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Abstract
Enhancing energy efficiency and product quality by means of optimal inputs is a cost-effective solution, as compared to the 
drastic investment. This paper aims to optimize the machining inputs to enhance energy efficiency (EF) as well as the power 
factor (PO) and decrease the surface roughness (Ra) for the milling process. The factors considered are the feed (f), depth of 
cut (a), milling speed (V), and tool radius (r). The machining operations were executed on the vertical milling under the dry 
condition for the stainless steel 304. A type of neutral network entitled the radius basic function (RBF) was used to render the 
relationships between milling inputs and performances measured. The adaptive simulated annealing (ASA) algorithm was 
applied to obtain the optimal values. The outcomes indicated that the milling responses are primarily influenced by a, f, V, 
and r, respectively. The reduction in Ra is approximately 39.18%, while the improvements in EF and PO are around 22.61% 
and 26.47%, respectively, as compared to the initial parameter settings. The explored findings are expected as a prominent 
solution for the industrial application of the dry machining. The combination of the RBF models and ASA could be consid-
ered as an efficient approach for modeling dry machining processes and generating reliable as well as feasible optimal results.
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1 Introduction

The dry machining is an effective solution to decrease the 
manufacturing costs as well as environmental impacts and 
protect the worker’s health. The lubrication used in the 
machining process is an unsustainable factor, which has 
negative influences on environmental safety and human. 
The air pollution generated by the usage of lubrication may 
cause some problems in the operator’s skin and lungs. The 
lubrication cost is around 7–17% of the tool cost [1]. The dry 
machining is a prominent approach to remove the negative 
impacts of the lubrication, as compared to the traditional 
one. The concept of sustainable machining is associated 
with high energy efficiency, low environmental issues, more 
effective material flow, and low health safety. Therefore, the 

machining operation employing the dry condition is an intel-
ligent approach to achieve sustainable manufacturing.

The machining responses under the dry condition have 
been explored in the published works. The fuzzy system (FS) 
was applied to develop the correlations between the inputs 
and roughness as well as cutting temperature [2]. Shihab 
et al. used the response surface method (RSM) to analyze the 
surface roughness for the dry turning of the hardened steel 
[3]. Similarly, the RSM and FS were applied to forecast the 
roughness value [4]. The Taguchi-based approach was used 
to minimize the turning forces and surface properties for the 
Inconel [5] and AISI D3 materials [6]. The assessments of 
the machining performances under the dry and minimum 
lubrication conditions were presented in the work of [7]. 
The formulation of the tool life for the milled titanium was 
proposed by means of the FS [8]. Karabulut et al. stated that 
the neural network (NN) is more efficient than the regression 
analysis for forecasting roughness of the milled composite 
[9]. Li et al. analyzed the tool wear and hole quality for the 
helical milling of Ti–6Al–4V alloy [10]. The temperature 
variation in the workpiece and cutting tool was investigated 
for the dry milling of Inconel 718 [11]. The optimizing 
issues were solved to enhance surface properties for milling 
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operations of the magnesium alloy [12], aluminum [13], and 
Ti–6Al–4V alloy [14]. The improvements in the roughness 
and hardness of the milled magnesium alloy were obtained 
employing the optimal factors [15]. The Taguchi-based 
approach was applied to optimize machining parameters in 
terms of the cutting force and tool wear [16]. The effects 
of the helix angle and cutting tool characteristics on the 
surface roughness and tool life were examined by Baowan 
et al. [17]. The RSM was applied to analyze the impacts of 
cutting parameters on energy consumption for the dry mill-
ing process of carbon steel [18]. An energy-used model was 
proposed for the face milling process [19]. Zhang et al. pro-
posed the correlations between the inputs and the processing 
time, specific energy used, and carbon emissions [20].

As a result, the technological responses, including sur-
face characteristics, tool life, machining forces, machined 
power, and energy used, were considered as the objectives 
of the different dry machining operations. However, the 
energy efficiency of the dry milling process has not been 
thoroughly presented in the published works. Moreover, the 
power factor of the machining system also has a significant 
contribution to energy savings [21]. Additionally, the selec-
tion of optimal inputs for improving energy efficiency and 
roughness of the milled part has not been considered in the 
aforementioned works.

In this paper, the correlations between milling conditions 
and energy efficiency (EF), power factor (PO), and rough-
ness (Ra) were generated. The ANOVA results are used to 
assess the statistical significance of the proposed models and 
factors. The adaptive simulated annealing (ASA) algorithm 
is utilized to predict the optimal parameters.

2  Methodology

The optimization procedure of the milling process is shown 
in Fig. 1a. The sequential steps are listed as follows:

Step 1 A set of milling trails is performed to obtain the 
experimental data [22].

Step 2 The predictive models of EF, PF, and Ra are con-
structed using the RBF models. For the RBF correlations, 
the radial basis function is the active approximation. The 
output is a complex combination of the radial and linear 
units. The primary advantages of the RBF models are fast 
training, compact system, and high computational efficiency 
[23]. RBF approximations are useful in approximating a 
wide range of nonlinear spaces. The RBF model is expressed 
using Eq. 1:

where λi, b, and c are the parameters to be determined, which 
are obtained by the equations in the matrix form:

where ϕ and d are the n × n matrix and the dimension of 
vector x.

In the current paper, the multi-quadratic form is used to 
improve the prediction accuracy and expressed as:

where γ is the positive coefficient.
Step 3 ANOVA is conducted to investigate the statistical 

significance of the inputs.
Step 4 Determine optimal parameters using the adap-

tive simulated annealing (ASA) algorithm. The ASA algo-
rithm is an efficient technique, which is well suited to solve 
highly nonlinear problems with minimal running time. 
During the computational time, the heating temperature 
is gradually dropped to decrease the defects. The new solu-
tion is obtained with the support of the annealing func-
tion. The probability scatter is presented by the currently 
processed temperature. The reduction in the temperature 
leads to a wider design space and ensures the global solu-
tion. The operating algorithm of the ASA is listed as below 
(Fig. 1b):

• The start solution (αinit) having parameter values is 
selected in the random space. The values of the anneal 
time ka and kgi are equal to zero. The value of the initial 
temperature TA (ka) is set to f (αinit). The initial generated 
temperature TGi (kgi) is set to 1.

• A new point is generated using Eq. 5:
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Fig. 1  Optimization approach 
for generating optimal values
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(a) Optimization procedure

(b) Operating procedure of the ASA
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where Bi and Ai denote the lower and upper inputs. Yi is a 
resulting form in the ui space ( ui ∈ [0, 1] ) and expressed 
as:

• The acceptable point is identified using Eq. 7:

• The re-annealing process is conducted to estimate the 
sensitive value of the accepted point.

where αbest, η, and ei present the best point, small step 
size, and dimensional vector of ith element. The values 
of the generated temperature and annealing time are also 
updated.

• The algorithm will be stopped if the ASA accepts the 
newly generated points. In contrast, the procedure returns 
to step 2.

3  Experiments and Measurements

The workpiece is a SS 304, which is clamped on the machine 
table employing the precision vise. The machining specimen 
is prepared in dimensions of 350 mm × 150 mm × 25 mm. 
The workpiece is machined using the grinding process to 
enhance the dimensional accuracy.

The up-milling tests are conducted with the support of a 
vertical milling machine under dry machining conditions. A 
standard 12-mm tool shank with two quality wiper inserts is 

(6)
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used in the experiments. The milling slot is machined with a 
new insert with different combinations of the factors.

Power Meter KEW6305 is used to record the consumed 
powers and the power factor at different stages. The experi-
mental data obtained are transferred to a personal computer 
and visualized with the help of the offline software.

The energy efficiency of the milling process (EF) is 
defined as the ratio of the cutting energy consumption (CEC) 
to the energy consumption by the machine (ECM) in the 
cutting time. The value of EF is calculated using Eq. 12:

where ACP, CPM, and tm denote the active cutting power, 
power consumed by machine, and milling time, respectively.

The power factor (PO) is defined as the ratio of the active 
power (AP) to the apparent power (APP):

where RP denotes the reactive power.
A tester Mitutoyo SJ-301 is used to measure the surface 

roughness at five different positions. The roughness is taken 
according to standard ISO 4287. The average value of the 
Ra is calculated using Eq. 14:

The parameters considered are the cutting speed V, depth 
of cut a, feed rate f, and nose radius r. The levels of machin-
ing factors are shown in Table 1. The parameter ranges are 
determined based on a user guide of the manufacturer and 
common values used in the automotive industry. The milling 
trails are conducted at the highest levels of inputs to ensure 
the allowable power of the spindle motor.

The values of PO at various inputs are shown in Fig. 2. 
The representative values of the power consumed by the 
machine tool at different conditions are depicted in Fig. 3. 
The values of the Ra at different conditions are shown in 
Fig. 4.

(12)EF =
CEC

ECM
=

ACP × tm

PCM × tm
=

ACP

CPM

(13)PO =
AP

APP
=

AP√
AP2 + RP2

(14)Ra =
Ra1 + Ra2 + Ra3 + Ra4 + Ra5

5

Table 1  Processing conditions

Symbol Parameters level − 1 level 0 level + 1

V Cutting speed (m/min) 80 120 160
a Depth of cut (mm) 0.4 0.8 1.2
f Feed rate (mm/z) 0.03 0.07 0.1
r Nose radius (mm) 0.2 0.4 0.8



Arabian Journal for Science and Engineering 

1 3

Fig. 2  The values of PO at different inputs

Fig. 3  The values of the power 
consumed by the machine tool 
at different inputs

Fig. 4  The values of the roughness at different inputs
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4  Results and Discussion

4.1  ANOVA Results

The experimental data of the milling process are shown in 
Table 2.

The predictive error of the RBF models is assessed 
based on the coefficients of determination, including 
R2, adjusted R2, and predicted R2. The R2 value presents 
the total variation of the measured data. The adjusted R2 
value represents the total change of the model in terms 
of the significant factors. The predicted R2 denotes the 
accuracy of the formulation for new data. The R2 values 
of EF, PO, and Ra are 0.9957, 0.9947, and 0.9938, respec-
tively, which emphasizes the good fitness of the correla-
tions. The adjusted R2 values of EF, PO, and Ra are 0.9782, 

0.9773, and 0.9743, respectively, indicating the adequacy 
of the models. The predicted R2 values of EF, PO and Ra 
are 0.9544, 0.9532, and 0.9523, respectively, indicating 
the acceptable precision of the formulations, as shown in 
Fig. 5.

In this paper, the milling trials from 26 to 29 are used to 
explore the precision of the correlations. The predicted and 
experimental values are compared at the random points as 
shown in Fig. 6. The small errors indicate that the RBF mod-
els are adequate and can be used for the optimizing process.

Table 3 presents the ANOVA results for the EF model. 
The p value having less than 0.0001 indicates the signifi-
cance of the EF model. The factors having p values less 
0.05 have statistical contributions on the correlation. The 
contributions of a, f, V, and r are 43.06%, 26.68%, 19.28%, 
and 7.50%, respectively, as shown in Fig. 7a. The interaction 

Table 2  Experimental results No. V (m/min) a (mm) f (mm/z) r (mm) PO EF (%) Ra (µm)

1 120 1.2 0.07 0.8 0.846 29.89 1.21
2 120 0.4 0.1 0.4 0.661 20.35 1.09
3 120 0.8 0.1 0.2 0.753 23.97 1.63
4 80 1.2 0.07 0.4 0.736 25.44 1.48
5 160 0.4 0.07 0.4 0.675 21.96 0.51
6 160 1.2 0.07 0.4 0.817 30.24 1.03
7 120 1.2 0.03 0.4 0.699 22.77 1.26
8 120 0.8 0.03 0.2 0.611 16.29 1.14
9 120 1.2 0.1 0.4 0.828 29.26 1.69
10 120 0.8 0.03 0.8 0.707 20.02 0.76
11 160 0.8 0.03 0.4 0.691 19.71 0.73
12 120 0.4 0.07 0.2 0.596 17.92 0.89
13 160 0.8 0.1 0.4 0.801 27.49 1.36
14 80 0.8 0.03 0.4 0.572 14.76 1.06
15 80 0.8 0.1 0.4 0.711 20.54 1.52
16 80 0.8 0.07 0.8 0.719 22.51 0.96
17 120 0.4 0.03 0.4 0.542 12.78 0.59
18 120 0.8 0.07 0.4 0.681 22.14 0.97
19 160 0.8 0.07 0.8 0.839 28.64 0.53
20 160 0.8 0.07 0.2 0.741 24.81 0.93
21 120 0.4 0.07 0.8 0.702 22.32 0.57
22 80 0.8 0.07 0.2 0.647 18.77 1.39
23 120 0.8 0.1 0.8 0.835 26.79 1.32
24 80 0.4 0.07 0.4 0.556 15.62 0.82
25 120 1.2 0.07 0.2 0.764 27.74 1.58
26 120 1.2 0.07 0.8 0.846 29.89 1.21
27 120 0.4 0.1 0.4 0.661 20.05 1.09
28 120 0.8 0.1 0.2 0.753 23.97 1.63
29 80 1.2 0.7 0.4 0.736 25.44 1.48
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terms, including the Va, Vf, and ar are recommended as sig-
nificant factors. The contributions of the significant quad-
ratic terms, including f2, a2, and R2, are 1.83%, 0.53%, and 
0.36%, respectively.

Table 4 presents the ANOVA results for the PO model. 
The proposed correlation is significant due to the p value 
less than 0.0001. It can be stated that the single terms (V, a, 
f, and r), interactive terms (Va, Vf, Vr, and fr), and quadratic 
terms (V2 and R2) are significant factors. The percentage 
contributions of a, f, r, and V are 39.33%, 25.71%, 18.19%, 
and 14.50%, respectively (Fig. 7b). The contributions of the 
significant quadratic terms, including r2 and V2, are 1.42% 
and 0.26%, respectively.

Table 5 presents the ANOVA results for the Ra model. 
The p value less than 0.0001 indicates the significance of the 

Ra model. As a result, the percentage contributions of a, f, 
r, and V are 39.03%, 26.80%, 15.31%, and 12.83%, respec-
tively (Fig. 7c). f2 is the most influenced factor (4.18%), 
followed by r2 (1.14%) for the quadratic terms.

4.2  Effects of Machining Parameters

As shown in Fig. 8, it was pointed out that an increase in 
the inputs, including the cutting speed, depth of cut, feed 
rate, and nose radius, leads to higher energy efficiency. 
The EF value sharply increases when a increases from 0.2 
to 1.2 mm and V changes from 80 to 160 m/min. Addition-
ally, EF significantly improves when f increases from 0.03 
to 0.1 mm/z and gradually enhances when r changes from 
0.2 to 0.8 mm.

Fig. 5  Evaluation of adequacy of the developed RBF models
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As cutting speed or spindle speed increases, the power 
used of the spindle motor increases to improve the speed 
from the rest to the target value. Moreover, a higher value 
of the milling momentum on the spindle motor is produced 
at an increment in the cutting speed. As a result, the active 
cutting power increases and higher energy efficiency is 
obtained. Moreover, a higher speed causes an increased tem-
perature in the cutting area and the hardness of the work-
piece is decreased, as compared to the initial state. A soft 
material leads to a reduction in the cutting energy; hence, 
energy efficiency increases. When V changed from 80 to 
160 m/min, EF increased by 29.7% (Fig. 8a).

As depicted in Fig.  8a, an increased depth of cut 
increases, causing a higher thickness of the un-deformed 
chip and an increment in the contact area between tool and 
workpiece. More materials processed result in larger plas-
tic deformation, leading to greater resistance in the milled 
surface. Therefore, higher active cutting power is required 
and EF improves. When a changed from 0.2 to 1.2 mm, EF 
increased by 46.0%.

It can be stated in Fig. 8a that EF increases by an increase 
in a at a constant value of V. On the other hand, it can be 
seen that EF enhances by an increment in V at a constant 
value of a. a is more significant than V for improving energy 
efficiency.

According to Fig. 8b, when f increases, the reaction forces 
on the X- and Y-axes of the drive system increase. Therefore, 
the active cutting power of the drive system increases. More-
over, a higher value of f leads to an increment in the machin-
ing temperature on the workpiece surface and may cause the 
formation of built-up edge (BUE). The BUE results in an 
increase in the milling force due to a higher contact region 
between the tool and workpiece; hence, higher active cut-
ting power is consumed. Additionally, the BUE causes an 
increment in the mechanical strength of the chip due to the 
work hardening. Obviously, higher active cutting power is 
required to process material and remove the chip. Conse-
quently, higher energy efficiency is obtained. The EF value 
increased by 39.9% when f increased from 0.03 to 0.1 mm/z.

Practically, the process parameters, including the cut-
ting speed, feed, and depth of cut, determine the material 
removal rate value. An increment in the material removal 
rate requires higher active cutting power. As a result, an 
increment in energy efficiency is obtained. The maximi-
zation of energy efficiency can be observed at the highest 
MRR.

As depicted in Fig. 8b, a higher value of r causes an 
increment in the length of the cutting edge, resulting in 
an increased cutting length between tool and workpiece. 
More deformed material is produced in the milling time, 

Fig. 6  Comparison between the predicted and experimental values
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and a higher degree of plastic deformation is generated. 
A higher resistance requires more active cutting power to 
process material and generate a new surface. As a result, 
EF enhances. The EF value increased by 15.8% when r 
increased from 0.2 to 0.8 mm.

From Fig. 8b, it is seen that irrespective of r, EF increases 
by an increase in f. f is more significant than r for improv-
ing energy efficiency. On the other hand, it can be seen that 
EF enhances by an increment in r at a constant value of f. 
To increase energy efficiency, the values of the processing 
conditions should have reached the highest level.

As shown in Fig. 9, it can be stated that an increment in 
the inputs, including the cutting speed, depth of cut, feed 
rate, and radius, leads to a higher power factor. The PO value 
significantly enhances when a increases from 0.2 to 1.2 mm 
and V changes from 80 to 160 m/min. Additionally, PO 
sharply increases when f increases from 0.03 to 0.1 mm/z 
and gradually improves when r changes from 0.2 to 0.8 mm.

When the cutting speed increases, a higher power of the 
spindle system is consumed to ensure the rotational motion. 
A higher acceleration of the spindle motor is required to 
reach the desired value. Consequently, the active power 
increases and PO enhances. When V changed from 80 to 
160 m/min, PO increased by 16.4%.

When the depth of cut increases, a larger contact area 
between tool and workpiece is generated. A higher value of 
the material volume is obtained and larger plastic deforma-
tion occurs on the machined surface. As a result, a higher 
active power is consumed to overcome a greater resistance 
and PO increases. When a changed from 0.2 to 1.2 mm, PO 
increased by 25.5%.

As depicted in Fig. 9a, PO enhances by an increase in a 
at a constant value of V. On the other hand, it can be seen 
that PO enhances by an increment in V at a constant value 
of a. The statistical significance of V is higher than a has for 
enhancing the power factor.

According to Fig. 9b, when f increases, the acceleration 
of the drive system increases to ensure the setting value 
of the feed rate. The active power for the X- and Y-axes 
also increases to satisfy the machining requirement. There-
fore, the active power of the drive system improves and 
PO improves. The PO value increased by 20.0% when f 
increased from 0.03 to 0.1 mm/z.

As shown in Fig. 9b, a higher value of the radius leads 
to an increment in cutting length; hence, more material 
volume is produced. Larger plastic deformation occurs on 
the workpiece surface. Greater resistance is generated and 
more active power is required. As a result, PO improves. 
The PO value increased by 13.0% when r increased from 
0.2 to 0.8 mm.

From Fig. 9b, it is seen that irrespective of r, PO increases 
by an increase in f. f is more significant than r for improv-
ing the power factor. On the other hand, it can be seen that 
PO enhances by an increment in r at a constant value of f. 
To increase the power factor, the values of the processing 
conditions should have reached the highest level.

Figure 10 depicts the influences of machining param-
eters on Ra. As shown in Fig. 10a, the reduction in rough-
ness is associated with an increment in V. An increased 
cutting speed leads to an increase in the temperature of the 
milling region, resulting in a decrease in the strength and 
hardness of the workpiece. The chip is easily processed 

Table 3  ANOVA results for the 
EF model

R2 = 0.9957; adjusted R2 = 0.9782; predicted R2 = 0.9544

Source Sum of squares Mean square F value p value Remark Contri.

Model 582.32,376 41.59455 702.10496 < 0.0001 Significant
V 91.54133 91.54133 1545.19314 < 0.0001 Significant 19.28
a 204.47212 204.47212 3451.43475 < 0.0001 Significant 43.06
f 126.69301 126.69301 2138.54422 < 0.0001 Significant 26.68
r 35.60408 35.60408 600.98728 < 0.0001 Significant 7.50
Va 0.59290 0.59290 10.00799 0.0101 Significant 0.12
Vf 1.00000 1.00000 16.87973 0.0021 Significant 0.21
Vr 0.01279 0.01279 0.21595 0.6521 Insignificant 0.00
af 0.29160 0.29160 4.92213 0.0508 Insignificant 0.06
ar 1.45086 1.45086 24.49021 0.0006 Significant 0.31
fr 0.13721 0.13721 2.31602 0.1590 Insignificant 0.03
V2 0.13255 0.13255 2.23739 0.1656 Insignificant 0.03
a2t 2.50373 2.50373 42.26222 < 0.0001 Significant 0.53
f2 8.68003 8.68003 146.51661 < 0.0001 Significant 1.83
r2 1.71727 1.71727 28.98704 0.0003 Significant 0.36
Residual 0.59243 0.05924
Core total 582.91618
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from the workpiece surface; hence, a low roughness is pro-
duced. A higher value of the cutting speed may decrease 
the chance of the formation of the BUE and a smoother 
surface is produced. Moreover, the reduction in the mill-
ing force is obtained at a higher value of the cutting speed, 
which may decrease the machine vibration; hence, a bet-
ter surface is obtained. The Ra value decreased by 34.6% 
when V increased from 80 to 160 m/min.

As depicted in Fig. 10a, the increased roughness is asso-
ciated with an increased depth of cut. When a increases, 
the contact area between the workpiece and the cutting 
tool increases, resulting in an increased material removal 
volume and the milling force. The material heavily is pro-
cessed from the workpiece surface. This may lead to a 
chatter in the machine tool, and a higher roughness is pro-
duced. The Ra value increased by 103% when a increased 
from 0.4 to 1.2 mm.

From Fig.  10a, it is seen that irrespective of a, Ra 
decreases by an increase in V. On the other hand, it can be 
seen that Ra increases by an increment in a at a constant 
value of V. a is more significant than V for decreasing 
roughness. To achieve a smooth surface, the highest value 
of V is recommended to use, while the lowest level of a 
should be applied.

As shown in Fig. 10b, an increase in roughness is asso-
ciated with an increment in f. A low roughness is generated 
at a low feed rate due to the small distance between the 
peak and the crest of the milled surface. A higher value of 
f leads to an increased distance between the milled peaks. 
Therefore, a higher feed mark is produced on the machined 
surface and a coarsen surface is generated. Moreover, the 
BUE generated by a higher feed rate causes the formation 
of the machined grooves, leading to a reduction in surface 
quality. The Ra value increased by 62.7% when f increased 
from 0.03 to 0.10 mm/z.

It is inferred from Fig. 10 that the contact length between 
the workpiece surface and tool increases when a higher r is 
used. The height of the roughness profile is reduced, and a 
smoother surface is produced. Moreover, the chatter could 
be suppressed due to an increment in stand damping with 
an increased radius; hence, surface finish is generated. The 
Ra value decreased by 31.1% when r increased from 0.2 to 
0.8 mm.

From Fig.  10b, it is seen that irrespective of f, Ra 
decreases by an increase in r. On the other hand, it can be 
seen that Ra increases by an increment in f at a constant value 
of r. f is more significant than r for decreasing roughness. To 
achieve a smooth surface, the highest value of r is recom-
mended to use, while the lowest level of f should be applied.

Fig. 7  Parametric contribution for the RBF models
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The machined surfaces at various machining inputs are 
shown in Fig. 11. The milled faults, including the grooves, 
cracks, and voids, are produced at a higher depth of cut 
(Fig. 11a). A smoother surface is obtained at a low condi-
tion, as shown in Fig. 11b.

The wears of the cutting inserts at different inputs are 
depicted in Fig. 12 [24]. As depicted in Fig. 12a, the smooth 
abrasion mark is produced on the rake face at a low value 

of the depth of cut to the abrasive mechanism and the adhe-
sion of the material. The crater wear on the cutting edge is 
observed at a higher value of the depth of cut, as shown in 
Fig. 12b. The hardness and strength of the insert decreased 
due to higher pressure and temperature.

Table 4  ANOVA results for the 
PO model

R2 = 0.9947; adjusted R2 = 0.9773; predicted R2 = 0.9532

Source Sum of squares Mean square F value p value Remark Contri.

Model 0.193485 0.013820 806.241753 < 0.0001 Significant
V 0.030038 0.030038 1752.338037 < 0.0001 Significant 18.19
a 0.064927 0.064927 3787.650884 < 0.0001 Significant 39.33
f 0.042441 0.042441 2475.904481 < 0.0001 Significant 25.71
r 0.023941 0.023941 1396.674769 < 0.0001 Significant 14.50
Va 0.000361 0.000361 21.059796 0.0010 Significant 0.22
Vf 0.000210 0.000210 12.265435 0.0057 Significant 0.13
Vr 0.000184 0.000184 10.730223 0.0083 Significant 0.11
af 0.000025 0.000025 1.458435 0.2550 Insignificant 0.02
ar 0.000163 0.000163 9.495583 0.0116 Significant 0.10
fr 0.000020 0.000020 1.154846 0.3078 Insignificant 0.01
V2 0.000424 0.000424 24.717893 0.0006 Significant 0.26
a2 0.000010 0.000010 0.579084 0.4642 Insignificant 0.01
f2 0.000001 0.000001 0.041179 0.8433 Insignificant 0.00
r2 0.002352 0.002352 137.205100 < 0.0001 Significant 1.42
Residual 0.000171 0.000017
Core total 0.193656

Table 5  ANOVA results for the 
Ra model

R2 = 0.9938; adjusted R2 = 0.9743; predicted R2 = 0.9523

Source Sum of squares Mean square F value p value Remark Contri.

Model 3.02631 0.21616 47.95672 < 0.0001 Significant
V 0.34102 0.34102 75.65579 < 0.0001 Significant 12.83
a 1.03723 1.03723 230.11185 < 0.0001 Significant 39.03
f 0.71240 0.71240 158.04772 < 0.0001 Significant 26.80
r 0.40701 0.40701 90.29580 < 0.0001 Significant 15.31
Va 0.00490 0.00490 1.08708 0.3217 Insignificant 0.18
Vf 0.00722 0.00722 1.60288 0.2342 Insignificant 0.27
Vr 0.00019 0.00019 0.04310 0.8397 Insignificant 0.01
af 0.00122 0.00122 0.27177 0.6135 Insignificant 0.05
ar 0.00017 0.00017 0.03672 0.8519 Insignificant 0.01
fr 0.00145 0.00145 0.32137 0.5833 Insignificant 0.05
V2 0.00261 0.00261 0.57954 0.4641 Insignificant 0.10
a2 0.00108 0.00108 0.24023 0.6346 Insignificant 0.04
f2 0.11107 0.11107 24.64041 0.0006 Significant 4.18
r2 0.03018 0.03018 6.69462 0.0271 Significant 1.14
Residual 0.04508 0.00451
Core total 3.07138
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4.3  Optimization Results

The developed equations showing the relationship between 
process parameters and machining responses are used to find 
optimal parameters with the aid of the ASA. The optimal 

point with blue color is shown in Fig. 13. The optimization 
results are listed in Table 6. As a result, the reduction in Ra 
is 39.18%, while EF and PO increase around 26.47% and 
22.61%, respectively, as compared to the initial values.

Fig. 8  Interaction effects of the machining parameters on the EF model

Fig. 9  Interaction effects of the machining parameters on the PO model
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Fig. 10  Interaction effects of the machining parameters on the Ra model

Fig. 11  Milled surfaces at dif-
ferent inputs

Fig. 12  The tool wear at differ-
ent inputs
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5  Conclusions

In the current work, the machining parameters, including the 
cutting speed, the feed, the depth of cut, and the nose radius, 
were optimized to enhance the energy efficiency, power fac-
tor, and roughness. The formulations between the inputs and 

outputs were constructed by means of the RBF models. The 
statistical significance was assessed employing ANOVA. 
The ASA was used to predict the optimal values. The main 
findings of this research can be listed as follows:

1. It can be stated that the inputs have significant contribu-
tions to the milling responses. An increment in energy 
efficiency and/or power factor was obtained at high val-
ues of the inputs. A better surface was produced at high 
values of the cutting speed and radius. To decrease the 
roughness, lower values of a depth of cut or feed rate 
should be used. The ANOVA results indicated that the 
milling performances are primarily affected by a, f, V, 
and r, respectively.

2. The correlations of EF, PO, and Ra were developed 
to explore the influences of the inputs on the milling 
performances. The proposed formulations are recom-
mended to use for predicting the technical outputs before 
the experiments because of the high values of the evalu-
ating coefficients.

3. The best milling performances were achieved at V of 
160 m/min, a of 0.08 mm, f of 0.07 mm/z, and r of 
0.8 mm. The enhanced values of EF and PO are 26.47% 
and 22.61%, respectively, while Ra decreases approxi-
mately 39.18% at the optimal point.

4. The Pareto fronts generated by the ASA can signifi-
cantly support the milling operators to select appropri-
ate parameters to maximize the power factor as well as 
energy efficiency and minimize the surface roughness. 
The selection of optimal parameters can decrease the 
efforts required and machining costs as well as time. 
The hybrid approach consisting of the RBF models and 
ASA can widely apply for the optimization of the mill-
ing process instead of using human experience.

5. The main findings of this work can be considered as 
an effective solution in the face milling process, espe-
cially when energy efficiency and machined quality are 
required. The future work may deal with the impacts of 
the inputs on the production costs.

Fig. 13  Pareto fronts generated by the ASA

Table 6  Optimization results 
using ASA

Method Optimization parameters Responses

V (m/min) a (mm) f (mm/z) r (mm) PO EF (%) Ra (µm)

Initial 120 0.80 0.07 0.4 0.681 22.14 0.97
ASA 160 0.85 0.06 0.8 0.835 28.00 0.59
Improvement (%) 22.61 26.47 − 39.18
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