !is improved then
11 nei ← nei + 1;
12 if nei > maxpi then
13 Replace parents pi by a new random individual;
14 nei ← 0;
15 end
16 ne j ← ne j + 1;
17 if ne j > maxp j then
18 Replace parents p j by a new random individual;
19 ne j ← 0;
20 end
21 end
22 return Two offspring oi and o j;

12



5. Simulation results260

We evaluate the performance of MF-LTGA on two canonical problems: Clustered
Shortest-Path Tree Problem (CluSPT) [10, 22] and Deceptive Trap Function (DTF) [4,
11]. These two problems are described in detail later in this section.

5.1. Evaluation criteria

We focus on the following criteria to assess the quality of the output of the algo-265

rithms.

Criteria

Average (Avg) Average function value over all runs.

Best-found (BF) Best function value achieved over all runs.

Num.Opt The number of instances in which the optimal solution is
found.

Num.Eval Number of evaluations to success.

We compare the performance of algorithms via a normalized difference. More
specifically, let CA and CB denote the performance of algorithms A and B under metric
C; then the relative performance of algorithm A relative to that of algorithm B is defined270

as

PI(A, B) =
CB −CA

CB
∗ 100%

As examples: C could denote the cost of the best solution found by an algorithm, or
the average number of evaluations needed to obtain a solution.

To evaluate the performance of the MF-LTGA in solving the CluSPT and the DTF,275

we implemented three sets of experiments.

• In the first set, the quality of the solutions obtained by the C-MFEA [23] and E-
MFEA [24] on each instance were compared with those obtained by MF-LTGA.

• In the second set, various experiments were performed to analyze the impact of
possible influencing factors.280

• In the third set, analyze the effective of MF-LTGA on instances of the Deceptive
Trap Function.

This paper uses the decoding method and evolutionary operators in [23].
Each problem instance was evaluated 30 times for the CluSPT and 10 times for the

DTF on Intel Core i7-3.60GHz, 16GB RAM computer using Windows 8 64-bit. The285

source codes of LTGA and MF-LTGA were written in the Python.
The simulation parameters include population size = 100, number of evaluations =

106, probability of random mating = 0.5, mutation rate = 0.05 and number of tasks =

2.
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5.2. Deceptive Trap Function290

The Deceptive Trap Function is a well-known canonical benchmark for LTGA.
With m-Trap Functions, the number of local optima of the deceptive trap function is
2m − 1. A notable point for this problem is that a hillclimbing algorithm quickly be-
comes trapped in one of the local optima while Genetic Algorithm (GA) will quickly
converge to the deceptive local optima [11].295

5.2.1. Problem formulation
The Deceptive mk-Trap Function (mk-DTF) is a binary, additively decomposable

function composed of m trap functions DTi, each defined on a separate group of k bits
(the total length is l = mk). The cost of mk-DTF is defined as:

fmk−DT F(x1 . . . xl) =

m−1∑
i=0

DTi(xik . . . xik+k−1) (1)

with xi ∈ {0, 1}
Call u the number of bits in such a group that are equal to 1:

DTi(xik . . . xik+k−1) =

k, if u = k
k − 1 − u, otherwise

(2)

Clearly, the array of all 1-bits is the global optimal solution of the mk-DTF and all
schemata of order less than k are deceptive.

5.2.2. Experimental setup300

The MF-LTGA is tested on deceptive functions with trap length k = 4, 5, 6. The
number of blocks m varies from 5 to 30 with increments of 5, the problem length thus
varies from 20 to 180. The details of problem instances and parameters are presented
in Table 1.

Table 1: mk-DTF Instances and Parameters for Evaluating MF-LTGA and LTGA

k 3 3 3 3 3 3 4 4 4

m 5 10 15 20 25 30 5 10 15

Problem length 15 30 45 60 75 90 20 40 60

Population size 128 128 128 128 128 128 128 128 128
k 4 4 4 5 5 5 5 5 5

m 20 25 30 5 10 15 20 25 30

Problem length 80 100 120 25 50 75 100 125 150

Population size 128 128 128 256 256 256 256 256 256

Each problem instance was evaluated 10 times on Intel Core i7-3.60GHz, 16GB305

RAM computer using Windows 8 64-bit.
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5.2.3. Experimental results
Table 2 presents the results obtained by two algorithms LTGA and MF-LTGA. The

results in this table indicate that LTGA slightly outperforms MF-LTGA: LTGA gets
optimal solutions in all 100 tests while MF-LTGA only finds optimal results in 99 out310

of 100 tests.

Table 2: mk-DTF Results Obtained By MF-LTGA and LTGA

.

LTGA MF-LTGA

k m Num.Opt Num.Eval Num.Opt Num.Eval P.Imp

3 5 10 4,228.0 10 2,783.2 34.2%
3 10 10 13,664.8 10 8,908.8 34.8%
3 15 10 24,552.0 10 13,780.8 43.9%
3 20 10 34,007.6 10 23,434.8 31.1%
3 25 10 52,244.0 10 28,179.2 46.1%
3 30 10 57,387.2 10 39,765.2 30.7%

4 5 10 7706.4 10 4,408 42.8%
4 10 10 25615.2 10 17,113.2 32.2%
4 15 10 39010.8 10 28,367.2 27.3%
4 20 10 64053.2 10 48,695.6 24.0%
4 25 10 85021.2 10 48,549.6 42.9%
4 30 10 111479.2 10 69,353.2 37.8%

5 5 10 20342.4 10 13,900.8 31.7%
5 10 10 66150.0 10 51,959.6 25.1%
5 15 10 123994.4 10 65,327.2 47.3%
5 20 10 176378.4 9 14,1609.6 19.7%
5 25 10 231582.4 10 128,116.8 44.7%
5 30 10 284411.2 10 196,322.4 31.0%
Num.Opt: The number of optimal solutions are found. (Total number of instances

= 10)

Num.Eval: The Average number of evaluations to success.

P.Imp: The percentage of differences between the average number of evaluations to success.

However, the number of evaluations needed to successfully find the optimal solu-
tions of MF-LTGA is smaller than that of LTGA on every instance, and nearly 18%
fewer on average. This difference climbs up to 47.3% on the test case k = 5,m = 15.
Detailed comparisons are given in Figure 4 in which Num.Evals denotes number of315

evaluations needed to successfully produce the optimal solutions.

5.2.4. Analysis of influential factors
In this experiment, we investigate the Individual Punishment Threshold (IPT) pa-

rameter when applying MF-LTGA to solve multiple deceptive trap problems. Experi-
mental results point out the suitable IPT value for solving these problems. We selected320

the IPT value based on the fraction of instances in which the optimal result is achieved
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Figure 4: Comparing number of evaluations needed to find the optimal solutions

and the average number of evaluations needed to find the optimal solution. We per-
formed experiments on IPT values ranging from 1 to the number of generations that
our algorithm supposedly needed to find the desired optimal result when the punish-
ment mechanism has not been applied. The result that is found when no threshold is325

used as the baseline to find the best IPT parameter. The results obtained when applying
punishments were compared with the baseline in terms of the fraction of instances in
which the optimal solution was found and average number of evaluations.

For each generation in MF-LTGA, pairs of individuals are chosen from the current
population as parents, and the crossover operator is applied to generate new offspring.330

If the offspring are better than their parents then the parents, will be immediately re-
placed by their offspring. A parent existing in the population over many generations
indicates that it has a low chance of producing better individuals. Intuitively, such a
bad parent must be replaced by a new one. In MF-LTGA, the IPT parameter repre-
sents the maximum number of generations an individual can stay in the population. If335

the value of IPT is high then bad individuals will have a high chance to exist in many
generations. However, if the IPT parameter is too low, individuals would tend to be
quickly replaced, which could results in potential loss of good individuals and an un-
stable population. Learning the distribution from an unstable population could slow
down the process of finding the optimal solutions.340

Table 3 presents the number of instances (out of a total of 10 trials) in which the
optimal solution was found and average number of evaluations for different IPT values.
The results show that when the IPT value is 1, meaning an individual only exists for
one generation, the optimal solution is found less often than with larger IPT values and
the number of evaluations is 13.43% higher on average compared with when the IPT is345

larger. In particular, when the punishment value is 1, the optimal solution is found ony
in 6 of 10 instances for both k = 4,m = 10 and k = 4,m = 20 cases (cells in bold).

The most suitable value for IPT is either 2 or 4. The results show that the optimal
solution is always found and, compared to when the IPT value is larger, the numbers of
evaluations for IPT of 2 and 4 are only 0.6% or 0.7% higher on average, respectively.350

In the Deceptive Trap k = 5,m = 20 problem, the optimal solution is always found
because the bad solutions are replaced by new random solutions after 3 generations.
As a result, the MF-LTGA can learn to escape local optima. Suitable IPT values will
reinforce the search space exploration power of MF-LTGA.
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Table 3: The number of found optimal values and average number of evaluations for different Individual-punishment-threshold

IPT 1 2 3 4 5 6 7 8

k m Op N.Eval Op N.Eval Op N.Eval Op N.Eval Op N.Eval Op N.Eval Op N.Eval Op N.Eval

3 5 10 3108 10 2749.6 10 2755.2 10 2783.2 10 2783.2 10 2783.2 10 2783.2 10 2783.2
3 10 10 10440 10 8676.8 10 9338 10 8908.8 10 8908.8 10 8908.8 10 8908.8 10 8908.8
3 15 10 14643.2 10 14062.4 10 14027.2 10 13780.8 10 13780.8 10 13780.8 10 13780.8 10 13780.8
3 20 10 23246 10 23765.2 10 23836 10 23434.8 10 23434.8 10 23434.8 10 23434.8 10 23434.8
3 25 10 28327.2 10 28179.2 10 28179.2 10 28179.2 10 28179.2 10 28179.2 10 28179.2 10 28179.2
3 30 10 39658.4 10 39800.8 10 39765.2 10 39765.2 10 39765.2 10 39765.2 10 39765.2 10 39765.2

4 5 10 5700 10 5069.2 10 4734.8 10 4408 10 4408 10 4408 10 4408 10 4408
4 10 6 25142 10 15490.8 10 15912 10 17113.2 10 16536 10 16551.6 10 16426.8 10 16567.2
4 15 10 28744.8 10 27163.6 10 27352.4 10 28367.2 10 28013.2 10 28013.2 10 28013.2 10 28013.2
4 20 6 51666 10 45914.8 9 44169.78 10 48695.6 9 44380.44 9 44380.44 10 48664 9 44380.44
4 25 10 50371.2 10 48114 10 48985.2 10 48549.6 10 48549.6 10 48549.6 10 48549.6 10 48549.6
4 30 9 85045.33 10 72352 10 72780.4 10 69353.2 10 69353.2 10 69353.2 10 69353.2 10 69353.2

5 5 10 13785.6 10 13977.6 10 14083.2 10 13804.8 10 13900.8 10 13900.8 10 13900.8 10 13900.8
5 10 7 58352 10 48274.8 10 52136 10 51959.6 10 51587.2 10 50293.6 10 50411.2 10 50705.2
5 15 10 78884 10 67399.2 10 66807.2 10 65327.2 10 65327.2 10 65327.2 10 65327.2 10 65327.2
5 20 7 166489.7 10 136620 9 125092 10 141609.6 9 136048 9 133144 9 133628 9 133628
5 25 10 139475.2 10 133027.2 10 130249.6 10 128116.8 10 128116.8 10 128116.8 10 128116.8 10 128116.8
5 30 9 238532.4 10 200792.4 10 197931.6 10 196322.4 10 196322.4 10 196322.4 10 196322.4 10 196322.4
Op: The number of optimal solutions are found. (Total number of instances = 10)

N.Eval: The Average number of evaluations to success.
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5.3. Clustered Shortest-Path Tree Problem355

5.3.1. Problem formulation
We let G = (V, E,w) represent a simple, connected and undirected graph, with

vertex set V , edge set E, and non-negative edge weights w. An edge between vertices
u and v is denoted by (u, v), and its weight is denoted by w(u, v).

For a vertex subset U, the sub-graph of G induced by U is denoted by G[U]. A360

collection C = {Ci|1 ≤ i ≤ k} of subsets of V is a partition of V if the subsets
are mutually disjoint and their union is exactly V . A path in G is simple if no vertex
appears more than once on the path. This paper only considers simple paths.

For a given spanning tree T of G = (V, E,w) and u, v ∈ V , let dT (u, v) denote the
shortest path length between u and v on T .365

The CluSPT problem [10] is defined as follows:

Input: - A weighted undirected graph G = (V, E,w).
- Vertex set V is partitioned into k clusters C1,C2, ...,Ck.
- A source vertex s ∈ V .

Output: - A spanning tree T of G.
- Sub-graph T [Ci](i = 1, . . . , k) is a connected graph.

Objective:
∑
v∈V

dT (s, v)→ min

(a) The original graph (b) A valid solution to CluSPT (c) An invalid solution to CluSPT

Figure 5: An example of valid and invalid solutions for the CluSPT

Figure 5 illustrates the cases of valid and invalid solutions of CluSPT. Figure 5(a)
shows the input graph G with 6 clusters, 18 vertices and vertex 1 as source vertex.
Figure 5(b) presents a valid solution of CluSPT. In Figure 5(c), the vertex 6 and vertex370

7 in cluster 2 are not connected, so this solution violates the second condition of the
output of the CluSPT problem.

5.3.2. Problem instances
For assessment of the proposed algorithms’ performance, we created instances for

CluSPT from Clustered Traveling Salesman Problem (CluTSP) instances [25, 26] by375

adding the information of the source vertex. The main reason for building CluSPT
instances from CluTSP instances was that CluTSP instances have been shown to be
suitable for clustered problems in general [26].

All tested instances are available via [27]
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5.3.3. Experimental results380

Comparison between the performance of existing algorithms and that of MF-LTGA.

In this section, we compare the results obtained by AAL [22], C-MFEA [23], E-
MFEA [24], and LTGA with those achieved by MF-LTGA. Tables 5, 6 and 7 illustrate
the results obtained by these algorithm on instances of Type 1, Type 5 and Type 6. In385

table 7, the symbol “-” indicates that the corresponding instances were not executed by
C-MFEA. In these tables, a cell in red and italics means that the result of the algorithm
exceeds that of MF-LTGA on that instance. Moreover, if a result is marked in bold then
it is the best result for that instance. For example, the result of LTGA for 50kroA100 is
in italic red because it is better that that of MF-LTGA; meanwhile, the best performed390

for that instance is AAL and its result is in bold.
The results in Table 5, 6 and 7 point out that both single-tasking (ST) and multitask-

ing (MT) outperform AAL, E-MFEA and C-MFEA in most test cases. In particular,
MT outperformed the three existing algorithms on all test cases in Type 5. Table 4
summarizes the comparison results among AAL, E-MFEA, C-MFEA, ST and MT on395

the benchmarks.
The experimental results point out that MT is also better than ST on approximately

83% of the test cases i.e., 14 out of 22 Type 1 instances, 12 out of 12 Type 5 instances
and 17 out of 18 Type 6 instances. Maximum PI(MT, ST) are 58.8% (for Type 1),
23.7% (for Type 5) and 3.2% (for Type 6).400

The experimental results obtained by AAL, C-MFEA, E-MFEA and MF-LTGA on
Type 1 instances are shown in Table 5. On this set of instances, MT outperforms ST
on 14 out of 22 instances. C-MFEA and E-MFEA outperforms ST on 6 and 16 out of
22 instances. E-MFEA outperforms MT on 1 out of 22 instances whereas C-MFEA is
worse than MT on all instances.405

The results on Type 6 instances are displayed in Table 7. ST outperformed C-
MFEA on 12 out of 12 instances and outperformed E-MFEA on 18 out of 18 instances.
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Table 4: Comparison of results obtained by MF-LTGA and the existing algorithms.

Algorithm
Type 1 Type 5 Type 6 Total

Number of instances in a
Type

22 12 18 52

AAL
Number of instances on
which MF-LTGA outper-
formed AAL

18 12 18 48

Maximum PI(MF-LTGA,
AAL)

66.4% 73.7% 69.0%

C-MFEA
Number of instances on
which MF-LTGA outper-
formed C-MFEA

22 12 18 52

Maximum PI(MF-LTGA, C-
MFEA)

55.3% 25.6% 33.1%

E-MFEA
Number of instances on
which MF-LTGA outper-
formed E-MFEA

21 12 17 51

Maximum PI(MF-LTGA, E-
MFEA)

28.6% 30.4% 34.8%

LTGA
Number of instances on
which MF-LTGA outper-
formed LTGA

14 12 17 43

Maximum PI(MF-LTGA,
LTGA)

58.8% 23.7% 3.2%

20



Table 5: Results Obtained By E-MFEA, C-MFEA, LTGA and MF-LTGA on Instances In Type 1

AAL C-MFEA E-MFEA LTGA MF-LTGA

Instances Avg BF Avg BF Avg BF Avg BF Avg

10berlin52 82619.1 48569.8 57519.6 46185.8 46707.8 44291.9 44979.3 44059.2 44624.7
10eil51 4489.1 1891.7 2336.6 2008.3 2039.4 2751.7 3337.9 1738.5 1826.6
10eil76 7220.5 2489.5 3286.5 2775.4 2973.3 4440.9 5887.5 2347.3 2424.9
10kroB100 384046.7 170695.2 227972.8 198181.6 218275.1 317039.7 373333.9 148479.3 155902.1
10pr76 1042986 632704.5 785555.1 643903.6 665835.1 1060518.5 1237905.1 545368.0 570075.2

10rat99 22402.3 8937.1 11470.7 10427.6 10792.8 15805.0 18368 7928.2 8357.2
15eil51 2833.5 1922.0 2724.1 1662.9 1781.4 2020.7 2116.3 2013.5 2127.2
15eil76 8147 3773.0 4752 3349.0 3402.8 3351.2 3454.6 3336.9 3398.7
15pr76 1627671.1 833734.0 1165803.3 772173.1 787889 807555.5 836711 810496.6 828216.5
15st70 10074.1 5171.8 6500.6 4972.1 5117.7 4403.6 4516.2 4451.3 4541.6

25eil101 12327.8 6852.3 8695.7 5192.4 5248.4 4863.7 5010.3 4859.9 4928.3
25kroA100 324160 266798.7 377454.1 164038.4 167528.9 166260.1 173517.3 164732.2 168833.1
25lin105 211355.4 182650.4 262420.6 106500.2 107524.2 138695.6 143329.3 136815.2 139356.5
25rat99 16747 12931.7 17533.2 9234.7 9375.8 8143.5 8427.3 9876.1 10017.7
50eil101 9195.2 9461.1 12689.9 3978.2 3991.2 8016.7 8242.8 10067.0 10113.8

50kroA100 319270 451952.5 618957.9 173626.5 176321.3 444438.5 525951.5 526297.5 526913.4
50kroB100 311384.2 450713.7 599175.7 137956.1 138761.9 341053.0 472108.3 538220.7 538973.3
50lin105 273675.6 309399.9 474219.6 147782.5 148306.8 331727.6 385223.6 392315.4 392632.5
5eil51 4397.7 1524.0 1663.4 1830.6 1942.3 3050.3 3728 1771.9 1813.5
5eil76 6539.8 2689.2 2961.6 3210.7 3297.5 5597.0 6770 2741.8 2904.8

5pr76 1688544.9 609766.6 652318.1 660629.3 700987.2 594603.1 632258.1 597900.7 638376.1
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5st70 10270.5 4589.7 4959.6 4795.3 5171.7 4629.6 4833.4 4579.3 4749.2

Table 6: Results Obtained By E-MFEA, C-MFEA, LTGA and MF-LTGA on Instances In Type 5

AAL C-MFEA E-MFEA LTGA MF-LTGA

Instances Avg BF Avg BF Avg BF Avg BF Avg

10i120-46 227078.7 105754.4 125137.1 119168.5 120920.6 98147.5 101674.5 100270.8 102508.8
10i45-18 59797.3 26942.8 32663.5 27164.4 28538.5 23391.5 25074.7 22890.4 24546.8
10i60-21 89193.4 37640.0 45427.1 43125.9 45389.1 34424.5 37144 34511.7 36262.2
10i65-21 102156.3 41053.9 49824.3 46651.5 47955.3 38910.7 41307.7 39380.1 41141.1
10i70-21 103674.7 41892.8 55760.2 49875.8 51532.2 39365.4 41532.5 40070.0 41512.5

10i90-33 128438.3 55361.9 65493.1 63225.8 65633.3 54636.8 57450.7 55393.4 57338.6
5i45-18 59161.2 15511.5 17007 20042.8 22345.5 14884.3 15571.6 14884.3 15551.8
5i60-21 63252.8 29797.9 34613 35099.9 36474.5 28842.3 30737 28850.1 30548
5i75-22 73544.5 34867.3 38705.1 37992.7 40668.9 35525.8 38580 36277.0 38021.5
5i90-33 114467.8 53230.6 55888.2 62701.2 65622.1 53563.1 56096.9 53818.2 56841.2

7i60-21 85486.3 37690.6 41532.3 44669.6 46337.4 37364.1 39637.2 37447.5 39601.2
7i65-21 82949.6 35878.8 40222.5 45237.3 47211.2 36520.3 38528.6 35570.9 38100.9
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Table 7: Results Obtained By E-MFEA, C-MFEA, LTGA and MF-LTGA on Instances In Type 6

AAL C-MFEA E-MFEA LTGA MF-LTGA

Instances Avg BF Avg BF Avg BF Avg BF Avg

12eil51-3x4 4209.1 2185.0 2691.5 1922.1 1960.9 1730.5 1829.5 1721.3 1799.5
12eil76-3x4 7665.9 3065.7 3896.1 3352.2 3449.3 2775.7 2926.3 2757.4 2874.8
4berlin52-2x2 70649.9 23635.3 24751 35413.1 37121.5 23291.1 24580.5 23330.2 24190.6
4eil51-2x2 5187.5 1909.5 2053.9 2545.3 2641.1 1898.5 2014.3 1900.5 1996.9
4eil76-2x2 6882.8 2949.1 3179.9 4319.3 4517.2 3007.7 3263.5 3084.2 3255.8

4pr76-2x2 1607169.6 446862.4 480043.8 688228.2 762880.2 445424.1 505575.5 470046.8 497917.4
6pr76-2x3 1269147.1 656978.3 736743.5 741847.3 771563.7 670286.1 696701.5 655575.4 697341.8
6st70-2x3 8147.4 3508.1 4244.1 3880.5 4057 3505.1 3745.3 3574.2 3728.5
9eil101-3x3 9560.8 3320.3 4345.8 4281.2 4585 3303.5 3515.3 3380.2 3511.7
9eil51-3x3 4642.4 2106.5 2630.8 2127.0 2182.7 1937.0 2046.6 1952.3 2038.4

9eil76-3x3 6659.6 3401.8 4048 3599.5 3730.8 3089.7 3245.6 3070.5 3220.7
9pr76-3x3 1344518.1 642796.6 783056.1 713966.7 749030.6 565527.5 591679.5 572387.3 591205.8
12st70-3x4 10072.3 - - 4750.9 4795.7 4213.2 4341.5 4225.0 4315
15pr76-3x5 1316199.6 - - 601015.9 623645.7 787601.4 829304.8 774271.4 808278.1
16eil51-4x4 3123.2 - - 1371.3 1425.9 1780.5 1834.2 1756.5 1795.2

16eil76-4x4 6625.7 - - 2314.0 2374.9 2548.0 2799 2556.1 2708.9
16lin105-4x4 309572.4 - - 179729.7 179729.7 162114.6 170731.4 162677.5 166291.5
16st70-4x4 8073.9 - - 3560.4 3560.4 3197.4 3405.5 3258.0 3356.6
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Convergence trends.
We use the functions in [9] for computing the normalized objectives and averaged
normalized objectives, and analyze the convergence trends of the proposed algorithm.410

Figure 6: Convergence trends of f̃ in multi-tasks and serial single task for instances 10eil51 and 10eil76 in
Type 1; instances 10i60-21 and 10i65-21 in Type 5; instances 4berlin52-2x2 and 4eil51-2x2 in Type 6.

Figure 6 illustrates the convergence trends of the ST and MT for instances 10eil51
and 10eil76 in Type 1; instances 10i60-21 and 10i65-21 in Type 5; instances 4berlin52-
2x2 and 4eil51-2x2 in Type 6. These figures point out that the convergence rate of MT
is faster than that of ST in most test cases.

A notable point in Figure 6 is that the numbers of evaluations of each generation are415

proportional to the dimensionalities of the instances. Moreover, in this experiment, the
number of evaluations of each generation is a constant parameter. Due to this reason,
the number of generations among instances might vary.
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(a)

(b)

(c)

Figure 7: Comparing convergence trends of f̃1 and f̃2 in multi-tasks and serial single task for instances
10eil51 and 10eil76 in Type 1; instances 10i60-21 and 10i65-21 in Type 5; instances 4berlin52-2x2 and
4eil51-2x2 in Type 6.
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The major convergence trends of those algorithms in Figure 6 is that MT converges
slower than ST for initial generations but MT surpasses ST in later generations which420

means that the implicit genetic transferring among tasks in evolutionary multitasking
paradigm improves the convergence speed of MT in comparison with ST

Figure 7 provides insight into the improved performance as a consequence of MT.
The figure depicts the convergence trends corresponding to each individual task, which
is somewhat similar to that of MT and ST in Figure 6 when the convergence rate of425

each task in MT is better than the corresponding task in ST in later generations.

5.3.4. Analysis of influential factors
Parameters, such as population size or crossover rate, play an important role in

meta heuristic algorithms. Therefore, we perform experiments by applying different
parameter values on each instance of the dataset to find the best parameters for the pro-430

posed algorithm. In this study, a 24-instance dataset is created by randomly selecting 8
instances of each a type.

The ideal situation would be to find parameters that can produce superior results
for all instances. Unfortunately, the instances are very diverse in size and structure,
so finding perfect parameters settings across all the data is unrealistic. Therefore, the435

default parameters settings for the algorithm will be selected by evaluating each pa-
rameter with the following metrics:

• Time-of-best (TOB): For each parameter, a set P of its values will be evaluated
on the dataset. The TOB of one such value is the number of instances for which
that value achieved the best result among all values in P.440

• Distance-to-optimal (DTO): We also compute distance-to-optimal of each value
of the parameter, which is the average distance between the result obtained by
that value and the best result of all values, according to the following formula:

DTO(p) =

∑
d∈D

r(d, p) −min
p′∈P

r(d, p′)

min
p′∈P

r(d, p′)

|D|
(3)

where:

– P is a set of values of the parameter and p is one of those values.
– D is the dataset and d is one instance of it.
– r(d, p) is the result of our algorithm on instance d with the value p of the

parameter being considered.445

Some values of the parameter can be extremely good in many instances but ex-
tremely bad in others, which leads to high TOB and high DTO. Conversely, some
values might show acceptable results for all instances but scarcely be the best in any of
them, signifying low TOB and low DTO. Hence, we would want to choose the value
that satisfy both conditions: high TOB and low DTO. In this paper, we use both of450

the above metrics to evaluate two important parameters: population size, individual
punishment threshold and dimension of the input graph.
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Impact of Population Size.

Population size plays an important role in population-based meta-heuristic algo-455

rithms. Therefore, we perform experiments to study the effect of population size on the
algorithm’s effectiveness. We consider six different population sizes: 50, 75, 100, 150,
200, 300 on the chosen 24-instance dataset.

Figure 8: Impact of Population Size

For each population size, both metrics - TOB and DTO - are used for evaluation,
the result is shown in Figure 8.460

Figure 8 shows that the TOB increases continuously as the population size in-
creases and reaches its peak at population size of 200. On the other hand, the DTO
decreases significantly until the population reaches 150, before increasing by a small
amount when the population size is 200, and surges when it is 300. These results
can be explained by the common impact of population size on the result as well as465

the time-consuming problem of population-based meta-heuristics algorithms. Small
populations are more likely to experience loss of diversity over time because the mat-
ing between individuals with similar genetic structures occurrs regularly. Therefore,
the search space of the algorithm is narrowed, which usually leads to poor results as
shown by the result for the population size of 50, 75 or 100 in this case. In contrast, a470

larger population would often means more evaluations and operations executed, which
cost higher computational resources like time and space, leading to poor results if un-
der the constraint of number of evaluations or computational time. For our algorithm,
the population size of 200 is chosen because it has both best TOB and second best
DTO. Although population size of 150 has smaller DTO, it is only a marginal differ-475

ence while its TOB is obviously lower. Similarly, although population size of 300 has
almost the same TOB as 200 (lower by only 1), it has significantly higher DTO (twice
that of population size 200).
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Impact of Individual Punishment Threshold.
480

IPT is also an important parameter in our algorithm. IPT is the maximum allowed
number of subsequent generations for which that individual has not led to improved
offspring. To analyze the impact of IPT, we performed experiments by applying dif-
ferent IPT values ranging from one to seven. Times-of-best and Distance-to-optimal of
these values were calculated and the result is shown in Figure 9.485

Figure 9: Impact of the parameter IPT

Figure 9 points out that IPT of 4 produced result with the best distance-to-optimal;
however, its times-of-best is one of the lowest. Meanwhile, the results of IPT of 1 and
5 not only have the highest TOB but also have acceptable DTO - 3rd and 2nd among
all seven IPT values, respectively. Although both 1 and 5 are promising values, IPT of
5 is selected as default setting because small IPT value like 1 may lead to the constant490

replacements of individuals, which in turn makes it easy for the population to lose
promising genetic structures.

Impact of the Dimension of input data.

The dimension of input data often has remarkable impacts on the results so we495

decided to analyze how the number of graph vertices influenced the results obtained by
MF-LTGA comparing to AAL and LTGA. Figure 10, Figure 11 and Figure 12 illustrate
the relationship between number of vertices and algorithms’ performance on instances
of Type 1, Type 5 and Type 6, respectively. In these figures, the round symbol “A
>> B” means algorithm A outperformed algorithm B on the instance denoted by that500

symbol’s column, whereas the triangle symbol “A << B” means the opposite.
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(a) Comparison between MF-LTGA and LTGA

(b) Comparison between MF-LTGA and AAL

Figure 10: The scatter of the instances and the number of vertices on Type 1

With respect to the instances of Type 1, Figure 10(a) shows that MF-LTGA exceed
LTGA when the number of vertices is less than 99. But once that number reaches 99,
LTGA tends to prevail over MF-LTGA. Figure 10(b) points out that the results obtained
by MF-LTGA are completely superior to ones obtained by AAL when the number of505

vertices is less than 100. After that 100 mark, the results obtained by the two algorithms
are balanced.
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(a) Comparison between MF-LTGA and LTGA (b) Comparison between MF-LTGA and AAL

Figure 11: The scatter of the instances and the number of vertices on Type 5

On instances in Type 5, Figure 11(a) and Figure 11(b) show that MF-LTGA sur-
passes both algorithms LTGA and AAL on almost all test cases. Particularly, MF-
LTGA defeats AAL on every test case of this type.510
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(a) Comparison between MF-LTGA and LTGA

(b) Comparison between MF-LTGA and AAL

Figure 12: The scatter of the instances and the number of vertices on Type 6

The impact of the number of vertices on the comparison between MF-LTGA and
LTGA on instances of Type 6 is similar to that on instances of Type 1. In other words,
results obtained by MF-LTGA are better than results obtained by LTGA when the num-
ber of vertices is less than 99 but the opposite happens when the number of vertices is
greater than or equal to 99 (Figure 12(a)). On the other hand, between MF-LTGA and515

AAL, the former shows dominance on all test cases except for one when the number of
vertices reaches 99 - instance 42rat99-6x7 is the only test case where AAL outperforms
MF-LTGA.

6. Conclusion

This paper introduced a mechanism for combining LTGA and MFO. The novel520

algorithm kept the main features of both LTGA and MFO, and described new methods
for building Linkage Tree Model, Assortative Mating and Crossover Operator. These
three new methods are the cornerstones in merging the features of MFO and LTGA.
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Assortative Mating serves to reproduce new generation of population from the unified
search space of all tasks, which is achieved by applying Crossover Operator on pairs525

of individuals of possibly different tasks based on the Linkage Tree Model.
The experimental results show that the proposed algorithms are more effective

in solving the canonical CluSPT and DTF compared with some other existing meta-
heuristics. The results also illustrate the impact of individual-punishment-threshold,
population size, and input data dimension on different kinds of problems. These param-530

eters have significant task-dependent impact on the results. However, since MF-LTGA
requires building a linkage tree for every task, its time complexity and computational
resources consumed are significant.

Several theoretical aspects of the MF-LTGA will be investigated in more detail. In
the future, we will focus on methods for constructing only one Linkage Tree Model535

for all tasks. This will potentially improve the algorithm’s performance in terms of
computational complexity.
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