
Improving the efficiency of human action
recognition using deep compression

Hai-Hong Phan
Department of Information Technology

Le Quy Don Technical University
Ha Noi, Vietnam

haihongpt84@gmail.com

Chi Trung Ha
Department of Information Technology

Le Quy Don Technical University
Ha Noi, Vietnam

eldic2009@gmail.com

Trung Tin Nguyen
Department of Information Technology

Le Quy Don Technical University
Ha Noi, Vietnam

khachmoscow@gmail.com

Abstract—Convolutional neural networks (CNNs) have become
the power method for many computer vision applications, includ-
ing action recognition. However, they are almost computationally
and memory intensive, thus are challenging to use and to
deploy on systems with limited resources, except for a few
recent networks which were specifically designed for mobile
and embedded vision applications. In this paper, we propose
a novel feature for human action recognition as an input for
CNN, named MOMP Image. This idea is simple but quite
beneficial since we can directly use the existing CNN models
for fine-tuning. We also propose a novel pruning algorithm
to decrease computational cost and improve the accuracy of
action recognition. The strategy can measure the redundancy of
parameters based on their relationship using the covariance and
correlation criteria and then prune the less important ones. Our
method directly applies to CNNs, both on convolutional and fully
connected layers, and requires no specialized software/hardware
accelerators. The proposed method is the first time applying
network compression for human action recognition. We evaluate
our system in the context of action classification on the large-scale
action datasets. Our method obtains promising performance as
compared to other approaches. The proposed method reduces
the model size and decreases over-fitting and therefore increases
the overall performance of CNN on the large-scale datasets.

Index Terms—human action recognition, network compression,
network pruning

I. INTRODUCTION

The shallow learning based on the hand-crafted features is
traditional techniques that are designed beforehand by experts
to extract a set of chosen characteristics. By contrast, the
deep network-based representations can automatically obtain
a set of features learned directly from the input images. Over
time, the number of traditional features has increased to better
adapt to the various tasks being tackled by researchers, and
have achieved the remarkable results in a large number of
computer vision applications, including image classification
and action recognition. In recent years, deep networks [1]–
[6] have obtained amazingly high recognition accuracy on
a variety of action datasets, especially the large-scale ones.
In fact, some of methods [1]–[3], [5]–[9] obtained the best
performance when combining deep learning approaches with
hand-crafted features. For instance, recent methods [1], [6]–
[10] achieved their best performance when incorporating static
images in videos to other traditional features like improved
trajectory [11]. We can give some specific examples as follows.

Feichtenhofer et al. in [6] proposed to combine the appearance
and motion pathways of a two-stream architecture by motion
gating and is trained end-to-end. The method obtained an in-
crease of 3.7% on the HMDB51 dataset [12] when combining
with improved trajectory [11]. Another example, Bilen et al.
in [7] obtained an increase of 7% in the experiment results
when their algorithm is combined with the static images and an
increase of more than 20% when their algorithm is combined
with the static images and the improved trajectory [11].
Derived from that problem, in this chapter, we will propose
the novel system based on combining the traditional features
with efficient deep neural networks for action classification
tasks. To be more precise, we will integrate a novel descriptor
into deep learning networks.

For the above purpose, we first propose a novel feature
so that it can be used as an input of CNNs, and we call it
MOMP Image. MOMP Images are the compact representation
for video analysis. The MOMP Images can be directly applied
into any existing CNN models with fine-tuning for the action
recognition task. We will detail the algorithm in section III-A.

Besides the success of deep networks in human action
recognition, the bigger and deeper models and their tremen-
dous computing are the huge problems. Indeed, training these
end-to-end networks is very costly. To address this problem,
we also propose a novel pruning algorithm based on the in-
formation theory (i.e., covariance and correlation coefficients)
to measure the importance of parameters in a deep neural
network. The algorithm demonstrate its efficiency for the
large-scale action recognition task (will be detailed in Section
III-B).

Figure 1(b) illustrates our algorithm to classify actions. Our
system differs from the original networks (as illustrated in
Figure 1(a)) in two aspects:

(1) We propose the MOMP Image which can be used as
the input of any existing CNN models and better represents
action.

(2) We propose a pruning algorithm to compress the CNN
model in order to reduce the computational cost and the
model sizes, thus speed up the system as well as improve
the classification performance.
We evaluate our system on the UCF101 and HMDB51 datasets
for action classification. Our method obtains promising per-

978-1-7281-6555-4/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 22:34:24 UTC from IEEE Xplore. Restrictions apply.

Action class

Action class

(a) Orignal network

(b) Pruned MOMP Image network

MOMP Image feature Pruned network

Fig. 1. Illustration of the original network (a) and the pruned MOMP Image
network (b).

formance in comparison with other approaches when it can
reduce the computational expense.

The rest of this paper is organized as follows: we briefly
related work in Section 2. Then, we describe the algorithm
in detail in Section 3, and experiment results are presented in
Section 4. Finally, we conclude this paper in Section 5.

II. RELATED WORK

Following the trend in computer vision, moving towards
deep architectures is dominating the action recognition re-
search lately. Considering deep architectures for action recog-
nition, the keywords to remember would be 3D convolutions,
temporal pooling, two-stream, and Long Short-Term Memory
networks (LSTMs). In [13], Le et al. applied the stacked ISA
(Independent Subspace Analysis - an unsupervised learning
algorithm) to learn features for videos. Although having good
performance, this method has intensive computational cost.
Ji et al. proposed 3D CNNs [14] which constructs features
from both spatial and temporal dimensions by performing 3D
convolutions for human action recognition.

Recently, Simonyan and Zisserman [2] used two stream
networks to achieve excellent results on action recognition.
The spatial stream network accepts raw video frames while the
temporal stream one gets optical flow fields as input. Tran et
al. [1] introduced generic video descriptors named C3D based
on 3-D convolutional network. Interestingly, numerous works
[15]–[17] have shown that the performance of CNN architec-
tures can be improved using hand-crafted features. Girdhar
et al. [5] integrated state-of-the-art two-stream networks with
learnable spatio-temporal feature aggregation. The method
obtains the great performance on different video classification
benchmarks.

However, training these end-to-end networks with fully
convolutional kernels is very computationally expensive. This
results in large model size (i.e., memory usage and disk
space), and can lead to over-fitting due to a large number
of parameters while only limited human action datasets are
available. Except a few recent methods with small model size,

which were specifically designed for mobile and embedded
vision applications, almost CNNs are challenging to utilize
and deploy on systems with limited resources. There has been
rising interest in building small and efficient neural networks
in the recent literature [18]–[20]. Many different approaches
can be generally categorized into either compressing pre-
trained networks or training small networks directly. Many
researchers have found that deep models suffer from heavy
over-parameterization. For example, Denil et al. [21] demon-
strated that a network could be efficiently reconstructed with
only a small subset of its original parameters. However, this
redundancy seems necessary during model training, since the
highly non-convex optimization is hard to solve with current
techniques [22], [23]. Therefore, reducing model size after its
training is essential.

In recent years, deep compression has become an active
research topic. Many works focus on dealing with the chal-
lenges of deep compression in order to speed up the networks
and reduce storage memory. Deep compression techniques can
be roughly categorized into five schemes: weight pruning /
sparsity, structured pruning / sparsity, low-rank decomposition,
weight quantization, and neural architecture learning. Han
et al. [18] pruned the small parameters which are mostly
zeros: all connections with weights below a threshold are
removed from the network. However, parameters with small
values do not mean that they are not important. In [24],
Han et al. also proposed another method to exploit the
weight sparsity and compress CNNs by combining pruning,
quantization, and Huffman coding. Srinivas et al. in [25]
imposed sparse constraint over each weight with additional
gate variables, and achieved high compression rates by pruning
connections with zero gate values. This method achieved a
better compression rate than the algorithm of Han et al. in
[18]. Li et al. [26] measured the importance of each filter by
calculating its absolute weight sum. Molchanov et al. [27]
adopted Taylor expansion to approximate the influence to
loss function induced by removing each filter. Our network
pruning algorithm also belongs to this category. We exploit
the information-theory based measures (i.e., covariance and
correlation) to calculate the dependence of parameters and then
remove the less important ones.

We aim to improve these algorithms to be more efficient in
both terms of higher performance and lower storage resources.
To that end, we present a novel efficient algorithm to compress
CNN models to decrease the computational cost and the run-
time memory footprint. We propose a strategy to measure the
redundancy of parameters based on their relationship using
the covariance and correlation criteria, and then prune the
less important ones. Our method can be directly applied to
CNNs, both on convolutional and fully connected layers, and
does not require any special software/hardware accelerators.
In the scope of this paper, we will prove the efficiency of our
algorithms for the large-scale action classification task.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 22:34:24 UTC from IEEE Xplore. Restrictions apply.

III. THE PROPOSED METHOD

To detail our pipeline, the MOMP Image as CNN input is
reviewed in Section III-A. Section III-B details deep compres-
sion for action recognition.

A. MOMP Image as CNN input
MOMP Image works as a standard RGB image that summa-

rizes the appearance and motion information changing across
different orientations of an image sequence. It can be directly
applied as input of any standard CNNs such as AlexNet [28],
VGGnet [29], ResNet [30]. In this fashion, the video content
is summarized by single still MOMP Image. We first modify
the MOMP descriptor in [31] so that it can be used as an input
of CNNs. The MOMP Image inherits the advantages of the
MOMP descriptor. The MOMP Image sums up the appearance
and motion from successive frames of a video, thus captures
the long-term information to represent the action. One more
advantage of our feature is compact. The synthetic of MOMP
Image is simple yet efficient, and a whole video is compressed
into one/a few single frames.

To conduct MOMP Image, we first calculate the features on
consecutive frames in a video. The MOMP Image is calculated
on three channels Red, Green, and Blue separately. It differs
from the MOMP descriptor being calculated from a gray
image. When being computed, MOMP Image and MOMP
descriptor have similar two first steps and differ in the last
step. Figure 2 illustrates the way to extract the MOMP Image.

The three steps are described in more detail, as follows:
(1) Compute gradient and quantize orientation:
In this step, we compute the gradient and orientation quan-

tization of each frame on each RGB channel in the video
using Haar features. Consider a frame F , channel K (i.e., Red,
Green, and Blue channels of the frame), let φ(p) and m(p)
be the orientation and the magnitude of the image gradient at
pixel p within F . Then m(p) at the channel K will be summa-
rized as follows: m(p)K =

[
m1(p)

K
,m2(p)

K
, ...,md(p)

K
]

where d is the number of discretized orientations.
(2) Accumulate magnitude over local patches:
The second step is to incorporate the gradient information

from the neighboring pixels by computing a local histogram
of gradient orientations over all of the cell pixels on each
RGB channel. We also individually compute the convolu-
tion of the magnitude map m (the result of step 1) and
a Gaussian mask G on each orientation. At pixel p, the
feature is now represented by a d-dimension vector v(p):
v(p)K =

[
v1(p)

K
, v2(p)

K
, ..., vd(p)

K
]
, where vi(p)

K =∑
pj∈C

gj∗mi(pj)
K with C is a cell centered on p, gj is the

j − th element of Gaussian filters.
It is clearly seen that v(p)K conveys the oriented and

magnitude information of not only the center pixel p but
also its neighbors on each RGB channel. In this way, we
incorporate the richer information to a pixel.

(3) Summarize features from the successive frames
At the final step, the features obtained at the second step

are summarized using the LTP-based self-similarity coming

from previous, current, and next frames. The MOMP Image
on channel K, IK , is calculated for the triplet of frames on
the channel K: IK = |SSD1K − SSD2K |, where SSD1K

and SSD2K are calculated as follows:

SSD1K =
d∑

j=1

[
vj(p)

K
p∈Ci,t−1

− vj(p)
K
p∈Ci,t

]2
and

SSD2K =
d∑

j=1

[
vj(p)

K
p∈Ci,t+1

− vj(p)
K
p∈Ci,t

]2
,

where d is the number of discretized orientations.
As can be seen, the MOMP Image differs from the MOMP

descriptor in the step (3). The MOMP descriptor is encoded
based on the sum of squared differences (SSD) of gradient
magnitudes using a threshold of T and through patches of
equal size. Therefore, the length of MOMP descriptor, namely
D, is 2n+1. Otherwise, MOMP Image is calculated only from
the sum of squared differences of gradient magnitudes from
the triplet of frames. As a result, MOMP Image is a single
image conducted from frames of the video.

MOMP Image is robust to illumination change, efficient
to compute, and simple to implement. It also conveys richer
information of action changing across frames. An other advan-
tage of the MOMP Images is the compression factor of video
frames. A set of frames are summarized by the data map which
is equivalent to a single frame. To increase the compression
factor and speed up the networks, in experiments, we use the
average of some consecutive frames. Since the initial MOMP
Images are not in the range of [0; 255] for the RGB data, we
apply min-max normalization to normalize data.

B. Deep compression for action recognition

Another contribution is the application of deep model
compression for action recognition. As mentioned earlier,
deep models are redundancy, however this redundancy seems
necessary during model training since the highly non-convex
optimization is hard to be solved with current optimization
techniques. Reducing model size after its training is therefore
essential. To the best of our knowledge, there are not any
existing works on deep model compression for human action
recognition. Indeed, existing works on deep compression focus
rather on the broader computer vision task, image classifica-
tion. The key idea of our compression algorithm is to measure
the importance of neuron by considering its relationship with
respect to the others, and then to prune the most dependent
neurons.

Different from existing approaches based on the importance
of an “isolated” neuron (using its norm for example), we
consider the importance of a neuron with respect to the others
in a layer. To that end, in a convolutional layer, we first
define the dependence of a filter as the average of correlation
coefficients between itself and the remaining ones. We also use
the covariance coefficient to measure filter dependence. Based
on these measures, we can prune the least important (i.e.,
the most dependent) filters. Since in CNNs, a huge amount
of parameters belong to fully-connected layers, we further
propose to consider the weights of a neuron in fully-connected
layers as a filter (similar to a convolution filter in convolutional

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 22:34:24 UTC from IEEE Xplore. Restrictions apply.

P(x,y,t)

SSD1

SSD2

Ci,t-1 p(x,y,t)

Ci,t

Ci,t+1

(1) Gradient computation and

orientation quantization on RGB

channel (K)

(2) Magnitude accumulation

over local patches on RGB

channel (K)

(3) Summarizing

Fig. 2. Illustration of extracting MOMP Image.

layers). By this fashion, our pruning strategy can directly apply
to all layers of networks and thus considerably improves the
compression rate.

1) Algorithm 1: Pruning the convolutional layers: In this
section, we will detail how to measure the dependence of a
filter in a convolutional layer and carry out the pruning. Con-
sider in layer l, there are Nl filters, noted as F l

i (i = 1, ..., Nl),
we carry out the two following steps:

Step 1: We calculate the covariance matrix of filters. As a
result, we obtain a matrix Kl of dimension Nl × Nl where
the (i, j)th element Kl

i,j is:
Kl

i,j = cov(F l
i , F

l
j)

In this matrix, the Kl
i,j element describes a tendency in the

linear relationship between the two filters F l
i and F l

j (i, j =
1, ..., Nl).

Step 2: For each filter F l
i , we compute its linear relationship

to all remaining filters in the layer. We denote ml
i as measure

of the relationship between F l
i and the Nl−1 remaining filters:

ml
i =

1

Nl

Nl∑
k=1

Kl
i,k

The greater magnitude ml
i is, the more similar to the

remaining filters in layer the current filter F l
i is. The filter F l

i

with greater magnitude ml
i is likely to be redundant or less

important. In the opposite case, the filter with a less magnitude
ml

i is likely to be more important. Based on these analyses,
the proposed method removes l the filters F l

i with a greater
magnitude of ml

i. Given a percentage of network pruning ρ,
the algorithm automatically computes a threshold τ to prune
ρ% filters. If |ml

i| ≤ τ the F l
i filter is kept, otherwise the F l

i

filter is pruned.
It is worth noting that:
• In fact, we also carried out a more complicated strategy,

as follows: for each filter F l
i , among Nl − 1 values

Kl
i,k(k ̸= i), we consider only nl largest values (nl <

Nl−1) and compute ml
i is the average of those nl values.

This means that we consider only a subset of filters highly
correlated to the current filter. We found that this more

complicated strategy performs similarly to the first one
with higher complexity (a sort is required), we therefore
use the first strategy (ml

i is the average of all coefficients).
• We also exploited the correlation coefficient, meaning

that:
Kl

i,j =
cov(F l

i ,F
l
j)

σ
Fl
i
σ
Fl
j

.

In comparison with covariance, the correlation coefficient
shows its magnitude the strength of the linear relation-
ship. In Section 3, we will report the results of two
criteria. It seems that the correlation coefficient gives
slightly better performance.

2) Algorithm 2: Pruning the fully-connected layers: A large
number of parameters in deep networks belongs to fully-
connected (FC) layers. To apply the above algorithm to FC
layers, we propose a simple yet efficient idea, as follows. Let
a FC layer connect p input neurons and q output neurons.
We consider that the layer includes q filters where each filter
is conducted from weights connecting p input neurons to an
output neuron (i.e., p weights).

By this fashion, the algorithm can be applied directly on
fully connected layers, in the same way on convolutional
layers. It is worth noting that the proposed method does not
prune the last fully connected layer since this layer contains
the network’s output.

When the filter F l
i is pruned, it also means that all weights

of the next layer (i.e., the (l + 1) − th layer) connected to
the i − th output neuron (of the current layer) are pruned.
By hundreds of test cases where the recognition rates are
calculated on training, pruning, and fine-tuning with different
parameters, we find the optimal parameters giving the best
performance (details are presented in Section IV).

IV. EXPERIMENT RESULTS

We first describe the experiment results obtained when
integrating MOMP Images into CNNs in Section IV-A. We
then demonstrate the effectiveness of our pruning algorithm
for the large-scale action classification in Section IV-B.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 22:34:24 UTC from IEEE Xplore. Restrictions apply.

A. Integrating MOMP Image into CNNs
1) Experiment settings: We verify the proposed algorithm

on the large-scale UCF101 [32] and HMDB51 datasets [12].
The performance on UCF101 and HMDB51 datasets is re-
ported in Table I. We use pre-trained CaffeNet [33] with
its simplification to fine-tuning our system. CaffeNet is the
approximation of AlexNet using 1 GPU. We use only 1 GPU
for experimental simulation instead of the 2-GPU AlexNet.

All training images are rescaled to the size of 256 × 256.
A 224 × 224 image is randomly cropped from each rescaled
image and mirrored for data augmentation, and only the center
crop is used for validation. We fine-tune all the layers with the
learning rate of 0.001 and gradually decrease it per epoch. We
generate MOMP Image from each video by dividing it into a
subset of N the partially-overlapping video frames.

2) Experiment results: Different from images, video anal-
ysis would capture information from a subset of frames or the
entire video rather than only one frame. In our experiments,
we calculate the average recognition accuracy for the training
and validation on UCF101 dataset by varying the number of
successive frames N = {3, 6, 9, 12}. We find out that the
best performance achieved at nine consecutive frames.

We compare our algorithm to the other approaches on
the UCF101 and HMDB51 datasets in Table I. As can be
seen, MOMP Images achieve a promising performance. The
proposed method obtains the slightly better accuracy than
Single Dynamic Image (SDI) (57.2%) [7]. SDI was proposed
in [7], which summarizes information from the whole video
sequence. When compared to Mean Image, Max Image [7],
the proposed method achieves the much better performance.
In particular, Mean Image and Max Image are the mean and
max image of a set of video frames, respectively. This shows
that our MOMP Images better summarize and characterize the
changing of actions over the concussive frames.

TABLE I
COMPARISON OF ACCURACY (%) ON THE UCF101 AND HMDB51

DATASETS

Algorithm Acc. on UCF101(%) Acc. on HMDB51(%)
MOMP Image 57.4 64.2

Mean Image [7] 52.6 55.7
Max Image [7] 48.0 57.6

SDI [7] 57.2 -

In comparison to other methods [1], [6]–[9] with the higher
computational cost, our method is more straightforward to
execute and lower computational complexity.

We believe that combining MOMP Image with static images
from video frames and other features like improved trajectory
[11] could improve the performance of action recognition,
similar to the many previous methods [7]–[9].

B. Pruning CNN model for action recognition
In this section, we will apply the proposed pruning algo-

rithm to the above MOMP Image network in order to improve
the efficiency.

1) Experiment settings: We prune the layers of CNNs with
different pruning rates. The pruning threshold is calculated
based on these pruning ratios. The pruning process is im-
plemented by building a new smaller model and copying
the retrained corresponding weights of the trained model. By
hundreds of test cases where pruning rates vary from 10%
to 92.5% for each layer, we find out the optimal parameters.
After pruning, we obtain a more compact model, which is then
fine-tuned. We fine-tune the pruned CaffeNet with a learning
rate of 10−2 for only 50 epochs.

TABLE II
RESULTS OF PRUNING OUR SYSTEM WITH THE DIFFERENT RATIOS (%)

Conv FC1 FC2 Total HMDB +/-Acc UCF +/-Acc
10 30 40 29.94 66.75 +2.55 58.80 +1.40
10 30 58 34.88 66.45 +2.25 58.60 +1.20
10 40 58 40.12 66.03 +1.83 58.25 +0.85
10 40 64 42.70 65.78 +1.58 58.02 +0.62
10 50 65 49.15 64.56 +0.36 57.91 +0.51
10 50 70 50.52 64.45 +0.25 57.85 +0.45
20 50 70 55.72 64.03 -0.17 57.14 -0.26
40 80 92 66.49 63.88 -0.32 56.89 -0.51
50 80 88 66.88 63.86 -0.34 56.88 -0.52
50 85 92.5 70.91 63.85 -0.35 57.10 -0.30
55 80 88 71.93 62.76 -1.44 56.89 -0.51
57 87 92.5 72.83 62.45 -1.75 53.67 -3.75
60 87 92.5 73.25 61.87 -2.33 52.98 -4.42

2) Experiment results: The percentage of parameters to be
pruned varies from 10% to 60% on all convolutional layers.
For FC1 and FC2, from 30% to more than 90% parameters
are pruned. The average percentage of pruned parameters is
from 30% to 73.25% on CaffeNet model. Table II shows the
experiment results of the pruning algorithm on the UCF101
and HMDB51 datasets. For UCF101, the best performance
is 58.8% when nearly 30% parameters of the model are
removed (we pruned 10% filters of convolutional layers, 30%
parameters of FC1 layer, and 40% parameters of FC2 layer).
As can be seen, we can remove a large number of weights
for all layers of CNN when the performance is improved
with an accuracy gain of about 1%. For HMDB51, the best
performance is 66.75% (increase 2.55%) when nearly 30%
parameters of the model are removed. We can even prune
more than 50% parameters in total without losing accuracy.

In the experiment, we also found that the pruning rate of
convolutional layers significantly affects the final accuracy.
When increasing the pruning ratio of convolutional layers
from 10% to 20%, the performance considerably decreases
with a loss of 0.26%. Considering fully-connected layers, the
accuracy decreases slowly when the percentage of pruned
weights varies from 30% to 70%. The performance signif-
icantly decreases when the pruning ratios of convolutional
layers are about 60%.

We also compare the proposed algorithm with similar
method, SDI [7], which is obtained by directly applying rank
pooling on the raw frame pixels. We observe that our pruned

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 22:34:24 UTC from IEEE Xplore. Restrictions apply.

CaffeNet model performs better than the unpruned one while
we can remove up to 50% parameters. Interestingly, when
applying our pruning algorithm on SDI [7], we also obtain
better results than the unpruned network.

V. CONCLUSIONS

In this paper, we aim to improve deep models such that
they are more efficient in both terms of higher performance
and lower storage resources. To address this problem, we first
propose MOMP Image which can be directly applied as the
input of any CNNs. We also present a novel efficient algorithm
to compress CNN models to decrease the computational cost
and the run-time memory footprint. The proposed method
exploited the two information theory based measures to con-
sider the redundancy of parameters in a model. To the best of
our knowledge, our method is the first one applying network
compression to human action recognition. Our method directly
applies to CNNs, both on convolutional and fully connected
layers, and requires no specialized software/hardware acceler-
ators. We have verified the efficiency of our algorithms with
respect to the large-scale action recognition. In future work,
we will evaluate the proposed method on other challenging
datasets and the other CNNs such as VGGnet, GoogleNet
as well as other applications, such as action localization and
gesture recognition.

REFERENCES

[1] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in 2015 IEEE
International Conference on Computer Vision (ICCV). IEEE, 2015, pp.
4489–4497.

[2] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[3] G. Varol, I. Laptev, and C. Schmid, “Long-term temporal convolutions
for action recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017.

[4] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.

[5] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Actionvlad:
Learning spatio-temporal aggregation for action classification,” arXiv
preprint arXiv:1704.02895, 2017.

[6] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal multiplier
networks for video action recognition,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2017, pp.
7445–7454.

[7] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould, “Dynamic
image networks for action recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
3034–3042.

[8] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov,
“Exploiting image-trained cnn architectures for unconstrained video
classification,” arXiv preprint arXiv:1503.04144, 2015.

[9] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for
video classification,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 4694–4702.

[10] H. Phan, N. Vu, V. Nguyen, and M. Quoy, “Action recognition based
on motion of oriented magnitude patterns and feature selection,” IET
Computer Vision, vol. 12, no. 5, pp. 735–743, 2018.

[11] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 3551–3558.

[12] H. Jhuang, H. Garrote, E. Poggio, T. Serre, and T. Hmdb, “A large video
database for human motion recognition,” in Proc. of IEEE International
Conference on Computer Vision, vol. 4, no. 5, 2011, p. 6.

[13] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical
invariant spatio-temporal features for action recognition with indepen-
dent subspace analysis,” in CVPR 2011 IEEE Conference on. IEEE,
2011, pp. 3361–3368.

[14] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for
human action recognition,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 35, no. 1, pp. 221–231, 2013.

[15] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 2625–2634.

[16] A. Lazaridou, N. T. Pham, and M. Baroni, “Combining language
and vision with a multimodal skip-gram model,” arXiv preprint
arXiv:1501.02598, 2015.

[17] J. Lei, G. Li, J. Zhang, Q. Guo, and D. Tu, “Continuous action segmen-
tation and recognition using hybrid convolutional neural network-hidden
markov model model,” IET Computer Vision, vol. 10, no. 6, pp. 537–
544, 2016.

[18] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in NIPS, 2015.

[19] I. Freeman, L. Roese-Koerner, and A. Kummert, “Effnet: An efficient
structure for convolutional neural networks,” in 25th ICIP, 2018, pp.
6–10.

[20] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in ICCV, Italy, 2017, pp. 5068–5076.

[21] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing
systems, 2013, pp. 2148–2156.

[22] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Advances in neural information processing systems, 2014,
pp. 1269–1277.

[23] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[24] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
ICLR, 2016.

[25] S. Srinivas, A. Subramanya, and R. V. Babu, “Training sparse neural
networks,” in CVPR Workshops 2017, Honolulu, HI, USA, July 21-26,
2017, 2017, pp. 455–462.

[26] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” preprint arXiv:1608.08710, 2016.

[27] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
CoRR, abs/1611.06440, 2016.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, USA, 2016, pp. 770–778.

[31] H.-H. Phan, N.-S. Vu, V.-L. Nguyen, and M. Quoy, “Motion of oriented
magnitudes patterns for human action recognition,” in International
Symposium on Visual Computing. Springer, 2016, pp. 168–177.

[32] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: An open source convolutional
architecture for fast feature embedding,” 2013.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 22,2020 at 22:34:24 UTC from IEEE Xplore. Restrictions apply.

