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Abstract—Versatile Video Coding (VVC) is the most recent
video coding standard, released in July 2020 with two major
purposes: (1) providing a similar perceptual quality as the current
state-of-the-art High Efficiency Video Coding (HEVC) solution
at around half the bitrate and (2) offering native flexible, high-
level syntax mechanisms for resolution adaptivity, scalability, and
multi-view. However, despite of the compression efficiency, the
decoded video obtained with VVC compression still contains
distortions and quality degradation due to the nature of the
hybrid block and transform based coding approach. To overcome
this problem, this paper proposes a novel quality enhancement
method for VVC compressed videos where the most advanced
deep learning-based multi-frame quality enhancement model
(MFQE) is employed. In the proposed QE method, the VVC
decoded video is firstly segmented into the peak quality and
non-peak quality pictures. After that, a Long-short term memory
and two sub-networks are created to achieve better quality video
pictures. Experimental results show that, the proposed MFQE
based VVC quality enhancement method is able to achieve
important quality improvement when compared to the original
VVC decoded video.

Index Terms—Versatile Video Coding, Multi-Frame Quality
Enhancement, High Efficiency Video Coding

I. INTRODUCTION

The most recent High Efficiency Video Coding (HEVC) was
developed by jointly cooperating between the ITU-T Video
Coding and the ISO/IEC Moving Picture Experts Group. In
2003, the first version of HEVC was released [1], providing
50% bit-rate reduction as compared to its predecessor, the
H.264 / MPEG-4 Advanced Video Coding (AVC) standard
[2]. Recently, the main increases in the reach and speed
of broadband internet services leads to the share of video
data traffic in global continuing growth. It is already around
80% and is increasing monotonously [3]. Additionally, the
proportion of high-resolution 4K (3840×2160) TV is steadily
growing, and these higher-resolution TVs request the higher
quality video content for reaching their complete potential.
Although a HEVC decoder is equipped with almost every
4K TV to playback high quality 4K video, the data rates
required to deliver that video stream are still rather high. It
is necessary for a new compression that is even more efficient
than the current HEVC standard. To meet that needs, VCEG
and MPEG are working together to develop a new video
coding standard (Versatile Video Coding - VVC or H266)

from 2018 with two main purposes: aiming at another 50%
reduction in bit-rate together supporting and/or improving a
wide range of additional functionalities. Even though VVC
is designed to maintain the compressed video in high quality
with additional coding tools. It still inevitably suffers from
compression artifacts, which may lead to the decline in the
quality of experience (QoE). Therefore, it is necessary to
enhance the QoE of VVC compressed video/images at the
decoder side.

Several works has been done for enhancing the visual
quality of compressed images. Specifically, Liew et al. [4]
introduced an over complete wavelet representation to enhance
compressed images by reducing the blocking artifacts. The
method proposed by Foi et al. [5] applied point-wise Shape-
Adaptive Discrete Cosine Transform (SA-DCT) to reduce the
blocking and ringing effects of JPEG compressed videos.
Several sparse coding approaches were presented to remove
JPEG compression artifacts [7], [8]. Moreover, JPEG image
de-blocking was obtained by exploiting of Regression Tree
Fields (RTF) [6].

For videos, several works have also been done to handle
the compression artifacts for the HEVC videos by improving
the coding efficiency at both the encoder and decoder sides.
To deal with this issue, Rate-Distortion Optimization (RDO) at
the encoder was proposed in [16]. The visual quality of HEVC
videos was improved by adding an in-loop filter after the
original one [9]. Applying Structure-driven Adaptive Nonlocal
Filter (SANF) at both the encoder and decoder sides of HEVC
was proposed by Zhang [10] which applied together with
the Deblocking Filter (DF) as well as sample adaptive offset
(SAO) filter.

Recently, applying deep learning has also been succeeded
in improving the visual quality at both encoder and decoder
sides. The re-trained SR-CNN [12] was replaced by the HEVC
SAO filter to enhance the video quality. Later, the extension
of AR-CNN [14], VRCNN [11], was proposed by Dai as an
advanced in-loop filter in HEVC intra-coding without bit-rate
increase. Nevertheless, it is necessary to modify the HEVC
encoder, hence unsuitable for existing HEVC bitstreams. Most
recently, Wang introduced a deep network at the decoder
side to improve the visual quality of HEVC decoded videos,
which possibly is applied to the existing video streams [13].



Yang et al. proposed quality enhancement convolutional neural
network method named QE-CNN [17] to reduce the distortion
of HEVC I and P/B frames. This author also developed
Multi-Frame Quality Enhancement (MFQE) [18] including
a Support Vector Machine (SVM) classifier to detect Peak
Quality Frames (PQFs) and a novel Motion-Compensation
subnet (MC-subnet) to compensate the temporal motion be-
tween neighboring frames. Zhenyu Guan [19] improved it
by developing a novel Multi-Frame Convolutional Neural
Network (MF-CNN) with a Bidirectional Long Short-Term
Memory (BiLSTM) detector, called MFQE 2.0.

To the best of our knowledge, there is no method for the
visual quality enhancement for versatile video coding streams.
This paper proposes a deep learning approach for improving
the quality of compressed videos using the recent VVC stan-
dard by applying MFQE 2.0 framework at the decoder side.
The experimental results prove that the proposed approach is
possible to enhance the visual quality of the compressed videos
by VVC standard.

The rest of this paper is organized as follows. Section II
presents a brief introduction VVC as well as MFQE. Section
III describes the . The experimental results are given in Section
IV. Finally, Section V concludes this paper.

II. RELATED WORK

A. Background work on Versatile Video Coding
This subsection briefly describes the versatile video coding

standard (VVC). Several system functionalities for a wide
range of applications are also added together with the standard:

• Support for high resolutions from 4K to 16K video:
Larger and more flexible block structures are extended
to support for higher resolutions together with a luma
adaptive de-blocking filter designed for HDR video char-
acteristics.

• Support for 360-Degree Video: VVC includes an ef-
ficient coding tool of immersive video including 360-
Degree Video.

• Computer Generated or Screen Content: VVC is
expected to extend the HEVC screen content coding by
intra block copy (IBC) block-level differential pulse code
modulation (BDPCM), adaptive color transform (ACT)
and palette mode coding as well as full-sample adaptive
MV precision.

• Ultra-low Delay Streaming: Gradual Decoder Refresh
(GDR) integrated into VVC to avoid bit-rate peaks allows
smooth the bit-rate of a bit-stream by distributing intra-
coded slices or blocks in multiple pictures as opposed
intra-coding entire pictures.

• Resolution Allowance: VVC supports an adaptive stream
by taking advantage of reference picture re-sampling.

• Scalability Support: VVC also assists the multi-layer
coding by using a single-layer-friendly approach.

The VVC encoding framework is depicted in 1. Although
the same coding framework as HEVC standard is applied, a
lot of novel coding tools are added in each module of VVC to
further enhance the compression ratio summarized as follows:

Fig. 1. Block diagram of VVC encoding framework

• Block Partitioning: The quad-tree with multiple partition
unit types in HEVC is replaced by a quad-tree with nested
multi-type tree using binary and ternary splits partitioning
structure. Additionally, the maximum Coding Tree Unit
size and transform length are increased to 128× 128 and
64, respectively.

• Intra-Picture Prediction: Intra prediction from adja-
cent reference samples are obtained from neighboring
blocks in the same image. VVC expands intra prediction
by increasing to 67 types with 65 directional angular
modes from 35 and 33 from HEVC, respectively together
with the more planar, DC, cross-component linear model
(CCLM) and matrix weighted intra prediction (MIP).

• Inter-Picture Prediction: Inter coding features from
HEVC is modified by adding the two essential motion
information coding methods: the merge mode and the
advanced MV prediction (AMVP). Moreover, Sub-block
based motion inheritance is introduced in VVC to divide
the current CU into sub-blocks with equal size. Addition-
ally, VVC introduces MV refinement and bi-directional
optical flow methods to improve the motion compensation
result in the further enhancement of prediction quality.

• Transforms and Quantization:The better energy com-
paction for the residual signals of large sized smooth
areas thanks to the extension the maximum transform
size to 64 × 64. To obtain better energy compaction of
the residual signals, multiple transform cores using a pre-
defined subset of sinusoidal transforms is applied in VVC
with the transform selection signaled at CU level.

• Entropy Coding: Compared to the CABAC design in
HEVC, two major changes are included in VVC: 1) A
binary arithmetic encoder applied with the high accuracy
multi-hypothesis probability estimate 2) Transform co-
efficients coding with improved context modeling, and



Fig. 2. The proposed quality enhancement for VVC videos

coding combination of chroma residuals of both Cb and
Cr components.

• In-Loop Filter: The recent VVC standard designs an
adaptive loop filter (ALF) after deblocking and SAO
filters to reduce the potential distortion introduced by
quantization and transform process. It also introduces a
new luma mapping with chroma scaling (LMCS) that
modifies the input signal before deblocking.

B. Multi-frame Quality Enhancement

As mentioned above, several quality enhancement ap-
proaches possibly are applied to the video streams at de-
coder side. Yang proposed Quality Enhancement Convolu-
tional Neural Network (QE-CNN) method [17] for reducing
the distortion of both I and P/B frames. This is first CNN
model developed to determine distortion features of intra/inter
coding result in enhancing effectively the quality of both I
and P/B frames. A multiple model including QE-CNN-I and
QE-CNN-P is designed to concatenate the intra- and inter-
coding distortion features to enhance the compression quality.
To meet the real-time requirement, a time-constrained quality
enhancement optimization scheme was proposed to trade-off
the computational complexity and the QoE. Yang also utilized
the existence of large quality fluctuation across frames to
develop MFQE 1.0 [18] for compressed video with three main
components: SVM based PQF detector, MC-subnet and QE-
subnet. A Support Vector Machine classifier was trained to
detect Peak Quality Frames (PQFs) by extracting 36 spatial
one-dimensional features from the five consecutive frames.
MC-subnet was designed to compensate for the temporal
motion existing between non-PQFs and PQFs across frames.
The architecture of our MC-subnet was developed based on
Spatial Transformer Motion Compensation (STMC) method
for multi-frame super-resolution [23]. The compensated PQFs
of MC-subnet can be enhanced by third component QE-
subnet. Its architecture is designed to handle the spatio-
temporal information. Zhenyu Guan [19] improved MFQE by
replacing SVM based PQF detector by another detector based
Bidirectional Long Short-Term Memory (BiLSTM) and adding
the multi-scale strategy, batch normalization as well as dense
connection to QE-subnet, called MFQE 2.0.

III. PROPOSED VVC QUALITY ENHANCEMENT

In this section, we present a deep learning approach to
improving the VVC compressed videos, namely MFQE VVC.
As shown in [19], MFQE 2.0 successfully applied to the
HEVC video to increase the PSNR around 0.5dB on average. It
achieves the state-of-the-art quality enhancement performance
for compressed images. In the most recent VVC standard,
several coding tools are added with an expectation of en-
hancing the visual quality and reducing the bit-rate. Even
though, the visual quality of VVC compressed video increases
compared to that of HEVC, it still un-avoid compression
artifacts. To obtain the higher visual quality at the decoder
side, a quality enhancement method for VVC is necessary to
develop, obviously. To the best of our knowledge there is no
solution for this problem of recent VVC standard. To deal
with this issue, we take advantage capability of MFQE 2.0 in
quality enhancement that will be applied to the HEVC videos
successfully.

A. Proposed MFQE VVC Framework

Our proposed approach is described specifically in Fig.2.
We focus on improving the compressed video coded by recent
VVC standard. At encoder side, the raw video go through
VVC to be the compressed video with size reduction. At
decoder side, the compressed videos as input of the qual-
ity enhancement framework including BiLSTM based PQF
detector, MC-subnet and QE-subnet. The BiLSTM network
detect PQFs without reference that extract the long- and
short-term correlation between PQF and non-PQF. The role
of MC-subnet is to compensate for the temporal motion of
between the current non-PQF and its nearest PQFs in advance.
As mentioned above, QE-subnet architecture is designed to
handle the spatio-temporal information, therefore the quality
of the compressed video is enhanced. The performance of our
approach is validated in the next section.

B. Multi-frame Quality Enhancement Model

Note that, the quality of compressed videos fluctuate across
frames dramatically. In general, a compressed video is a
sequence of images including key-frame in which its quality
is higher than that of neighboring frame. Therefore, the high-
quality frames (PQFs) are used to enhance the quality of
their neighboring frames in low-quality (non-PQFs) possibly.



In video quality enhancement, raw images are unavailable
so PQFs and non-PQFs are unknown. The effectiveness
and generalization ability of MFQE approach in advancing
the state-of-the-art compressed video quality enhancement
method thanks to three essential techniques: a BiLSTM-based
PQF/non-PQF detector for extracting the dependencies from
both backward and forward directions, a MC-subnet for the
temporal motion across frames and QE-subnet for quality
enhancement. BiLSTM network extracts the ”long- and short-
term correlation” between PQF and non-PQF based the quality
fluctuation frequent appearance in compressed video. 38 fea-
tures are extracted for each image are the input to BiLSTM in
form of a 38-dimension vector including number of assigned
bits, quantization parameters and 36 features at pixel domain
extracted by the non-reference quality assessment method [20].
Since PQFs are detected, the quality of non-PQFs was en-
hanced by taking advantage of their neighboring PQFs. Several
coding tools have been added into VVC standard to enhance
the compressed frames, therefore the quality of both PQFs and
non-PQFs increases. MC-subnet based on the CNN method
of Spatial Transformer Motion Compensation was developed
to compensate for the temporal motion between neighboring
frames. To handle large scale motion, STMC estimated the two
levels down-scale x4 and x2 motion vector maps. However,
the down-scale leads to the accuracy reduction of motion
vector estimation. For that reason, in addition to STMC, MC-
subnet developed a concatenation layer for pixel-wise motion
estimation that is a convolutional layer concatenating non-PQF
and PQF. The input of QE-subnet includes the compensated
previous and subsequent PQFs as well as the non-PQFs.
The spatial and temporal features of these three frames are
extracted and fused to gain advantageous information in the
adjacent PQFs for enhancing the quality of the non-PQFs.

IV. PERFORMANCE EVALUATION

This section presents the experimental results to validate
the effectiveness of our proposed approach, MFQE VVC.
Different from previous method proposing MFQE 2.0 on
HEVC compressed video, in this paper we apply MFQE
2.0 on VVC compressed video. Specifically, we evaluate the
quality enhancement performance of MFQE V V C method
in terms of 4PSNR (Peak signal-to-noise ratio), which calcu-
lates the PSNR difference between the enhanced and original
compressed sequences via the mean squared error (MSE).
In this case, the signal is the original data, and the noise
is the error introduced by compression. We evaluate the
proposed approach on 8 standard test sequences created by
Joint Collaborative Team on Video Coding (JCT-VC) [21]
with different setting the Quantization Parameters (QPs) to 22,
27, 32 and 37, respectively. These sequences are video high
definition including HD and FHD resolution. The experimental
results show that MFQE VVC improves the visual quality of
the compressed video. Currently, we use the optimal setting
of MFQE for HECV videos for testing the VVC videos. That
mean, we keep all the training and testing parameters such as
epoch number, learning rate from MFQE 2.0 method. The

LSTM length is set to 8. The input of MF-CNN network
is the raw and compressed videos segmented into 64 × 64
patches.The batch size is set to be 128. The initial learning
rate for MC-subnet is set oversize 0.001. Two parameters a, b
of QE-subnet are set a = 0.01 and b = 1, respectively in order
that the QE-subnet can converge fast.

To show the quality enhancement performance, the 4PSNR
is defined by the following equation

4PSNR = PSNRMFQE V V C − PSNRV V C (1)

Firstly, we measure 4PSNR of our quality improvement
method for 8 test sequences. The results for different QPs are
shown detail in Table I. The results in this table indicate that
the PSNR increases 0.20 dB on average. It also reveals the
increase trend along different QPs for all tested sequences. In
general, the higher PSNR gain is at QP 37 for each sequence.

TABLE I
PSNR GAIN WITH THE PROPOSED APPROACH

Sequence QP

37 32 27 22

PeopleOnStreet 2560x1600 150 0.246 0.158 0.123 0.077

Kimono 1920x1080 240 0.203 0.143 0.135 0.094

ParkScene 1920x1080 240 0.25 0.214 0.237 0.144

PartyScene 832X480 500 0.264 0.196 0.264 0.233

RaceHorses 832x480 300 0.046 0.068 0.046 0.025

BasketballPass 416X240 500 0.299 0.297 0.299 0.269

BlowingBubbles 416x240 500 0.41 0.317 0.41 0.395

RaceHorses 416x240 300 0.169 0.169 0.174 0.168

Average 0.236 0.196 0.211 0.175

Fig. 3. PSNR curves of for video sequence enhanced by MFQE VVC

To imagine easily the increasing trend of the different
PSNR, we visualize the results in the table for four sequences
PeopleOnStreet, Kimono, ParkScene and BasketballPass along



with the QPs in Fig. 3. The PSNR gains for four sequences
monotonously increase in general. Four chosen sequences
including all motions may lead to quality degradation such
as slow motion, fast motion, complex motion...etc. The PSNR
gain with the proposed method is around 0.2 dB that is similar
to that of the method exploiting temporal structure and spatial
details for VVC compressed videos [24],

The results in Table I and Fig. 3 verify that our proposed ap-
proach can enhance the visual quality of the VVC compressed
video.

V. CONCLUSION

This paper introduced a quality improvement approach for
VVC compressed video. The novelty of our approach lies
in utilizing the multiple frame quality enhancement based
deep learning framework for the recent VVC standard. The
performance comparison to the origin VVC in experimental
results reinforce the applicability of the proposed method.
In the future, we plan to redesign PQF detector and MC-
subnet more suitable for VVC compressed video to further
increase the visual quality. And then, more video sequences
are extended to evaluate.
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