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Abstract—This paper demonstrates the performance evalua-
tion of UAV detection based on micro-Doppler radar image data
with the proposed inception-residual neural network (IRNN).
Accordingly, the network is designed and analyzed by changing
network hyper-parameters through experiment with the Real
Doppler RAD-DAR (RDRD) dataset that is collected by the
practical measurements. Numerical analysis results show that
the proposed network with 16 filters yield a good trade-off
between accuracy and time-consuming performances. Moreover,
the network is taken into account for competing with three
other networks. Due to inception-residual structure, the proposed
network remarkably outperforms other ones.

Index Terms—Neural network, Micro-Doppler
Inception-residual neural network, UAV detection

radar,

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are robots which can fly
remotely or autonomously without a human operator. Thanks
to recent technological advances, UAVs are developed for wide
rage of applications. Due to their relatively small size, ease
of use, and flying capability, UAVs bring continuing growth
in applications from government authorities to commercial
related tasks used by civilians such as border security, law
enforcement, wildfire surveillance, agriculture, construction,
insurance, and general cinematography [1]. A recent study
shows that the global commercial UAV market size was valued
at $5.8 billion in 2018, is expected to grow from $16 billion in
2020 to $30 billion by 2025 [2]. However, their characteristics
such as the versatility, ease of use, cheap price as well as wide
availability also bring serious security threads by malicious
use for criminal activities. A recent report shows that UAVs
have been used for evil purposes, such as collision hazards,
deployment of explosive weapons, smuggling of illegal sub-
stances and privacy violations. To deal with these existing as
well as future threads, the government have to possess the
right equipment against illegal UAVs. Therefore, development
of an anti-UAV system is extremely urgent.

UAV detection is the most important function in the anti-
UAV system. Usually, UAVs are possible to be detected by
analysing the signature of appearance captured by individual
or integrated equipment, such as camera [3], radar [4], acoustic
sensor [5] and radio frequency (RF) sensor [6]. Compared
to other technologies, radar is able to provide long-range

detection up to tens of kilometers subjecting to the target
radar cross section (RCS) [8] in different conditions of light
and weather with almost unaffected performance. Initially, the
purpose of developing radar is to detect standard aircraft with
relatively large RCS and high velocity, it is reported that is
not suitable for detecting small RCS targets, flying low and
slow trajectories [7]. Furthermore, it reported UAVs and birds
sharing same key characteristics. The reliable classification
between the two targets is very important to take countermea-
sures against drones is a key challenge to consider. Therefore,
new radar architectures have been specifically designed for this
application. Radar-based UAV classification is divided into two
categories: based on handcrafted features and based on deep-
learning features. The former selects feature through oriented
signal processing techniques. Ren and Jiang distinguished
between UAV and non-UAV targets by producing a complex
log spectrum from the magnitude and phase information of the
Fourier transform [9]. Torvik proposed a method to distinguish
between large birds and UAVs of comparable size by using up
to 12 polarimetric features and obtained an accuracy around
99% [10]. Zhang computed short time Fourier transform
(STFT) from a dual band radars and then used a support
vector machine (SVM) for classifying three different types of
UAV [11]. The later utilizes the features generated from deep
neural networks. Mendis used a deep belief network (DBN)
to train spectral correlation function (SFC) generated from
data captured by a S-band CW radar. This method achieved
an accuracy around 97% for three different types of micro-
drones. By simulation, Choi described UAVs as primitive
shapes, such as cylinders, ellipsoids, as well as spheres and
analyzed characteristic of whose RCSs in order to collect of
500 spectrograms [12]. A CNN model was designed to train
these spectrograms to classify several types of drones obtained
accuracy 93%.

In this paper, we propose the inception-residual neural
network (IRNN) for target classification based on micro-
Doppler radar image data. The proposed IRNN approach is
analyzed by tuning the hyper-parameters to seek a trade-off
point between computational complexity and accuracy. The
experimental results on the Real Doppler RAD-DAR (RDRD)
database indicate that our approach can detect the UAV with
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the confidence up to 99.5% .

The rest of this paper is organized as follows. In Section II,
we describe in detail the Real Doppler RAD-DAR database
(RDRD) that is used for performance evaluation. Our design
of IRNN model for UAV detection based on micro-Doppler
radar is introduced in Section IIT . The experimental results are
given in Section IV with different scenarios and comparison
to the-state-of-the-art methods. Finally, Section V concludes
this paper.

II. DATASET DESCRIPTION

The performance of the proposed neural network-based
UAV detection is evaluated through a public dataset, namely
RDRD dataset, that is available in [13], [14]. Accordingly, the
dataset was gathered by a practical measurement of a digital
array radar system developed by the Microwave and Radar
Group. The radar system works at a center carrier frequency of
8.75 GHz, and a maximum bandwidth of 500 MHz. Through
a digital signal processing step, a Doppler-range image of size
4092 x 512 for each capture is obtained. The pixel value of
the Doppler-range image is assigned in dBm. Once a target
is detected based on a constant false alarm rate (CFAR)
technique [15], a frame of size 11 x 61 around the target is
captured. As a result, the dataset that consists of 17,485 frames
of size 11 x 61 of cars, drone, and people. The distribution of
cars, drone and people in the dataset is summarized in Fig. 1.
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Fig. 1: Distribution of cars, drones, and humans in RDRD

dataset.

It can be seen that the numbers of frames that corresponds
to each target category are enough balanced for analyzing
and evaluating the performance of the designed network. For
illustration, Fig. 2 shows how the target-like car, drone, and
human appears in the Doppler-range image frame of the radar
system. In this framework, we intend to divide randomly the
dataset into 80% for training and 20% for testing.

III. PROPOSED CNN BASED UAV DETECTION METHOD

Inspired by deep learning for image processing, computer
vision [16]—[18], and biomedical informatics [19], [20], CNNs
has been recently exploited for handling several challenging
tasks in communications [21]-[24]. Thus, in this work, we
design a CNN with inception-residual architecture, as shown in
Fig. 3. As can be seen in Fig. 3a, the proposed IRNN consists
of three parts, including input, inception-residual, and output
blocks. Accordingly, the input block contains four consecu-
tive layers, including input, normalization, convolution, and
activation layers. The input of network has to be designated
with a size of 11 x 61, which must equal the size of target
frame. The input layer is followed by a batch normalization
layer, which accelerates the learning process of neural network
and overcomes the vanishing gradient problem. Assume that
z is input data of the bath normalization layer with a mini-
batch size of B, then the normalized output is defined by the
following formula:

b= L2 (1)

Vor +e

where 15 and 0% are mini-batch mean and variance, respec-
tively. They are defined in turn as follows:
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Despite accelerating deep network training, the batch normal-
ization layer results in an increment of time-consuming of the
prediction process in real systems.

Following the batch normalization layer is a convolution
layer with K kernels of 1 x 1 size, which creates K channels
for subsequent blocks. The two-dimensional (2D) convolution
can be defined by the following equation:

y(i,5)= > > himn)-a(i-mj-n) @

m=—00 N=—00

where x presents an input matrix that is convoluted with the
kernel matrix h to provide an output matrix y.

In deep learning techniques, activation function is a crucial
component, that determines whether the input values should
be activated or not. For example, the well-known activation
function, Rectified Linear Unit (ReLU), that has formula as
y = max(0,x) activates when z is positive and makes null
for negative x. The ReLU function is computationally efficient
because of quickly convergence. However, the network using
ReLU function cannot perform back-propagation and cannot
learn if the gradient of the function becomes zero. To over-
come the dead problem of ReLLU, an Exponential Linear Unit
(ELU) was proposed in [25] that can still activate for negative
input values. Based on that characteristic, the ELU function
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Fig. 2: Illustration of gathered frames of (a) car, (b) drone, and (c) human from the micro-Doppler-radar system.
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can speed up learning rate and result in a higher classification
accuracy. The ELU function can be expressed as follows:
x

_ ifx >0
y= a(e® —1)

ifx <0
where « is a scale value between 0 and 1. The derivative of
the ELU function is:

5

The derivative of ELU is simple enough that accelerates the
training process.

The inception-residual blocks (I-R blocks) are consecutively
connected to each other from input to output blocks. Each

(&)

1
Y+«

ifx >0

ifr <0 ©

it Inception-Residual

'
[

base

base

conv
K*kx1

conv
K*kx1

add

(e)

Fig. 3: Overall architecture of neural network model for micro-Doppler radar-based UAV detection.

(d)

block, as shown in Fig. 3b, has a structure of an inception mod-
ule (I-module) combined with skip-connection that prevents
the vanishing problem of network. There are two branches
inside of the I-module, each of which consists of residual
sub-module (R-submodule) followed by an ELU activation
function layer, as shown in Fig. 3c. R-submodules 1 and 2
have the same number of filters, but they are assigned with
different filter sizes. For example, in our study, k = 5 is for
R-submodule 1 and k£ = 7 for the R-submodule 2. Subse-
quently, each R-submodule contains an inception submodule
(I-submodule) and its skip-connection (Fig. 3d). Then, each
I-submodule is constructed by two branches of convolution
layers. If the first branch is a convolution layer with K filters
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of size k x 1, then the second one has one of size 1 X k,
as shown in Fig. 3e. This design facilitates the reduction of
network trainable parameters. The proposed architecture has
several advantages as follows:

o reduction of trainable parameters,

« prevention of vanishing and over-fitting problem by using
the residual connection,

« learning more robustness feature by using inception mod-
ule and ELU function,

« increment of training rate thanks to batch normalization.

IV. EXPERIMENT RESULTS AND DISCUSSION

In this work, our network model is evaluated in terms
of classification accuracy, time-consuming, and number of
trainable parameters with different variants of filter number,
and I-R block number. Each variant of the proposed model is
trained with the dataset mentioned above. The training option
is set with initial training rate of 0.01, which will be dropped
50% for each two epochs. The training process is executed in
20 epochs by a computer with the hardware configuration of
Intel(R) Core(TM) i5-8500 CPU@3.0GHz, RAM 16GB, and
GPU RTX 2070-Super 8GB.

A. UAV Detection Performance with Different Numbers of
Filters

The CNN network model is designated with two I-R blocks,
and different numbers of filters, such as {8, 16, 32, 64}. Many
research works have confirmed that the more filters are de-
signed, the higher the classification accuracy of the neural
network is. However, due to a small number of output classes
(3 classes), our model yields the highest classification accuracy
when it is designated by 16 filters in convolution layers, as
presented in bold in Table I.

TABLE I. UAV Detection Performance with Different Num-
bers of Filter.

Classification Accuracy (%)

No. filters Average | Car | Drone | Human
8 97.8 95.6 98.0 99.7
16 98.5 97.0 98.5 99.7
32 98.34 96.7 98.4 99.7
64 98.2 96.5 98.2 99.7

B. Comparison Results

Competition between our proposed model with other ex-
isting ones is performed. In same task of target classifica-
tion, we consider three models, namely NasNet-Mobile [26],
MobileNetV2 [27], and DopplerNet [14], which have been
evaluated on the same micro-Doppler radar image dataset.

The NasNet-Mobile model, whose input has a size of
224 x 224, is trained on more than a million images from
the ImageNet database [28]. It can classify images into 1000
object categories, such as keyboard, mouse, pencil, and many
animals. In this comparison, we modify the input size of
NasNet-Mobile to be of 11 x 61 and the output size to be
of 3 in order to satisfy the range-Doppler image dataset.
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Fig. 4: Accuracy, time-consuming, and structural comparison
between proposed models with other existing models.

The MobileNetV2 is a lightweight model that can improve
the performance of mobile models on multiple tasks. The
MobileNetV2 architecture is composed of residual structures,
where the input and output of the residual blocks are bottle-
neck layers. It is similar as for the NasNet-Mobile model, the
input and output sizes of the MobileNetV2 are modified to be
of 11 x 61 and 3, respectively.

DopplerNet is a simple network, which consists of one
convolution layer with 32 filters, filter size of 3 x 3, and four
fully connected layers, in which three first ones have an output
size of 64 and last one has an output size of 3 that corresponds
to the number of target class names. The DopplerNet model
has been evaluated on the same dataset that we perform in
this paper. However, in that work, the network performance
is only analyzed according to concatenated frames. In this
comparison, we select three variants of the proposed model
for competing with other models. These variants include the
models of 4 I-R blocks (namely Proposed-4), 5 I-R blocks
(namely Proposed-5), and 6 I-R blocks (namely Proposed-6).

The numerical results shown in Fig. 4 indicate that the
DopplerNet model has the smallest number of learnable pa-
rameter resulting in the fastest prediction time (0.7 ms) but
obtaining the lowest average classification accuracy (96.8%).
The MobileNetv2 model that has larger structure than Doppler-
Net achieves higher accuracy (98.5). However, it rises more
computational complexity that leads to lower prediction time
(1 ms) than DopplerNet and proposed ones. NasNet-Mobile
has approximately 4.3 million parameters that are two times
greater than MobileNetV2; therefore, it can more accurately
classify the car, drone, and human but takes a lower pre-
diction process (up to 2ms). In contrast, with the clever
design of inception-residual combination, despite having small
learnable parameters (approximately 55k parameters, that are
comparable with the number of parameters of DopplerNet,
approximately 52k parameters), our proposed models yield
higher classification accuracy than three above-mentioned
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ones. Additionally, the proposed models execute classification
in a short time (approximately 0.8 ms). Moreover, it can be
seen in Fig. 4 that the proposed network that is designed by
more [-R blocks achieves higher accuracy than that of fewer
ones. However, more I-R blocks result in a larger network and
longer prediction time.

V. CONCLUSION

In this study, we have proposed a novel neural network
model, which has been designed by using a combination of
inception and residual conceptions. The proposed network per-
formance in terms of classification accuracy, time-consuming,
and computational complexity has been demonstrated via
experiment on the RDRD dataset. In addition, various variants
of our model are taken into account to compare with other
existing models. Accordingly, the numerical results show
that the model with 16 convolution filters yields the highest
accuracy. Regarding the impact of the number of I-R blocks on
the classification performance of the network, we can confirm
that the more the I-R blocks are designed, the more accurately
the model classifies. In comparison, despite having a small
number of learnable parameters, our chosen networks achieve
higher classification accuracy and faster prediction time than
other considered models. For future works, we intend to
extend the model for multimodal (video, radar, audio, and RF
data) networks, which can enhance the drone detection and
classification performance of surveillance systems.
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