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Abstract
This paper provides insight into the wing kinematics, the power requirement and the dynamic stability characteristics of
a hawkmoth model in vertically ascending flight. The wing kinematics of the hawkmoth model is obtained based on the
minimum required power assumption. The optimization process is conducted using genetic and simplex algorithms that are
coupled with an artificial neural network to rapidly predict the aerodynamic force and required power. The training data
for the neural network are generated from an unsteady vortex-lattice method. Compared to hover, the results in this study
show the larger flapping frequency and the smaller rotation amplitude of the hawkmoth wing kinematics in ascending flight.
Additionally, more power is required when the ascending speed increases. While conducting a dynamic modal analysis based
on a cycle-average approach, the certain effect of the ascending speed on the modal structures of the hawkmoth model was
observed.

Keywords Hawkmoth · Ascending flapping flight · Genetic algorithm · Artificial neural network · Flight dynamic stability

1 Introduction1

Insect flight has recently drawn a lot of attention of2

researchers due to its advanced characteristics that are appli-3

cable to the future designs of flapping-wingmicro air vehicles4

(FWMAVs).Many aspects related to the aerodynamics, flight5

dynamics and control problems of insect flight have been6

revealed in many studies [1–7]. In general, insects may7

conduct various flight modes, including hover, forward and8

vertical translations, banked turns, etc.[1, 8–10].While hover9

and forward flight are regarded as basicmodes that have been10

thoroughly investigated in many studies [11–13], research11

results into vertically ascending flight are still limited. How-12

ever, this type of flight is very important for both biological13

insects and insect-like FWMAVs [10, 14].14
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It is noteworthy that the wing motions of insects in gen- 15

eral and those of hawkmoths in specific while hovering and 16

in forward flight can be easily observed and recorded in 17

wind-tunnel experiments [1, 15, 16]. Many analyses have 18

been carried out for hawkmoths based on these measured 19

wing kinematic data to provide lots of insight into the char- 20

acteristics of hover and forward flight. For example, by 21

tuning the kinematic data measured by Willmott and Elling- 22

ton [1], Kim et al. [17] showed the effect of the forward 23

flight speed on the natural mode structures of a hawkmoth 24

model. Willmott and Ellington [2] and Warfvinge et al. [16] 25

used the measured wing kinematics to estimate the required 26

power of hawkmoths to sustain flight at various forward 27

speeds. 28

Measuring the wing kinematics of hawkmoths while 29

ascending seems to be more difficult, and no empirical data 30

of hawkmoth in this flight mode has been published, so 31

far. Therefore, it is troublesome for researchers to conduct 32

ascending flight analyses. To overcome this difficulty, in this 33

paper, we attempt to create the ascending flight wing kine- 34

matics of a hawkmoth model based on the assumption of 35

minimum required power. In reality, hawkmoths do not fly 36

under aminimumpower condition because a small portion of 37

energy is scarified to enhance flight stability and maneuver- 38

ability [18].However,wing kinematics at this flight condition 39

is still quite close to that observed from actual hawkmoths 40
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Table 1 Mass and
morphological parameters of the
hawkmoth

Parameters Values

m (mg) 1578.70

R (mm) 48.50

c(mm) 16.81

S (mm2) 815.33

r2 0.53

[19]. The wing kinematic functions of the hawkmoth model41

at various ascending speeds are found by integrating an arti-42

ficial neural network into genetic and simplex algorithms.43

Analyses on the power requirement and the dynamic stability44

are conducted to indicate how the variation in the ascending45

speed affect the characteristics of hawkmoth flight. It should46

be noted that in this study, for the first time, the optimal wing47

kinematics and the important characteristics of hawkmoth48

ascending flight are obtained and analyzed, and these data49

may be useful for researchers who have an intention to carry50

out more studies on hawkmoth ascending flight in the future.51

2 The hawkmothmodel and wing kinematics52

definitions53

In this study, we attempt to build an insect model that is as54

close as possible to a biological hawkmoth. The morphology55

and the mass distribution of the model are based on the mea-56

surement data by Ellington [20] and O’Hara and Palazotto57

[21]. Some basic parameters of the model, including the total58

mass m, the wing length R, the mean wing chord c, the wing59

area S and the radius of the second moment of the wing area60

r2 are shown in Table 1. The two wings of the hawkmoth are61

connected to the body by three-degree-of-freedom revolute62

joints. The orientations of the wings are determined by three63

Euler angles that are the sweep angle φ, the elevation angle64

θ and the rotation angle α. The sweep angle varies when the65

hawkmoth needs to move its wings for- and backward; the66

elevation angle is corresponding to the up- and downward67

motions; and the change in the rotation angle is related to68

the rotation of the wings about their feathering axes. The69

illustration of these angles are shown in Fig. 1. In this fig-70

ure, β and χ denote the stroke plane and the body angles,71

respectively. Here, we note that according to the observation72

from hawkmoth flight in a wind tunnel [1], the angle between73

the stroke plane and the body axis is assumed constant and74

equals 120°. The fixed inclination of the stroke plane to the75

body axis has also been found in vertically ascending fruit-76

flies and droneflies in forward flight [10, 15]. Therefore, it77

is relevant to state that this flight behavior is valid for many78

insect species in all flight modes.79

Fig. 1 Insect model and angle definitions

The time variations of the Euler angles take harmonic 80

forms as follows: 81

φ � φa sin

(
2π f t +

3π

2

)
+ φ0,

θ � θ0,

α � π

2
− αa sin

(
2π f t +

3π

2

)
+ α0,

(1) 8283

where a and 0 respectively represent the amplitude and mean 84

values, f is the flapping frequency. In this study, for simplic- 85

ity, the variation of the elevation angle θ , which was found 86

very small in actual hawkmoth flight, is neglected. 87

3 Methodology 88

3.1 Aerodynamic force and power predictionmodel 89

In this study, the lift, drag, pitching moment and required 90

power are determined by an artificial-neural-network-based 91

prediction model. According to Nguyen et al. [18], the use of 92

artificial neural networks (ANNs) can guarantee a good accu- 93

racy level of the prediction results while the computational 94

time is reduced substantially. Compared to conventional 95

quasi-steady aerodynamic models [22, 23], an ANN-based 96

models seem to be more suitable for optimization problems 97

due to their lower computational cost and higher fidelity. An 98
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ANN built in this study encompasses the input, output and99

hidden layers as shown in Fig. 2. In the input layer, there are100

a bias b1 and seven kinematic variables that are the flapping101

frequency f, the stroke plane angle β, the mean sweep, ele-102

vation and rotation angles φ0, θ0 and α0, and the sweep and103

rotation amplitudes φa and αa. These kinematic variables104

are used to define the wing motions and the position of the105

insect model. It is noteworthy that the body angle χ can be106

directly determined from the stroke plane angle β based on107

the assumption of constant angle between the body axis and108

the stroke plane. The hidden layer of the ANN comprises a109

bias b2 and 500 neurons. It is noted that the biases b1 and110

b2 are employed in this ANN to improve the effectiveness of111

the training process by enabling the transfer functions in the112

hidden and output layers to be shifted left or right flexibly.113

Sigmoid and linear transfer functions are used in the hidden114

and output layers, respectively. Weight sets wi and wo rep-115

resent the strength of the connections in the ANN, and the116

values of these weights are updated along with the biases117

during the training process. The output layer includes the118

nondimensionalized mean lift, drag, pitching moment and119

required power, which are defined as120

L
+ � L

W
,

D
+ � D

W
,

M
+ � M

Wc
,

P
+ � P

P0
,

(2)121122

where L , D, M and P denote the mean lift, drag, pitching123

moment and required power, respectively,W is the weight of124

the insect model, c is the mean wing chord, and P0 � 84.2125

mW is the required power of an actual hawkmoth in hover,126

whichwas estimated in the literature [18]. Based on the inves-127

tigation result of Casey [24], the elastic storage mechanism128

is not applied to the present hawkmoth model. Therefore,129

the negative power is dissipated and not stored in the elastic130

elements at the joints. A more detailed description of this131

mechanism is given in the literature [24].132

The training process of the ANN is based on a gradient-133

based approach that employs the Levenberg–Marquardt134

optimization method [25]. The training data are generated by135

an extended unsteady vortex-lattice method (UVLM) [26].136

There are 3000 data sets for each ascending speed, and each137

set consists of seven input kinematic variables and four out-138

put variables as shown in Fig. 2. The input variables, which139

satisfy the constraints given in Table 2, are generated ran-140

domly. It should be noted that the upper and lower bounds141

of each kinematic variable are chosen based on the experi-142

Fig. 2 Artificial neural network structure

Table 2 Mass and
morphological parameters of the
hawkmoth

Min Max

f (Hz) 15 40

β (°) 0 50

φ0 (°) − 25 25

θ0 (°) − 25 25

α0 (°) − 25 25

φa (°) 30 60

αa (°) 25 75

mental data of actual hawkmoths [1] to make sure that all 143

possible wing kinematic combinations can be considered in 144

an optimization process. Wider ranges of these variables are 145

unnecessary because they may result in more computational 146

cost of the optimization process. The sweep angle amplitude 147

φa is not allowed to exceed 60° to avoid the collision between 148

the two wings. 149

To provide the training data, we employ the extended 150

UVLM, which was developed in Nguyen et al. [26] and 151

its validity has been confirmed in many previous studies 152

[12, 18, 27–29]. This method is based on the potential-flow 153

theory, which is applied to an inviscid and non-rotational 154

123



A. T. Nguyen, et al.

Fig. 3 Aerodynamic panels of the wings

flow. It is noteworthy that hawkmoth wings operate at large155

angles of attack [1] and aReynolds number of around 10,000.156

According to Ellington [30], for these flight conditions, the157

contribution of the skin friction drag is minor and negligible.158

Hence, the application of the potential-flow theory, which159

does not include the effect of the skin friction on the wing160

surfaces, is relevant in this study. To enhance the accuracy of161

aerodynamic prediction results, Nguyen et al. [26] incorpo-162

rated leading-edge suction analogy and vortex-core growth163

models into the UVLM. Due to these extensions, the delayed164

stall phenomenon occurring on insect wings [31] and the165

effect of the viscous diffusion [32] can be included.166

When applying the extended UVLM, the wings are dis-167

cretized into vortex ring panels as shown in Fig. 3. The168

no-penetration boundary condition is satisfied at the colloca-169

tion points located at the centers of these panels. The Kutta170

condition is employed at the trailing edges of the wings;171

therefore, all vortices along these edges are shed freely to172

the surrounding environment to form a wake [33]. The wake173

geometry keeps being deformed when these vortices travel174

with local flow velocities. It is noteworthy that the contribu-175

tion of the body aerodynamics is insignificant [12]. Thus, the176

aerodynamic force is generated only by the flapping wings177

of the hawkmoth model.178

Compared to other methods, the extended UVLM has179

moderate computational cost and fidelity. While computa-180

tional fluid dynamics (CFD) methods are too costly [34, 35],181

low-order methods based on the quasi-steady flow assump-182

tion [22, 23, 36] have modest fidelity given that they cannot183

predict the unsteady effect. In this study, thousands of data184

sets are required to be generated by an aerodynamic model to185

train the ANN for each ascending speed. Hence, considering186

a compromise between computational effort and fidelity, the187

use of the extended UVLM seems to be the most appropriate.188

Figure 4 shows the comparisons between the lift, drag and189

aerodynamic power coefficients CL , CD and CP predicted190

by the present extended UVLM and those by other methods 191

in the hovering case with biological wing kinematics [23]. 192

The definitions of these coefficients are given in the literature 193

[23]. It is seen that the results from the extended UVLM and 194

the CFD method are close to the experimental data whereas 195

the quasi-steady models produce the poorer predictions. 196

After being trained with 3000 random data sets, the ANN 197

is used to predict the aerodynamic coefficients for other 50 198

random cases. The very close agreement between the pre- 199

dicted results by the ANN and those from the extended 200

UVLM for hover and ascending flight as shown in Fig. 5 201

serves to validate the ANN model developed in this study. 202

Nguyen et al. [26] found that compared to the direct use of the 203

extendedUVLM,ANNs can increase the prediction speed by 204

thousands of times. 205

3.2 Optimizationmethod 206

Asmentioned earlier in this paper, the wing kinematics of the 207

hawkmoth model is found based on the minimum required 208

power assumption. Based on the result observed byWillmott 209

and Ellington [1] from biological hawkmoth flight, the oscil- 210

lation of the body can be neglected. To satisfy the equilibrium 211

condition, the mean drag force and pitching moment are zero 212

and the mean lift force equals the total weight of the model. 213

Similar to the literature [18], the fitness function used in this 214

study is as below: 215

F � P
+
+ r

(∣∣∣1 − L
+
∣∣∣ +

∣∣∣D+
∣∣∣ +

∣∣∣M+
∣∣∣) + s

7∑
i�1

|ζi |
Maxi − Mini

,

(3)

216217

where r and s are positive real parameters specifying the 218

strength of the penalty for violating the constraints. Accord- 219

ing to Nguyen et al. [18], r and s are set to 2.0 and 5.0, 220

respectively. ζ i is the distance bywhich parameter i is outside 221

the range given inTable 2. The nondimensionalizedmean lift, 222

drag, pitching moment and required power L
+
, D

+
, M

+
and 223

P
+
in Eq. (3) are provided by the ANN. 224

The optimization method employed here is developed by 225

combining genetic and simplex algorithms to obtain themini- 226

mumvalue of the fitness function. First, the genetic algorithm 227

(GA) is used to obtain the globally minimal basin. Next, the 228

locally optimal solution of the basin is found by the simplex 229

algorithm based on the Nelder-Mead method [37]. The GA 230

is inspired by the process of natural evolution and relies on 231

bio-inspired operators such as mutation, crossover and selec- 232

tion [38]. For each generation, the program creates a large 233

population, and each individual of the population contains 234

a seven-chromosome gene that corresponds to seven input 235

parameters shown in Fig. 2. The top 5% of the population 236

with the best fitness values are regarded as elite individuals 237

and survive to the next generation. For the remaining indi- 238
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Fig. 4 Aerodynamic coefficients in the hovering case predicted by various methods

Fig. 5 Nondimensionalized mean lift, drag, pitching moment and aerodynamic power predicted by the ANN and the extended UVLM for hover
(a) and ascending flight at 1.0 m/s (b)
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viduals, the mutation and crossover operators are applied to239

produce new individuals. Based on the convergence analysis240

results in the literature [18], a population size of 105 is cho-241

sen in this study. For the present problem, the tolerance of242

the fitness function F is set to be 10–6 and 10–10 for the GA243

and the simplex algorithms, respectively.244

The validation of the present ANN-based optimization245

method was confirmed in the literature [18] for the same246

hawkmoth model in hover. In this study, this method is247

applied to the hawkmoth model in both hover and vertically248

ascending flight.249

3.3 Equations of motion and their linearized form250

Zhang and Sun [39] have derived the nonlinear six-degree-251

of-freedom equations of motion for insect flapping flight as252

follows:253

bFA + mbg � m(bV̇cg + bωbd × bVcg) + a1 + b1, (4)254255

bMA +
2∑

i�1

[
mwg

(
bRh + bRwg

) × bg
]
i � bωbd

×(bIbd + c2)bωbd + (bIbd + c2)bω̇bd + a2 + b2,

(5)256257

where bFA and bMA are the total aerodynamic force and258

moment about the body center of mass, m and mwg are the259

total mass of the insect model and the mass of its wing,260

respectively, bg denotes the gravitational acceleration, bIbd is261

the moment of inertia tensor of the body, bVcg is the velocity262

of the body center of mass, bωbd is the angular velocity of263

the body, and bRh and bRwg are the vectors from the body264

center of mass to the root of a wing and from this wing root265

to the wing center of mass. The subscript b represents the266

body-fixed coordinate system (Fig. 6) while a1, a2, b1, b2267

and c2 denote terms related to the mass, moment of inertia268

and flapping motion of the wings.269

To analyze the dynamic stability characteristics of insect270

flight, the linearized form of the equations of motion is271

normally used. The linearization process is applicable to a272

system that undergoes small disturbedmotions from the equi-273

librium state while neglecting the contributions of high-order274

terms. In this case, we apply the wingbeat-cycle-average275

technique [5, 39, 40], which considers only the wingbeat-276

cycle-average values of the aerodynamic and inertial forces277

and moment. Hence, the fast-time-scale dynamics related to278

Fig. 6 Hawkmoth model with the body-fixed coordinate system xb yb
zb and ground-fixed coordinate system xG yG zG

the flapping motion of the wings are ignored. The equations 279

of motion are then simplified as [17, 41]. 280

δu̇+ � X+
uδu

+

m+ +
X+

wδw+

m+ +
X+
q δq+

m+ − w+
e δq

+ − g+δ	,

δẇ+ � Z+
u δu+

m+ +
Z+

wδw+

m+ +
Z+
q δq+

m+ ,

δq̇+ � M+
u δu+

I +y
+
M+

wδw+

I +y
+
M+

q δq+

I +y
,

δ	̇ � δq+,
(6)

281282

δv̇+ � Y +
v δv

m+ +
Y +
p δp
m+ + Y +

r δr
m+ + w+

e δp + g+δ
,

δ ṗ+ � I+z
I+x I

+
z −I+xz

2

(
L+

vδv
+ + L+

pδp
+ + L+

r δr
+
)

+
I+xz

I+x I
+
z −I+xz

2

(
N+

v δv+ + N+
pδp

+ + N+
r δr+

)
,

δṙ+ � I+xz
I+x I

+
z −I+xz

2

(
L+

vδv
+ + L+

pδp
+ + L+

r δr
+
)

+ I+x
I+x I

+
z −I+xz

2

(
L+

vδv
+ + L+

pδp
+ + L+

r δr
+
)
,

δ
̇ � δp+.

(7) 283284

In the above equations, δ denotes the small disturbance 285

value; u, v, and w are the velocity components along the xb-, 286

yb- and zb-axes of the body-fixed coordinate system (Fig. 6); 287

p, q, and r represent the angular velocities about these axes; 288

m and I respectively denote the mass and the moment of 289

inertia of the hawkmoth model; the aerodynamic forces and 290

moments are denoted by X, Y, and Z and L,M, andN, respec- 291

tively; g is the gravitational acceleration; we is the vertical 292

velocity of the undisturbed model; 	 and 
 are respectively 293

the second and third Euler angles of the 3-2-1 sequence of 294

rotations to define the orientation of the body-fixed frame 295

relative to the ground-fixed frame. These two frames coin- 296

cide with each other when 	 and 
 are zero (Fig. 6). The 297

superscript “ + ” denotes nondimensionalized variables that 298

are defined as follows: 299
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m+ � m

0.5ρUSt T
, g+ � gT

U
, t+ � t

T
,

I +x � Ix
0.5ρU 2St cT 2 , I +y � Iy

0.5ρU 2St cT 2 ,

I +z � Iz
0.5ρU 2St cT 2 , I +xz � Ixz

0.5ρU 2St cT 2 ,

δu+ � δu

U
, δv+ � δv

U
, δw+ � δw

U
, δp+ � δpT ,

δq+ � δqT , δr+ � δrT ,

X+ � X

0.5ρU 2St
, Y + � Y

0.5ρU 2St
, Z+ � Z

0.5ρU 2St
,

L+ � L

0.5ρU 2St c
, M+ � M

0.5ρU 2St c
, N+ � N

0.5ρU 2St c
,

(8)

300301

where ρ is the air density, St is the total area of the two302

wings, T is the wingbeat stroke cycle, and U is the mean303

wing velocity defined by 2φafr2.304

Equations 6 and 7 can be expressed in the following form:305

⎡
⎢⎢⎢⎢⎣

δu̇+

δẇ+

δq̇+

δ	̇

⎤
⎥⎥⎥⎥⎦ � A+

long

⎡
⎢⎢⎢⎢⎣

δu+

δw+

δq+

δ	

⎤
⎥⎥⎥⎥⎦, (9)306307

⎡
⎢⎢⎢⎢⎣

δv̇+

δ ṗ+

δṙ+

δ
̇

⎤
⎥⎥⎥⎥⎦ � A+

lat

⎡
⎢⎢⎢⎢⎣

δv+

δp+

δr+

δ


⎤
⎥⎥⎥⎥⎦, (10)308309

where310

A+
long �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X+
u

m+
X+

w

m+
X+
q

m+ − w+
e −g+

Z+
u

m+
Z+

w

m+
Z+
q

m+ 0

M+
u

I+y

M+
w

I+y

M+
q

I+y
0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)311312

Alat
+ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y +
v

m+
Y +
p

m+ + w+
e

Y +
r

m+ g+

I+z L
+
v+I

+
xz N

+
v

I+x I
+
z −I+xz

2

I+z L
+
p+I

+
xz N

+
p

I+x I
+
z −I+xz

2
I+z L

+
r +I

+
xz N

+
r

I+x I
+
z −I+xz

2 0

I+xz L
+
v+I

+
x N

+
v

I+x I
+
z −I+xz

2

I+xz L
+
p+I

+
x N

+
p

I+x I
+
z −I+xz

2
I+xz L

+
r +I

+
x N

+
r

I+x I
+
z −I+xz

2 0

0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)313314

After obtaining the wing kinematics of the hawkmoth315

model at the equilibrium state, the stability derivatives that316

appear in the expressions of A+
long and A+

lat (Eqs. (11) and317

(12)) are determined by the extended UVLM. It is impor-318

tant to note that Eqs. (9) and (10) are corresponding to the319

longitudinal and lateral motions of the model, respectively.320

Fig. 7 Optimal (dashed lines) and biological (solid lines) wing kine-
matics [1]

Therefore, by obtaining the eigenvalues and eigenvectors of 321

A+
long and A+

lat matrices, we can respectively gain insight into 322

the longitudinal and lateral dynamic stability characteristics 323

of the present hawkmoth model while ascending vertically 324

at a constant speed. 325

4 Results and discussion 326

4.1 Validation of themethodology 327

To validate the optimization approach presented in Sect. 3, 328

the obtained hovering wing kinematic functions are com- 329

pared with those of an actual hawkmoth (Fig. 7). Here, the 330

time is nondimensionalized by the wingbeat stroke cycle. 331

The optimal wing kinematics is represented by the dashed 332

lines while the solid lines are corresponding to the experi- 333

mental data measured from the hovering flight of an actual 334

hawkmoth [1]. The close agreement between the two results, 335

which is seen in Fig. 7, serves to validate the present approach 336

used to obtain the wing kinematics of the hawkmoth model. 337

It should be noted that the optimal elevation angle θ is just 338

above the value of the actual hawkmoth. Nguyen et al. [18] 339

stated that this minor difference is due to the added rotation 340

effect [42] that helps increase the efficiency of insect flight. 341

However, an actual hawkmoth in wild may scarify energy 342

to improve its body pitch stability by slightly reducing the 343

elevation angle as shown in Fig. 7. 344

Next, we compute the stability derivative coefficients of 345

the longitudinal and lateral dynamic systems, which are rep- 346

resented by Eqs. (6) and (7). These coefficients are then used 347

to determine the eigenvalues ofmatrices A+
long and A+

lat (Eqs. 348

(11) and (12)). Figure 8 shows the comparisons between the 349

eigenvalues obtained in this study and those by Cheng and 350

Deng [43] for hovering hawkmoths. The similarity between 351

the two sets of results can be seen in Fig. 8. For the longi- 352

tudinal system, there are an unstable oscillatory mode and 353

two stable subsidence modes whereas a marginally unstable 354
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Fig. 8 Eigenvalues of the longitudinal (a) and lateral (b) dynamic sys-
tems obtained in this study and by Cheng and Deng [43]

oscillatory mode and two stable subsidence modes occur in355

the lateral system. It should be noted that the morphology356

and mass parameters of the two models used in the compari-357

son are not from the same insect individual; therefore, some358

quantitative differences are observed in Fig. 8. However, the359

twomodels show the close flight dynamic stability character-360

istics, and this agreement can be used to validate the present361

method.362

4.2 Effect of the ascending speed on the equilibrium363

flight conditions364

At the equilibrium state, the resultant force and the pitch365

momentmust be zero. Using the approach presented in Sects.366

3.1 and 3.2, the wing kinematics of the hawkmoth model at367

several ascending speeds are obtained and given in Table 3.368

Figure 9 illustrates the variations of the Euler angles within369

the time course of one wingbeat stroke cycle.370

According to the results shown in Table 3, we found that371

for all ascending speeds, in the optimal flight conditions, the372

stroke plane is almost horizontal, which is represented by a373

small value of β. The variation of the body angle χ appears374

to be very small when the ascending speed increases. The375

trends of the stroke plane and the body angles are similar376

to those observed in vertically ascending flight of fruitflies377

[10]. Moreover, the sweep amplitude φa reaches its max-378

imum allowed value of 60°, and the elevation angle θ0 is379

found slightly above zero (around 15°) to enhance the flight380

efficiency via the added rotation effect [42]. In fact, these381

trends have been observed while analyzing optimal hovering382

Table 3 Wing kinematics at several ascending speeds

Ascending speed (m/s)

0 0.5 1.0 1.5 2.0

f (Hz) 26.5 27.9 29.4 30.2 31.0

β (°) 1.5 2.2 2.8 0.6 2.9

φ0 (°) − 5.5 − 5.2 − 4.7 − 4.1 − 4.8

θ0 (°) 15.8 14.0 15.0 14.6 14.8

α0 (°) 0.7 1.0 1.2 0.1 1.3

φa (°) 60.0 60.0 60.0 60.0 60.0

αa (°) 66.9 66.5 65.0 61.0 57.1

χ (°) 58.5 57.8 57.2 59.4 57.1

Fig. 9 Wing kinematic functions at various ascending speeds

flight of hawkmoths [18]. However, in this paper, they are 383

proved to be valid even for vertically ascending flight at var- 384

ious speeds. In addition, the flapping frequency f is found to 385

increase with the ascending speed while the rotation ampli- 386

tude αa decreases (Fig. 9). For ascending flight, a downward 387

inflow has a negative effect on the lift production mecha- 388

nism. To overcome this problem, a larger flapping frequency 389

f is required.Moreover, by decreasing the rotation amplitude 390

αa, the hawkmoth model can reduce the projected area of the 391

wings on the horizontal plane, therefore, reduce the effect of 392

the downward inflow (Fig. 10). These trends of the flapping 393

frequency and the rotation amplitude have been observed in 394

vertically ascending flight of fruitflies by Shen et al. [10]. 395

To validate the obtained equilibrium flight conditions, the 396

nondimensionalized lift, drag, pitch moment and required 397

power L
+
, D

+
, M

+
and P

+
are computed by the extended 398

UVLM are compared with those by the ANN (Table 4). The 399

values from the ANN are given in parentheses. We can see 400

good agreement between the predicted values by the ANN 401

and the exact values that are obtained from the UVLM. Only 402

minor differences between the results in the lift and power 403

are found in the hovering flight mode. It should be noted 404

that in the case of hovering flight, wing-wake interaction is 405
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Fig. 10 Illustration of insect wings with larger (the left wing) and smaller (the right wing) rotation angles in a downward inflow condition

stronger [26, 44], which affects the quality of ANN-based406

predictions.407

Figure 11 shows the lift and drag forces at various ascend-408

ing speeds from 0 to 2.0 m/s. We can observe that at the409

beginning of each half stroke, the lift curve shows a minor410

peak, and this peak is attenuated when the ascending speed411

grows. These peaks are related to a strong added-mass effect412

that is caused by a large rotation amplitude αa when the413

hawkmoth model hovers or ascends slowly [22]. Moreover,414

a wake capture effect may also account for the presence of415

these peaks [45]. At a large ascending speed, due to the416

stronger downward inflow, wing-wake interactions become417

less considerable (Fig. 12); therefore, this effect decreases.418

From Fig. 11, it is seen that the peak-to-peak amplitude of419

the drag force increases with the ascending speed. This trend420

is caused by a larger flapping frequency and a smaller rota-421

tion amplitude when the hawkmoth model ascends faster. It422

should be noted that a smaller rotation amplitude leads to a423

larger angle of attack, then a more significant drag force.424

As shown in Table 4, more power is required at a more425

rapid ascent. In fact, for a larger ascending speed, the down-426

ward inflow is more severe; and thus, more power is required427

to overcome its negative effect (Fig. 13a). Figure 13b shows428

the power distribution within one wingbeat stroke cycle.429

Similarly, the energy consumed per unit distance is com-430

puted and shown in Fig. 14. It is noted that the velocity due431

to the oscillation of the body is neglected here. Nguyen et al.432

[12] found that the body of a hawkmoth oscillates slightly at433

a velocity of below 0.1 m/s, which is much smaller than the434

ascending speeds considered in this paper. Interestingly, in435

contrast to the required power, ascending over the same dis-436

tance at a larger speed is more profitable in terms of energy.437

In other words, despite of a higher level of power require-438

ment, ascending faster can save more energy. However, due439

to the limitations in the maximum required power and the440

Fig. 11 Lift and drag forces at various ascending speeds

flapping frequency, there could be an upper bound of the 441

ascending speed for each insect species. Figure 13 shows that 442

the required mean power increases almost linearly against 443

the ascending speed while the trend of the mean energy per 444

unit distance follows a hyperbola as indicated in Fig. 14. In 445
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Fig. 12 Wake patterns at various ascending speeds

Table 4 Nondimensionalized lift, drag, pitch moment and required
power by the ANN and UVLM at different ascending speeds

Ascending speed (m/s)

0 0.5 1.0 1.5 2.0

L
+

0.97 (1.0) 0.98 (1.0) 0.99 (1.0) 0.99 0.99 (1.0)

D
+

0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

M
+

0 (0) − 0.01
(0)

0 (0) 0 (0) 0 (0)

P
+

0.86
(0.84)

0.96
(0.96)

1.09
(1.10)

1.21
(1.21)

1.34
(1.34)

specific, the mean power P and the mean energy per unit446

distance E follow the relationships with the ascending speed447

V as448

P � 0.0702 + 0.0215 V , (13)449450

E � 0.0702 V−1 + 0.0215. (14)451452

4.3 Effect of the ascending speed on the dynamic453

stability characteristics454

Figure 15 shows the movements of the eigenvalues of the455

longitudinal and lateral dynamic systems with an increase of456

the ascending speed from 0 (the hovering case) to 2.0 m/s.457

The imaginary part of an eigenvalue represents the nondi-458

mensional frequency of the corresponding oscillatory natural459

mode while the real part is used to measure the stability of460

this mode. A more negative value of the real part implies461

that disturbances related to the natural mode decay more462

rapidly and the dynamic system comes back to its equi-463

librium state more easily. On the contrary, an eigenvalue464

with the positive real part corresponds to an unstable nat-465

ural mode. Figure 15a shows that the longitudinal dynamic466

system is unstable for all speeds ranging from 0 to 2.0 m/s.467

The arrows in this figure indicate the movement directions of468

the eigenvalues when the ascending speed increases. When469

this speed is below 1.5 m/s, there are two stable subsidence470

Fig. 13 Mean required power against the ascending speed with its best
fit (a) and its distribution within one wingbeat stroke cycle (b)

modes and an unstable oscillatory mode. As the ascending 471

speed increases, the eigenvalue corresponding to the unstable 472

oscillatory mode moves toward the horizontal axis; and from 473

1.5 m/s, this mode becomes two separate unstable nonoscil- 474

latorymodes as shown in Fig. 15a.While the slow subsidence 475

mode appears to be independent of the ascending speed, the 476

eigenvalue of the fast subsidence modemoves leftward when 477

the hawkmoth model ascends faster, which signifies the bet- 478

ter stability. 479

Similar to the longitudinal dynamic system, the lateral 480

system also experiences some apparent trends of the eigen- 481
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Fig. 14 Mean consumed energy per unit distance against the ascending
speed with its best fit (a) and its distribution within one wingbeat stroke
cycle (b)

Fig. 15 Movements of the longitudinal (a) and lateral (b) eigenvalues
with an increase of the ascending speed from 0 to 2.0 m/s

value movements. While hovering and ascending at a low482

speed, the lateral system ismarginally unstable given that two483

stable subsidence modes and a marginally unstable oscilla-484

tory mode. However, at high speeds, the marginally unstable 485

oscillatory mode becomes more unstable and moves toward 486

the horizontal axis. At the same time, the stability of the two 487

subsidence modes is augmented when the ascending speed 488

increases. 489

Based on the movements of the eigenvalues as shown in 490

Fig. 15, it is possible to state that the stable modes of the 491

dynamic system tend to become more stable while the unsta- 492

ble modes become more unstable with an increase of the 493

ascending speed. Moreover, the oscillation of the dynamic 494

system is weakened due to the decreases of the imaginary 495

parts. 496

To provide detailed explanations for the movement trends 497

observed in Fig. 15, the variations of aerodynamic forces and 498

moments against small disturbances are presented in Fig. 16. 499

To use the UVLM to calculate the aerodynamic forces and 500

moments under a disturbed condition, the velocity compo- 501

nent arising from the corresponding disturbance is added to 502

the expression of the no-penetration boundary condition at 503

each collocation point as follows: 504

(
V ib + V iw − Vw/eq − Vw/d

) · n � 0, (15) 505506

where V ib and V iw are the velocity induced by the bound 507

vortices on thewings and that by thewake, respectively,Vw/eq 508

denotes the velocity of the wing in the equilibrium condition, 509

Vw/d is the disturbance velocity added to the model, and n 510

denotes the normal velocity of the wing surface. 511

From the plots in Fig. 16a, we found that the ascending 512

speed has very little influences on the longitudinal stabil- 513

ity derivative coefficients. Therefore, it is possible to state 514

that the movement trends of the longitudinal eigenvalues 515

are primarily attributed to the vertical velocity term w+
e in 516

Eq. 11. To validate this statement, a new matrix A+
long is 517

built with the term w+
e varying within a range corresponding 518

to the ascending speed from 0 to 2.0 m/s while the stability 519

derivative coefficients are held unchanged and independent 520

of the ascending speed. Figures 17a–e show the longitudinal 521

eigenvalues of the newmatrix A+
long with the stability deriva- 522

tive coefficients taken from ascending flight states at 0 m/s, 523

0.5 m/s, 1.0 m/s, 1.5 m/s and 2.0 m/s, respectively. It is seen 524

that the movement trends of the eigenvalues in these figures 525

are the same, which means the differences in the longitudi- 526

nal stability derivatives as shown in Fig. 16a are so small 527

that they do not have any substantial effect on the structure 528

of the longitudinal dynamic system. The movements of the 529

eigenvalues exhibited in Fig. 15a mainly come from the vari- 530

ation of the vertical velocity, which is represented by w+
e in 531

Eq. (11). 532

Similarly, a new lateral matrix A+
lat from Eq. (12) is 533

derived with the lateral stability derivative coefficients taken 534

from ascending flight states at 0m/s, 0.5m/s, 1.0m/s, 1.5m/s 535

and 2.0 m/s (Fig. 18). It is found that the movement trends 536
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Fig. 16 Stability derivatives at various ascending speeds for the longitudinal (a) and lateral (b) dynamic systems

of the unstable oscillatory and the slow subsidence modes537

are basically the same as those observed in Fig. 15b. How-538

ever, no certain movement of the eigenvalue corresponding539

to the fast subsidence mode is seen in Fig. 18. Unlike the540

longitudinal stability derivatives, for the lateral system, the541

coefficient N+
r is profoundly affected by the ascending speed542

(Fig. 16b). The variation of this coefficient with an increase543

of the ascending speed may account for the leftward move-544

ment of the fast subsidence mode. To validate this statement,545

let N+
r vary with the ascending speed while other stability546

derivative coefficients are taken from the hovering case and547

held constant, then the eigenvalue plot in Fig. 18a turns to that548

in Fig. 19. The trends of the eigenvalues in Fig. 19 are very549

similar to those in Fig. 15b. Hence, it is relevant to state that550

the variation of N+
r has a great effect on the movement trend 551

of the fast subsidencemode of the lateral dynamic system. To 552

explain the influence of the ascending speed on the value of 553

N+
r , we should firstly understand N+

r as the damping coeffi- 554

cient corresponding to the rotation of the model about the zb 555

axis. As mentioned earlier, as the ascending speed increases, 556

the reduction in the rotation angle will cause larger wing drag 557

as shown in Fig. 11. Consequently, the larger value of N+
r is 558

achieved at a faster ascent as indicated by Fig. 16b. Here, it 559

is noteworthy that the movements of the unstable oscillatory 560

and the slow subsidence modes are simply due to the varia- 561

tion of the term w+
e in the expression of A+

lat in Eq. (12). 562

563
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Fig. 17 Longitudinal eigenvalues with the stability derivative coefficients taken from ascending flight states at 0 m/s (a), 0.5 m/s (b), 1.0 m/s (c),
1.5 m/s (d) and 2.0 m/s (e)

5 Conclusions564

In this paper, we have obtained the wing kinematics of a565

hawkmoth model in vertically ascending flight based on566

the assumption of minimum required power. The optimiza-567

tion process is conducted by integrating an artificial neural568

network (ANN) into genetic and simplex algorithms. The569

training data of the ANN are provided by the extended570

unsteady vortex-lattice method. The results show that with571

an increase of the ascending speed, the flapping frequency572

grows while the rotation amplitude decreases. More power is573

requiredwhen the hawkmothmodel ascends faster. However,574

in terms of energy consumption per unit travelled distance,575

ascending at a higher speed is more advantageous. While576

studying the dynamic stability characteristics of the model,577

it is found that for all considered ascending speeds from 0 to578

2.0 m/s, our dynamic system is unstable. The certain trends579

of the eigenvalue movements are observed in this study. In580

general, we can state that unstable modes tend to be more581

unstable whereas stable modes become more stable as the582

ascending speed increases. We also found that the damping583

coefficient corresponding to the rotation of the model about

the vertical axis varies greatly with the ascending speed, and 584

this variation causes the fast subsidence mode of the lateral 585

dynamic system to be more stable. 586

For actual hawkmoths, it seems that no recorded data from 587

vertically ascendingflight have been published. The variation 588

trend of the wing kinematic parameters against the ascending 589

speed obtained in this paper shows someagreementswith that 590

of actual fruitflies, especially in terms of flapping frequency, 591

stroke plane orientation, and body and wing pitch angles. 592

However, in reality, hawkmoths may not always fly under 593

the energy-optimal condition; therefore, more empirical data 594

regarding hawkmoth ascending flight are required to rigor- 595

ously validate the present results. Despite of this fact, the 596

numerical data of the wing kinematics, power requirement 597

and dynamic stability characteristics, which are mentioned 598

for the first time in this paper, imply that there could be a lot of 599

interesting physical aspects that actual hawkmothsmay expe- 600

rience in vertically ascending flight and may not be observed 601

in any other flight modes. As for bio-inspired FWMAVs, the 602

findings in this work could be helpful for the development 603
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Fig. 18 Lateral eigenvalues with the stability derivative coefficients
taken from ascending flight states at 0 m/s (a), 0.5 m/s (b), 1.0 m/s
(c), 1.5 m/s (d) and 2.0 m/s (e)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-0.5

0

0.5

Real

Im
ag

0 m/s 0.5 m/s 1.0 m/s 1.5 m/s 2.0 m/s

Fig. 19 Lateral eigenvalueswhen N+
r is allowed to varywith the ascend-

ing speed

of control algorithms that are applied to vertically ascending604

flight while considering the level of energy consumption.605
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