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Abstract
This paper proposes a new approach of digital predistortion (DPD) technique based on the adaptive indirect learning
architecture (ILA) by using a recursive prediction error minimization (RPEM) algorithm for linearizing radio frequency
(RF) power amplifiers (PAs) in emerging wideband communication systems. In the proposed RPEM-based linearization
approach, the forgetting factor varies with time and is less sensitive to noise. Therefore, the predistorter (PD) parameter
estimates become more consistent and accurate in steady state so that the mean square errors can be reduced. Both the
error vector magnitude (EVM) and the adjacent channel power ratio (ACPR) are used to evaluate the DPD technique in RF
PAs employing the proposed linearization. The efficiency validation of the proposed method is based on a simulated PA
Wiener model. The simulation results have clarified the improvement of the proposed adaptive ILA-based DPD with RPEM
algorithm in terms of both EVM and ACPR.

Keywords RPEM · Digital predistortion · RF power amplifiers · Linearization · Adaptive indirect learning architecture ·
Predistorter

1 Introduction

The development of future wireless communication sys-
tems, such as the fifth generation (5G) and beyond [1,
2], continuously demands higher data rates and larger user
capacities, which faces significant challenges in both sys-
tem performance and energy efficiency. It requires not
only wideband transceiver architecture, but also higher-
order modulation schemes. The signals of these systems are
characterized by non-constant envelopes and high peak-to-
average power ratio (PAPR), leading to stringent linearity
requirements for signal amplification. In the meantime, the
power dissipation must be remained as low as possible. To
cope with these challenges, high efficiency and linear radio
frequency (RF) power amplifiers (PAs) are indispensable
components. Unfortunately, due to the inherent nonlinear
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behavior of PAs, efficiency and linearity requirements often
conflict each other. In order to provide highly-efficient
power conversion, PAs should be driven into the saturation
region. However, the saturated PAs produce not only in-
band distortion but also result in spectral regrowth that inter-
feres the adjacent frequency band channels. Consequently,
the spectra utilization efficiency is reduced. In contrast, the
nonlinear distortion can be mitigated by a traditional back-
off approach, but this generates low power efficiency due to
the high PAPR of the transmitted signals. In order to main-
tain a low level of distortion without sacrificing the system
energy efficiency requirement, PA linearization techniques
are often used [3].

Thanks to its flexibility and excellent linearization
performance, the baseband digital predistortion (DPD)
has been recognized as one of the most cost-effective
linearization techniques [4–10], and it also tends to be
popularly and widely used in wireless transmitters for the
next generation wireless communication systems. In this
scheme, a predistorter (PD) block is placed in front of a
PA. The PA input signal is pre-distorted by the PD whose
transfer function is the inverse of that of the PA. Ideally, the
cascade of the PD and PA behaves as a linear amplification
system and the original input is amplified by a constant
gain.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-020-01545-z&domain=pdf
mailto: phuchv@lqdtu.edu.vn


Mobile Netw Appl

In practice, the PA characteristics change with time
due to process, supply voltage, and temperature (PVT)
variations. In order to track time-varying change in the
PA characteristics, an adaptive DPD, using cost-effective
learning architectures, has become one of the most preferred
choices. There are two commonly and widely used learning
architectures for PD parameter identification: indirect
learning architecture (ILA) [11–13] and direct learning
architecture (DLA) [9, 10, 14, 15]. Although DLA is more
robust than ILA in terms of noise at the PA output and can
provide unbiased parameter estimates, it is more complex
identification process since the adaptive algorithms used in
DLA require many iterations to find a set of parameters that
minimizes the optimization criterion [4]. For these reasons,
the adaptive ILA is most often used for identifying the PD
parameters in RF PAs [4].

The existing DPD systems are mainly used for the scenar-
ios where the PAs operate under relatively stable conditions,
e.g., the PA characteristics remain almost constant over
time [6, 16]. As the PA characteristics change over time,
authors in [17] developed the adaptive ILA using least
mean squares (LMS) for linearizing PAs, herein denoted
as LMS-ILA for simple presentation. The main advan-
tage of LMS is its simple implementation. However, it
provides inaccurate estimation and has slow convergence
since increasing the step size parameter leads instability
problems. Moreover, it is also sensitive to the scaling of
the input signal, making it very hard to choose a proper
step size [17]. In order to obtain faster convergence of the
adaptation, authors in [11, 13] proposed the adaptive ILA
using recursive least squares (RLS) that is here denoted
as RLS-ILA to simplify the presentation. It is worth not-
ing that the choice of forgetting factor λ is often essential
to make a good trade-off between the convergence and
accuracy. For RLS, a decrease in the forgetting factor λ

leads to its sensitivity to noise and a larger fluctuation of
parameter estimates [18], resulting in inefficiency lineariza-
tion performance. With the continuous development of the
wideband communication systems, more efficient lineariza-
tion methods for RF PAs are desired to meet the emerging
requirement of highly linear PAs in these systems. On the
other hand, the recursive prediction error method (RPEM)
has shown its advantage to overcome the above issue of
RLS-ILA linearization approach thanks to its time-varying
forgetting factor λ [18].

Therefore, based on the above review on existing meth-
ods for linearizing RF PAs in wideband communication
systems, in this paper, we propose a new approach of adap-
tive ILA using recursive prediction error method (RPEM)
to linearize PAs operating under the time-varying condi-
tion. Thanks to its time-varying forgetting factor λ, the
RPEM algorithm reduces the fluctuation of the PD param-
eter estimates, increase the convergence speed, mitigates

the steady-state mean square error and hence minimizes the
total nonlinear distortion at the PA output. In other words,
the proposed predistortion technique allows us to reduce the
nonlinear distortion adaptively without causing instability,
and to solve several problems that arise when using either
LMS-ILA or RLS-ILA. As a result, the adaptive ILA with
RPEM effectively compensate the nonlinear distortion of
the PA even if the PA characteristics changes due to PVT
drift and other factors such as type of signals, high-order
modulation schemes and input power levels.

The rest of the paper is organized as follows. Section 2
develops the adaptive ILA linearization using LMS or
RLS, then proposes the one using RPEM and presents
the figures of merit for performance evaluation. The
detail simulation results and discussions are presented in
Section 3. Conclusions are finally included in Section 4.

2 Proposed adaptive ILA-based linearization
of RF power amplifiers with RPEM algorithm

2.1 Prediction error

Figure 1 shows the block diagram of the ILA-based DPD
technique, where a post-distorter (or training) block is used
to identify the postinverse of the PA. The baseband signal
u(n) is fed to the predistorter, which generates a signal x(n)

that is a PA input. The PA output signal is normalized by a
linear gain G0, producing the normalized output z(n), i.e.,
z(n) = y(n)

G0
. The postdistorter model has the input z(n) and

the output zp(n). Its parameters are identified by minimizing
the error signal e(n) = x(n) − zp(n) using the adaptive
algorithms. Note that both the PD and postdistorter models
are identical. Thus, when the coefficients of the postdistorter
are identified, they are directly copied to the PDmodel. This
process is repeated iteratively until the ILA linearization has

Fig. 1 Block diagram of Indirect learning architecture (ILA) using the
proposed adaptive algorithms
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converged. At convergence, the cascaded PD and PA system
behaves linearly. Since the Memory Polynomial (MP)
models have owned low computational cost, satisfactory
accuracy, and easy hardware implementation, they have
become one of promising choices and been widely applied
for behavioral modeling and predistortion of PAs exhibiting
nonlinear memory effects [3, 5, 13, 19]. Therefore, both the
PD and postdistorter are modeled by the same MP model
that hasQ as the nonlinearity order and P as memory depth,
and ωkm as coefficients. The input and output relation of the
PD model is given by

x(n)=
Q∑

k=1

P∑
m=0

ωkmu(n− m)|u(n−m)|k−1=ωT φ(n), (1)

where

ω = [
ω10, . . . , ωQ0, . . . , ω1P , . . . , ωQP

]T
, (2)

and

φ(n) = [
φ10(n), . . . , φQ0(n), . . . , φ1P (n), . . . , φQP (n)

]T
(3)

with

φkm(n) = u(n − m)|u(n − m)|k−1. (4)

In the above equations, the symbol T indicates the matrix
transpose.

The input and output of the postdistorter model can be
expressed by

zp(n) =
Q∑

k=1

P∑
m=0

ωkmz(n − m)|z(n − m)|k−1 = ωT z(n),

(5)

where ω is defined as in (2) and

z(n) = [
z10(n), . . . , zQ0(n), . . . , z1P (n), . . . , zQP (n)

]T
(6)

with

zkm(n) = z(n − m)|z(n − m)|k−1. (7)

The prediction error e (n, ω) is defined by

e (n, ω) = x(n) − zp(n) = x(n) − ωT z(n). (8)

The adaptive algorithms are derived by minimizing corre-
sponding lost functions that refer to scalar-valued functions
of all the prediction error values e (n, ω).

2.2 Development of the adaptive ILA linearization
using LMS or RLS

The LMS algorithm is derived by minimizing the mean
square error (MSE) E

{
e2(n, ω)

}
, where E denotes the

expected values. It is obtained by applying the following
stochastic gradient algorithm as in [20, 21].

ωT (n) = ωT (n − 1) − 1

2
μ

∂e2(n, ω)

∂ω

= ωT (n − 1) + μe(n)zT (n), (9)

where μ, usually denoted as the step size parameter,
is a small positive constant that governs stability and
convergence speed of the adaptation algorithm. By applying
the LMS algorithm in [20], the adaptive ILA-based DPD
technique using LMS is described in Algorithm 1, where
FPA {· · · } is the PA transfer function, modeled by a MP
function or a device under test (DUT). It is worth noting
that the MP models in [6] are used for the PA behavior
modeling in the rest of this framework. The input and output
waveforms of these models can be described by

y(n) =
N∑

k=1

M∑
m=0

ckmx(n − m)|x(n − m)|k−1, (10)

where ckm are the model coefficients, and N and M are the
nonlinearity order and memory depth, respectively. x(n) and
y(n) are the input and ouput baseband waveforms of the PA,
respectively.

The LMS algorithm is simple in terms of implementation
and widely used in active noise control applications.
However, it usually has slow convergence since increasing
the step size parameter leads to instability problems [21].

In order to speed up the convergence of the adaptation,
the RLS algorithm is developed for predistortion. The RLS
algorithm is derived by minimizing a weighted sum of the
magnitude-squared errors

ζ (n, ω) =
n∑

l=0

λn−l |e(l, ω)|2, (11)

where e(l, ω) is the prediction error given in (8) and
0 < λ < 1 is the forgetting factor (or weighting factor)
that gives exponentially less weight to the previous error
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samples. The formulation of the RLS algorithm in [20,
21] is applied to minimize the cost function ζ (n, ω). Then,
the adaptive ILA predistortion using RLS is described in
Algorithm 2, where I and P(0) are the identity matrix and
initial correlation matrix, respectively and ρ is a positive
constant. The commonly chosen value of λ is in the range
of 0.95 ≤ λ < 1 and ρ > 100σ 2

x , where σ 2
x is the variance

of the input [20, 21].

The choice of λ plays an essential role in order to
effectively track the variation of PA characteristics. The
smaller value of λ, the quicker the information in previous
data will be forgotten. In other words, if λ is small and less
than 1, the RLS algorithm becomes more sensitive and the
oscillation of the parameter estimations changes quickly and
become bigger [18], which linearizes the nonlinear behavior
of PAs ineffectively. Hence, in order to make the parameter
estimations more consistent and accurate in the steady state
region, we propose an adaptive ILA based DPD technique
using RPEM with the time-varying forgetting factor, which
can improve the transient behavior of the algorithm.

2.3 Proposed adaptive ILA linearization using RPEM

The coefficient vector ω of the predistorter is estimated
by using the Gauss-Newton RPEM algorithm [18] that
minimizes the following cost function.

fL (ω) = lim
L→∞

1

L

L∑
l=1

E
{
e2 (l, ω)

}
, (12)

where e(l, ω) is given as in (8).
The formulation of the RPEM algorithm is derived

in [18], which requires the negative gradient of e (l, ω) with
respect to ω. From (8), the negative gradient is given by

−∂e (n, ω)

∂ω
= zT (n). (13)

When applying the RPEM algorithm [18] for PA lineariza-
tion, the adaptive ILA-based DPD using RPEM algorithm
is described in Algorithm 3, where ρ also is a positive con-
stant and λ(n) is a time-varying forgetting factor that tends
exponentially to 1 as n → ∞. In this algorithm, λ0, λ(0)
and P(0) are initial variables designed by users. Typically
chosen values are λ0 = 0.99 and λ(0) = 0.95 [18]. It is
worth noting that the RLS algorithm, in Algorithm 2, can be
obtained exactly from the RPEM algorithm in Algorithm 3,
by setting λ0 = 1 and λ(0) = λ. In other words, the RLS
algorithm is a special case of the RPEM algorithm.

2.4 Figure of merit

It is crucial that the evaluation criteria should be adopted to
clearly validate the performance of PA behavioral modeling
and DPDs. The most commonly used criteria are normalized
mean square error (NMSE) in time domain, adjacent
channel power ratio (ACPR) in frequency domain, and error
vector magnitude (EVM) that are defined as in [4, 22].

The NMSE is an estimator of the overall difference
between the predicted and measured signals in time domain.
It is often defined in decibels as

NMSE = 10log10

⎛
⎜⎜⎜⎝

N∑
n=1

(|y[n] − x[n]|)2

N∑
n=1

(|x[n]|)2

⎞
⎟⎟⎟⎠ , (14)

where x(n) is the experimental output (or desired output) of
the DUT, and y(n) is the output obtained from the model.

ACPR is the ratio between the total adjacent channel
powers to the main channel signal power. It describes the
degree of the signal regrowth into neighbouring channels.
Since the ACPR characterizes the maximum power allowed
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Fig. 2 The PA characteristics: a AM/AM. b AM/PM

to be radiated outside the allocated band, it plays a very
important role in wireless radio standards. The ACPR is
often expressed in decibels as

ACPR = 10log10

(∫
Badj

|Y (f )|2∫
Bch

|Y (f )|2
)

(15)

where |Y (f )| denotes the power spectrum of the measured
output signal y(n), Badj and Bch refer to the bandwidth
of the adjacent and main channels, respectively (Figs. 2
and 3).

The EVM is a measure criterion that quantifies the
imperfection to the output signal when compared to the
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Fig. 3 Gain versus average input power of simulated PA
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input one. It describes the in-band distortion of the PA and
is defined as

EVM =

√√√√√√√√√
L∑

j=0

[(
Ij − Îj

)2 +
(
Qj − Q̂j

)2]
L∑

j=0

[
I 2j + Q2

j

] (16)

where Ij and Qj are the ideal output signal in-phase and
quadrature components, and Îj and Q̂j are their output
measured counterparts, respectively.

3 Simulation results

In order to demonstrate the efficiency of the proposed
DPD linearization method, we tested a simulated PA
that is modeled by a Wiener model consisting of a FIR
filter followed by memoryless nonlinearity model. The
coefficients of the FIR filter are as in [23–25]

h0 = 0.7692, h1 = 0.1538, h2 = 0.0769. (17)

For the memoryless nonlinearity model, we use Saleh’s
model [26] which is defined by

y(n) = αa |v(n)|
1 + βa|v(n)|2 e

j∠
[
v(n)+ αϕ |v(n)|2

1+βϕ |v(n)|2
]
, (18)

with

v(n) = h0x(n) + h1x(n − 1) + h2x(n − 2), (19)

Table 1 Initialization of the various adaptive algorithms in ILA

λ0 λ(0) λ μ P(0) ω(0)

RPEM 0.99 0.95 – – 105I [1, 0, · · · , 0]T

RLS – – 0.99 – – 105I [1, 0, · · · , 0]T

LMS – – – 0.02 – [1, 0, · · · , 0]T



Mobile Netw Appl

0 2 4 6 8 10
−70

−65

−60

−55

−50

−45

−40

−35

Q

AC
PR

[d
B]

Input
P = 0
P = 1
P = 2
P = 3
P = 4
P = 5

Fig. 5 NMSE versus Q and P

where x(n) and y(n) are the input and output of the
simulated PA, respectively, and v(n) is the input of Saleh
model. The parameters of Saleh model are as in [23]

αa = 20, βa = 2.2, αϕ = 2, βϕ = 1. (20)

The transmitted symbols are modulated by 16-QAM with
a bandwidth of 3.84 MHz. The input modulated signal is
filtered by a raised cosine pulse shaping filter with roll-off
factor of 0.22.

The MP model, expressed in (10), is used to model
nonlinear behavior of the PA. In order to reduce the
computational complexity, the orders (N and M) of the
MP model are optimized by using a performance-based
sweeping method [19]. Figure 4 shows the NMSE
performance versus the orders of the PA model. From this
figure, we can see that the optimal values of N and M are
N = 5 and M = 2, respectively, in order to achieve a good
trade-off between the best NMSE and the computational
complexity.

The adaptive RPEM, RLS, LMS algorithms are initial-
ized as in Table 1, where the initial weight vectors ω(0)
have a first element as 1 and the others as 0. To effectively
implement the ILA-based DPD technique, the orders (Q
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Fig. 6 AM/AM characteristics of the PA
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Fig. 7 Effectiveness of the proposed predistortion in suppressing
spectral regrowth for the 16QAM signal with 10 MHz bandwidth and
the power of −4 dBm when the PA characteristics change

and P ) of the PD and postdistorter models need to be opti-
mized by evaluation of the ACPR performance after DPDs.
In this simulation, the ACPR values are measured at the
upper adjacent channels, corresponding to frequency offsets
of 5 MHz. The ACPR performance obtained by the pro-
posed RPEM-ILA is shown in Fig. 5. Obviously, we can
observe that the optimal values of Q and P are 5 and 2,
respectively, in order to obtain the ACPR value almost equal
to that of the input. By applying the aforementioned opti-
mization method to RLS-ILA and LMS-ILA linearizations,
the optimal values of the PD models are also Q = 5 and
P = 2, respectively.

The AM/AM and AM/PM characteristics computed at
the instantaneous samples of the PA input and output, are
shown in Fig. 2. It is clear that the simulated PA suffers
from the nonlinearity and memory effects. Figure 3 shows
the gain performance of the simulated PA with the average
input power. One can observe that the gain in linear region is
about 26 dB. The average input power at 1 dB compression
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linearization for the 16QAM signal with 10 MHz bandwidth and the
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Fig. 9 Effectiveness of the
proposed predistortion in
suppressing spectral regrowth
for the 32QAM signal with
20 MHz bandwidth and the
power of −4 dBm: a PA input, b
PA Output, c proposed RPEM
based ILA
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point and at 3 dB are around −1 dBm and 4.3 dBm,
respectively.

We first investigate the effectiveness of the proposed
DPD using the adaptive RPEM algorithm for the different
types of the input signals and the variation of the PA
characteristics. In order to characterize the variation of PA
characteristics, the following parameters are changed in
Saleh model:

αa = [15, 20]. (21)

A 16QAM signal with 10 MHz bandwidth and the power
of −4 dBm, is used to test our solution. Figure 6 shows
the AM/AM characteristics of the simulated PA. Obviously,
the PA behavior changes when αa is varied. Figure 7
illustrates the power spectral density (PSD) before and
after the proposed predistorter. Spectral regrowth is almost
fully suppressed due to the changes in PA characteristics
when the parameters of Saleh model are modified. The
signal constellations of the PA output before and after DPD,

−0.1 0 0.1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Q
ua

dr
at

ur
e

In−Phase

Without RPEM-ILA
With RPEM-ILA

Fig. 10 Signal constellations with and without proposed RPEM-ILA
linearization for the 32QAM signal with 20 MHz bandwidth and the
power of −4 dBm

are shown in Fig. 8. Because of memory effect, the PA
output without linearization has the actual constellation
points deviated from the ideal locations, resulting in the
constellation distortion (or dispersion). It has an EVM
of 6.75%. After employing the proposed predistorter,
constellation distortion is effectively compensated and the
corrected PA output has an EVM of 1.20%, making it an
EVM improvement of 5.55%. Consequently, the proposed
approach can effectively work for PAs with significant
memory effects.

In order to keep the same parameters of Saleh model
in [23], αa is set at 20 for the remaining computer
simulations. The proposed approach is also validated for
the input with higher bandwidth and diverse modulation
scheme. The result is shown in Fig. 9. We still observe
significant reduction in spectral regrowth after the proposed
predistorter. Figure 10 presents the constellation diagram
of the PA output with and without the proposed DPD.
Again, due to the memory effect, dispersion appears
in the constellation, causing in-band distortion. Without
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Fig. 11 Power spectral density (PSD) of the PA output before and
after DPD using various adaptive algorithms with the input power of
−4 dBm
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linearization, the PA output has an EVM of 6.81%. When
applying the proposed RPEM-ILA, it has the EVM of 0.8%,
being equal to that of the input. The proposed RPEM-
ILA obtains the EVM improvement of 6% and effectively
corrects the constellation distortion (or dispersion).

We finally make the performance comparison between
adaptive algorithms used in ILA based DPDs. In these
simulations, a 16QAM signal with 3.84 MHz bandwidth
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Fig. 13 Convergence behavior of the PD coefficient estimates. a ω50.
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and the power of −4 dBm, is used. Figure 11 shows an
efficiency comparison in canceling the spectral regrowth
between these algorithms for the input power of −4 dBm.
It can be seen that there is a significant spectral regrowth
reduction after DPDs. Both the RPEM and RLS algorithms
obtain similar performance in terms of the spectral regrowth
suppression, and get better than the LMS algorithm due to
the fact that the achieved NMSE values by RPEM and RLS
are almost identical and lower than those by LMS, as shown
in Fig. 12. Thanks to the time-varying forgetting factor,
the RPEM algorithm becomes less sensitive to noise and
the coefficient estimates can approach the true values more
rapidly with smaller oscillations than the RLS algorithm
as shown in Fig. 13. In other words, the RPEM algorithm
makes the parameter estimates more consistent and accurate
than the RLS algorithm.

Figure 14a and b show the ACPR and EVM performance
of the different adaptive algorithms for various input power
levels, respectively. From these figures, one can observe that
all linearization techniques show a significant performance
improvement in terms of ACPR and EVM. The proposed
adaptive RPEM-ILA obtains the ACPR values almost equal
to those of input and shows similar ACPR values as RLS-
ILA. It also gets around 5 dB of ACPR improvement better
than LMS-ILA for the input power levels less than −4 dBm.
Furthermore, after applying RPEM-ILA, the EVM values
are significantly reduced and less than 0.26%, which shows
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the better mitigation of in-band distortion than both LMS-
and RLS-ILA. This is because the RPEM algorithm makes
the PD coefficient estimates more consistent and precise in
steady state as illustrated in Fig. 13. In other words, the
proposed RPEM-ILA technique outperforms the compared
ones.

4 Conclusions

In this paper, an adaptive ILA linearization using the
RPEM algorithm has been proposed. Thanks to the time-
varying forgetting factor, the PD coefficient estimates are
consistent and accurate in steady state, leading to speed
up the convergence, reduce the NMSE, and minimize the
total nonlinear distortion at the PA output. The simulation
results show that the proposed adaptive ILA using RPEM
outperforms the one using either LMS or RLS. Moreover,
the nonlinear distortion of the PA operated under different
conditions (for example, the different input powers), can be
almost fully compensated by employing the adaptive ILA
with RPEM. In other words, the proposed DPD technique
effectively linearizes the PA even if its characteristics
change. So, this approach provides a very promising
solution for the future wideband wireless communication
systems where the PA characteristics change due to the
type of signal, high-order modulation, working condition,
etc. In the future work, we will consider the optimization
and hardware implementation experiments as well as
more efficient linearization methods by combining several
techniques.
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