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Recent Findings: Pilot and small-scale MD systems have been demonstrated
for decentralised desalination using various renewable energy sources to supply
fresh water in remote, rural areas and on ships where other desalination
processes are inefficient or unfeasible. For this strategic desalination
application, MD is technically viable, but more works on configuration
modification and process optimisation are required to reduce the process energy
consumption and water production costs. For the three other strategic
applications, the technical viability of the MD process has been proved by
extensive lab-scale researches, but its economic feasibility is still questionable
due to the lack of large-scale evaluation and the uncertain costs of MD systems.
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applications is clear. However, huge efforts are required to facilitate these
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13 Purpose of Review Membrane distillation (MD) has been known as a promising water treatment process for many years.
14 However, despite its advantages, MD has never been able to compete with other processes for industrial water treatment and
15 supply. Instead, it has been orientated towards several unique strategic water treatment applications. This review aims to uncover
16 the opportunities and technical challenges pertinent to the MD process and the current status of its strategic water treatment
17 applicationsmost notably including decentralised small-scale desalination for fresh water provision in remote areas, hybridisation
18 with forward osmosis (FO) for treatment of challenging polluted waters, regeneration of liquid desiccant solutions for air
19 conditioning, and treatment of acid effluents for beneficial reuse.
20 Recent Findings Pilot and small-scale MD systems have been demonstrated for decentralised desalination using various renew-
21 able energy sources to supply fresh water in remote, rural areas and on ships where other desalination processes are inefficient or
22 unfeasible. For this strategic desalination application, MD is technically viable, but more works on configuration modification
23 and process optimisation are required to reduce the process energy consumption and water production costs. For the three other
24 strategic applications, the technical viability of the MD process has been proved by extensive lab-scale researches, but its
25 economic feasibility is still questionable due to the lack of large-scale evaluation and the uncertain costs of MD systems.
26 Summary The orientation of MD towards strategic water treatment applications is clear. However, huge efforts are required to
27 facilitate these applications at commercial and full scale.
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30

31 IntroductionQ2

32 For many years, membrane distillation (MD) has been known
33 as a promising water treatment process. In 1963, the first pat-
34 ent on MD was licenced to Bodell, and several years later,

35Findley published the first research article demonstrating the
36great potential of the MD process [1, 2]. Since its first inven-
37tion, MD has gone through a long development journey, with
38three different phases: initiation in the first 30 years since
391960, emergence in the subsequent 20 years, and rapid growth
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40 in the last 10 years [1, 3]. These three MD development
41 phases are clearly distinguished by their time span, research
42 interest demonstrated by the numbers of publications, and
43 particularly the trend in MD applications. While in the initia-
44 tion phase,MD had been primarily applied for desalination [1,
45 3]; in recent years, the applications of MD have diversified
46 and extended to areas beyond desalination such as brine con-
47 centration, recovery of critical resources, and removal of toxic
48 compounds from water [1–7]. Through its long journey, MD
49 has achieved significant development, but it has never been
50 able to compete with other processes for industrial/
51 commercial water treatment applications. Instead, MD has
52 immense potential for some strategic applications where other
53 water treatment processes are not technically or economically
54 viable.
55 MD is a versatile thermal-based membrane process capable
56 of treating various impaired waters to achieve fresh water of
57 high quality [3, 8, 9]. As a membrane separation means, MD
58 can offer a robust, modularised, and hence compact water
59 treatment platform that can be operated as a stand-alone or
60 combined process for improved treatment capacity or efficien-
61 cy. Like other thermal distillation processes, MD can theoret-
62 ically produce pure water from impaired hypersaline waters.
63 Moreover, the MD process can be coupled with low-grade
64 heat sources such as waste heat or solar thermal energy to
65 reduce the operational costs of water treatment [10–14].
66 However, despite these notable advantages, the MD process
67 is faced with several technical challenges that currently im-
68 pede its competitiveness with other water treatment processes.
69 As a result, the MD process has been orientated towards sev-
70 eral unique strategic water treatment applications.
71 This paper aims to provide a comprehensive review of the
72 strategic applications of MD for unique water treatment pur-
73 poses. These strategic applications include decentralised
74 small-scale desalination for fresh water provision in remote
75 areas, hybridisation with forward osmosis (FO) for treatment
76 of challenging polluted waters, regeneration of liquid desic-
77 cant solutions used for air conditioning systems, and treatment
78 of acid effluents for beneficial reuse. For each strategic appli-
79 cation, the opportunities and challenges pertinent to the MD
80 process are elaborated, and the current status of the application
81 is discussed. Based on these elaboration and discussion, the
82 future research directions onMD for each strategic application
83 are pinpointed.

84 Working Principles, Opportunities,
85 and Technical Challenges of MD

86 Amongst many water treatment processes practised to aug-
87 ment fresh water supply worldwide, MD has emerged as a
88 particularly promising means to mitigate the water-energy
89 stress. The compatibility of MD with highly concentrated

90saline solutions and low-grade heat sources renders it an ideal
91process for strategic water treatment applications. This section
92will discuss some fundamentals of the MD process to high-
93light its opportunities as well as technical challenges relating
94to its strategic water treatment applications.
95Unlike in pressure-driven membrane processes, in MD, the
96driving force for mass transfer through the membrane is the
97vapour pressure gradient induced by a temperature difference
98between two sides of the membrane. The mass Q3flux in the MD
99process is expressed as below [15, 16]:

J ¼ Cm P f −Pp
� � ð1Þ

100101
102

103where Cm is the membrane permeability and Pf and Pp are
104respectively the water vapour pressure at the feed and perme-
105ate side of the membrane. Compared with osmotic pressure,
106the water vapour pressure of the solution is much less subject
107to solution salinity. In other words, the mass flux of the MD
108process is significantly less affected by the feed solution con-
109centration, giving the MD process the ability to treat highly
110saline waters with which the pressure-driven processes are
111incompatible [17, 18]. This intrinsic advantage renders MD
112an ideal process for the treatment of highly saline solutions
113such as reverse osmosis (RO) brine, FO draw solutions, and
114liquid desiccant solutions used in air conditioning.
115As a thermally driven separation process, MD requires
116thermal energy (i.e. heating and cooling) to facilitate water
117evaporation and vapour condensation to achieve the process
118separation. Electrical energy is also consumed for water cir-
119culation in the MD process; however, it is negligible com-
120pared with thermal energy [19]. As a result, great numbers
121of MD studies focus on configuration and process optimisa-
122tion to enhance the process of thermal efficiency. Largely, the
123thermal efficiency of the MD process is assessed using two
124parameters: specific thermal energy consumption (STEC) and
125gained output ratio (GOR). The calculation of STEC and
126GOR is as bellow [16, 19, 20]:

STEC ¼ Qinput

Vdistillate
ð2Þ

127128

129

GOR ¼ mdistillateΔHv

Qinput
ð3Þ

130131
132

133where Qinput is the thermal energy input, Vdistillate and m-
134distillate are respectively the distillate volume and mass, and
135ΔHv is the latent heat of evaporation of water. While STEC
136represents the amount of external thermal energy consumed to
137obtain a volume unit of distillate, GOR indicates the propor-
138tion of useful thermal energy (i.e. the latent heat associated
139with the transfer of water vapour through the membrane) with
140the thermal energy input of the process. Given their defini-
141tions, STEC is used to evaluate the thermal efficiency of the
142MDprocess, whereas the use of GOR is largely relevant to the
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143 process with internal heat recovery [16]. It is also noteworthy
144 that using STEC and GOR defined in the Eqs. (2) and (3) for
145 the process thermal efficiency assessment is suitable for sea-
146 water desalination in which fresh water is the desired product;
147 for strategic MD desalination applications, alternative indica-
148 tors to STEC and GOR might be required. This will be
149 discussed further in Section 3.
150 Considerable merit of the MD process is the ability to use
151 low-grade waste heat or renewable energy to reduce its energy
152 cost. While traditional thermal distillation processes require
153 boiling the feed water, theMD process can be operated at mild
154 feed temperature (i.e. as low as 40 °C) [21]. As demonstrated
155 in Fig. 1, as long as a vapour pressure gradient is maintained
156 across the two sides of the membrane, the mass flux (i.e. water
157 for desalination applications) through the membrane can be
158 achieved. The vapour pressure gradient across the membrane
159 can be induced by heating the feed water while cooling the
160 distillate, applying vacuum, or sweeping gas on the permeate
161 side of the membrane [22, 23]. Thus, the MD process can
162 achieve practical water flux at the operating feed temperature
163 that can be sourced from industrial waste heat or solar thermal
164 energy.With the availability of these heat sources on-site,MD
165 can be a considerably cost-effective process for the treatment
166 of hypersaline solutions and other challenging waters.
167 The separation (i.e. rejection) of the MD process relies on
168 the hydrophobicity of the microporous membrane inserted
169 between the feed and distillate streams in the membrane mod-
170 ule [24–26]. The hydrophobic membrane prevents the perme-
171 ation of liquid solution while allowing for the transfer of water
172 vapour and volatile compounds through the membrane pores.
173 As a result, in the MD process, dissolved salts and non-
174 volatile compounds are retained in the feed stream, and the
175 process can achieve a complete rejection of these

176contaminants when the dry condition of the membrane pores
177is maintained. This attribute of the MD process is particularly
178essential for strategic applications to obtain super pure distil-
179late or to regenerate valuable solutes/solutions.
180The non-wetting of membrane pores is critical for the MD
181process to achieve the complete rejection of dissolved salts
182and contaminants. When the membrane pores are wetted, liq-
183uid water might permeate through the membrane, compromis-
184ing the membrane rejection and deteriorating the distillate
185purity or the process separation efficiency. The membrane
186pore dryness is dependent on the process operating conditions
187and membrane properties. According to Franken et al. [27],
188the membrane pores become wetted when the hydraulic pres-
189sure difference at the feed liquid-vapour interface exceeds the
190pore liquid entry pressure (LEP) as expressed bellow:

LEP ¼ −2BλLcosθ
r

< ΔPinterface ð4Þ

191192
193

194where LEP is a function of the membrane pore structural
195geometric factor (B), liquid surface tension (γL), membrane
196hydrophobicity (θ), and pore radius (r), while ΔPinterface is
197the pressure difference between the liquid and vapour phase
198at the membrane pore entrance on the feed side. For the MD
199process with pure water feed using the membrane with pore
200radius of 0.1 μm, the LEP value is in the range from 2.8 to
2014.6 bar while the ΔPinterface is 1 bar; thus, the process is in-
202trinsically safe with respect to membrane pore wetting [16,
20328]. However, in the MD process with challenging feed wa-
204ters, contaminants such as organic matters and surfactants
205might reduce liquid surface tension and deteriorate the mem-
206brane hydrophobicity, hence lowering the LEP value [16, 25].
207As a result, for the strategic MD treatments of challenging
208feed waters, membrane wetting can be a serious technical
209challenge.

210The Strategic Water Treatment Applications
211of MD

212Decentralised, Small-Scaled Desalination for Fresh
213Water Supply in Remote Areas

214MD is emerging in the global desalination market which has
215been led by other desalination processes such as reverse os-
216mosis (RO), multi-stage flash (MSF), and multi-effect distil-
217lation (MED). As reported by 2019, these three leading desa-
218lination processes account for 97% of the global desalinated
219water [29], and this trend is hard to change in the foreseeable
220future [29, 30]. Large-scale seawater and brackish water de-
221salination using these leading processes have been considered
222a practical approach to augment fresh water supply in many
223areas around the world. Nevertheless, fresh water scarcity

Fig. 1 The schematic illustration of heat and mass transfer during a direct
contact MD process
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224 remains a critical issue for remote coastal and arid inland
225 areas, where large-scale desalination plants are not viable.
226 While RO is heavily reliant on stable electricity supply and
227 requires intensive operational services and maintenance, MSF
228 and MED are powered by fossil fuels and hence highly sus-
229 ceptible to the fuel provision. Fresh water supply in remote
230 areas requires robust small-scale, stand-alone desalination
231 processes that can be powered by renewable energy. For this
232 niche desalination application, MD is deemed a prospective
233 candidate [2–4].
234 The most noticeable advantages of MD for decentralised
235 desalination applications are the process compatibility with
236 renewable energy or low-grade waste heat and the ease of
237 process operation. Unlike MSF and MED, the MD process
238 requires mild feed water operating temperature (i.e. 40–80
239 °C), which can be viably generated by solar radiation and
240 waste heat from co-generation plants, thus eliminating its re-
241 liance on fossil fuel. The MD process can also tolerate inter-
242 mittent and fluctuating operating conditions offered by renew-
243 able energy sources, and theMDmembrane is resistant to dry-
244 out situations due to its hydrophobic nature [31]. Compared
245 with RO, the MD process is less sensitive to membrane foul-
246 ing and the feed water pH variation, and it can produce fresh
247 water of super quality regardless of the feed water salinity.
248 Thus, there is no need for intensive chemical pre-treatment,
249 and simple pre-filtration is adequate for the MD desalination
250 process [12, 14]. This significantly reduces the maintenance
251 and operational cost of the MD desalination process.
252 For remote areas with no or limited electricity access,
253 small-scale solar-poweredMD desalination has been explored
254 as a strategic means to meet the demand for drinking water. A
255 great number of pilot solar-powered MD desalination plants
256 with various capacities have been reported in the literature
257 [14, 32–41]. These plants can be assisted or wholly powered
258 by solar energy and treat various sources of saline waters. For
259 example, Chafidz et al. [14] developed a portable, stand-alone
260 solar-powered seawater MD desalination system to provide
261 fresh water in the arid remote areas of Saudi Arabia. The pilot
262 system integrated MD plate-and-frame membrane modules
263 with solar thermal evacuated tube collectors and solar PV
264 arrays and produced a maximum of 35 L of high-quality fresh
265 water per day [14]. Kim et al. [42] reported a solar-assisted
266 MD system with heat recovery to provide 3.4 m3/day of fresh
267 water from seawater. Larger solar-powered seawater MD sys-
268 tems with fresh water production capacity as high as 50 m3/
269 day were tested in the MEDESOL project with the aim to
270 provide high-quality potable water in arid and semi-arid re-
271 gions [36]. Of particular note, Duong et al. [43] trialled a pilot
272 solar-assisted MD system for the treatment of a concentrated
273 brine from an RO process of coal seam gas produced water for
274 simultaneous brine volume reduction and fresh water produc-
275 tion. Using the real solar radiation conditions in New South
276 Wales, Australia, the authors demonstrated that MD plants

277combined with 1 ha of flat-plate solar thermal collectors can
278produce 94.4 m3/day of fresh water from coal seam gas RO
279brine [43].
280While the technical feasibility of solar-powered MD desa-
281lination systems has been proved, huge efforts are required to
282improve their economic viability. Abundant solar radiation is
283free, but systems required to harvest and convey it to power
284the MD process are costly. Due to their low-energy efficiency,
285most solar-powered or solar-assisted MD processes require
286large areas of solar thermal collectors and/or solar PV arrays,
287resulting in discernibly high fresh water production costs. For
288example, Banat et al. [44] performed an economic assessment
289on a small- and large-scale stand-alone solar-powered MD
290plants for the fresh water supply in remote areas and reported
291the water production costs varying between $15/m3 and $18/
292m3, mostly depending on the plant capital cost. The estimated
293MD water production costs are exceedingly higher than those
294of other desalination processes, particularly RO [45, 46].
295Thus, extensive researches have focused on membrane mod-
296ule configuration modifications and process optimisation for
297enhanced process energy efficiency and hence reduced water
298production cost of solar-powered MD desalination processes.
299The most notable improved membrane module configurations
300for solar-powered MD systems can be vacuum multi-effect
301membrane distillation (V-MEMD) and air gap membrane dis-
302tillation (AGMD) or permeate gap membrane distillation
303(PGMD) with internal heat recovery (Fig. 2). In these modi-
304fied configurations, seawater feed is used as the coolant to
305condense water vapour and in tandem to be preheated before
306feeding to the evaporator channels of the membrane module,
307hence reducing the required thermal energy load on solar col-
308lectors. Even with internal heat recovery, the specific energy
309consumption of most pilot MD processes using modified
310membrane module configurations is still several orders of
311magnitude higher than that of RO (Table 1). It is noteworthy
312that internal heat recovery is not allowed in other MD mem-
313brane module configurations including direct contact mem-
314brane distillation (DCMD) and sweeping gas membrane dis-
315tillation (SGMD). Moreover, the pilot MD processes with
316internal heat recovery are operated at much lower driving
317force and hence water flux than those reported in the literature
318for the lab-scale DCMD or SGMD processes [19, 43, 47].
319Geothermal energy is another possible renewable energy
320that can be coupled with MD for practical fresh water supply
321in remote and rural locations. Compared with solar-powered
322systems, geothermal energy-driven MD can offer fresh water
323at lower production costs, and the process operation is less
324susceptible to intermittence, which is a typical issue for solar
325energy. However, the geothermal MD process has not been
326widely developed [3], and so far there have been only few
327studies on the MD desalination process powered by geother-
328mal energy [48, 49]. For example, Sarbatly et al. [48] evalu-
329ated the possibility of the geothermal energy-powered MD
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330 process for desalination purposes. The experimental results
331 and economic analysis manifested that the MD process fed
332 with geothermal saline water could produce drinking water
333 with TDS below 119 ppm at the production cost of $0.5/m3,
334 and using geothermal saline water feed helped reduce 90% of
335 the MD process energy consumption. In another study,
336 Bouguecha et al. [49] applied a hybrid MD-fluidised bed

337crystalliser process for the treatment of geothermal springs
338in Tunisia. The low-grade heat of the geothermal springs
339(i.e. temperature in the range 30–70 °C) was exploited to
340thermally power the MD process, and the fluidised bed
341crystalliser was applied to reduce the hardness of the geother-
342mal springs [49]. The experimental results showed that the
343geothermal spring’s hardness constrained the MD process

t1:1 Table 1 Capacities and performanceQ5 of pilot MD systems using modified configurations for improved thermal efficiency

t1:2 Reference MD configuration, membrane area, and operating feed inlet temperature Desalination capacity and process performance

t1:3 [35] • AGMD module
• Membrane area 7–12 m2

• Feed inlet temperature 60–85 °C

• Capacity 100 and 500 L/day
• STEC 100–200 kWh/m3

• GOR 3–6

t1:4 [40] • AGMD module
• Membrane area 8 m2

• Feed inlet temperature 60–85 °C

• Capacity 0.2–10 m3/day
• STEC 150–200 kWh/m3

• GOR 4–6

t1:5 [39] • AGMD module
• Membrane area 10 m2

• Feed inlet temperature 60–85 °C

• Capacity 120 L/day
• STEC 200–300 kWh/m3

• GOR 0.3–0.9

t1:6 [38] • AGMD module
• Membrane area 10 m2

• Feed inlet temperature 60–80 °C

• Capacity 15 L/h
• STEC 925–1389 kWh/m3

• GOR 0.4–0.7

t1:7 [41] • PGMD module
• Membrane area 5–14 m2

• Feed inlet temperature 60–80 °C

• Capacity 4.5 L/h
• STEC 130–207 kWh/m3

• GOR: n.a.

t1:8 [33] • AGMD and PGMD module
• Membrane area 10 m2

• Feed inlet temperature 60–80 °C

• Capacity 5–120 L/day
• STEC 140–350 kWh/m3

• GOR 2–4

t1:9 [19] • AGMD module
• Membranes are 7.2 m2

• Feed inlet temperature 70 °C

• Capacity 7.2 L/h
• STEC 90–95 kWh/m3

• GOR 6–7

t1:10 [47] • V-MEMD module
• Membrane are 6.4 m2

• Feed inlet temperature 60–80 °C

• Capacity 400 L/day
• STEC: n.a.
• GOR 1.5–3.2

n.a., not available

Fig. 2 Schematic diagram of themodifiedQ4 MDconfigurationswith internal heat recovery. The latent heat of water vapour condensation is used to preheat
the feed water stream prior to the evaporator channels, thus reducing the external thermal energy requirement
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344 water recovery due to the high risk of membrane scaling [49].
345 These preliminary studies indicate that geothermal energy-
346 based MD desalination is a promising way for the economical
347 and sustainable fresh water supply in rural and remote areas;
348 however, additional works are required to demonstrate the
349 long-term process reliability. Thus, future researches on geo-
350 thermal energy-based MD need to focus on strategies to in-
351 crease the water recovery rate, address the effect of hardness
352 on the system performance, determine the fouling and scaling
353 resulted from the hardness of geothermal water, and investi-
354 gate the long-term operation.
355 Small-scale seawater MD desalination systems have also
356 been trialled for fresh water supply on ships to exploit the
357 waste heat generated from the ship engines [50, 51]. So far,
358 fresh water provision on most cruise ships relies on the mature
359 seawater desalination processes including RO and MSF [51].
360 As a pressure-driven desalination process, RO requires elec-
361 tricity generated from the ship engines to operate high-
362 pressure pumps, thus increasing the carbon footprint and op-
363 erational cost of cruise ships. Moreover, the RO process water
364 flux and energy consumption are heavily subject to the osmot-
365 ic pressure and salinity of seawater; thus, the seawater RO
366 desalination performance and efficiency widely fluctuate for
367 ships cruising long trips due to the variation in seawater salin-
368 ity. On the other hand, the MSF process is less affected by the
369 changing seawater salinity and hence commonly applied to
370 ships, but it needs significantly large space to establish
371 liquid-vapour contact. Largely, the available space on ships
372 is restricted; thus, more compact desalination technologies are
373 required. Therefore, the seawaterMD desalination process has
374 been proposed as an attractive alternative to RO and MSF for
375 fresh water supply on ships. For instance, Xu et al. [50]
376 installed a pilot-scale MD system using polypropylene hollow
377 fibre membrane on a cruise ship and studied operational con-
378 ditions for the desalination of seawater. The seawater feed was
379 heated using waste heat generated from the ship engine. The
380 waste heat could raise the seawater feed temperature to 55 °C,
381 and the MD process achieved a water flux of 5.4 L/m2 h and
382 excellent salt rejection. The product water from the MD pro-
383 cess had salt concentration < 3 mg/L and met the drinking
384 water standard. In another study, Amaya-Vías et al. [51] in-
385 vestigated and compared the performance of different MD
386 configurations (e.g. direct contact, water gap, and air gap) on
387 cruise ships, exploiting the residual heat of the ship engine
388 jacket water. All investigated MD configurations with real
389 seawater feed achieved a nearly complete salt rejection (i.e.
390 99.99%) and water flux comparable with that of seawater RO
391 [51]. Therefore, the authors suggested that MD desalination
392 could be an additional and sustainable water production for
393 cruise ships [51].
394 The strategic application of MD for fresh water supply in
395 rural remote areas and on ships has been demonstrated, and
396 MD was found to be a technically viable desalination process

397to produce high-quality water from different feed solutions.
398However , these MD appl icat ions have not been
399commercialised mainly because of the high process of thermal
400energy consumption that results in excessively high operation-
401al costs. To promote the commercial realisation of MD for
402small-scale decentralised desalination applications, more re-
403searches are needed on MD membrane module design and
404configuration improvement to enhance the process of thermal
405efficiency so that the energy consumption and hence, the cost
406of the MD desalinated water can be reduced.

407Coupling with FO for Treatment of Challenging
408Polluted Waters

409Another strategic application of MD is to combine with FO to
410allow for the complete treatment of challenging polluted wa-
411ters. FO has received growing research attention as an energy-
412saving, low-fouling membrane treatment process of polluted
413waters in recent years [52–54]. The FO process involves a
414semi-permeable membrane separating a polluted water feed
415from a concentrated draw solution. The draw solution pro-
416vides an osmotic driving force that allows water to permeate
417from the feed through the membrane to the draw solution [54].
418Compared with RO technology, FO holds potential benefits
419related to low external operating pressure, hence lower mem-
420brane fouling propensity and reduced process energy con-
421sumption [53, 54]. However, the FO process alone is unable
422to reclaim fresh water from the polluted water, and it needs to
423be combined with another process to regenerate the diluted
424draw solution (i.e. in order to replenish the osmotic driving
425force) and, in tandem, reclaim fresh water [55, 56]. In other
426words, the FO process alone is only suitable for the pre-
427treatment of polluted waters, and an additional process is gen-
428erally always required to extract fresh water from the draw
429solution. Therefore, draw solution regeneration plays a critical
430role in the development and success of the FO process for the
431treatment of polluted waters. Recently, MD has emerged as a
432promising solution to achieve highly effective and potential
433low-energy regeneration of FO draw solutions [57–63].
434FO-MD hybrid systems have been strategically developed
435to overcome the key issues associated with each individual
436process during the treatment of polluted waters. Essentially,
437FO-MD hybrid systems consist of FO pre-treatment, followed
438by MD regeneration of the draw solution as the final step to
439produce clean water (Fig. 3). In wastewater treatment applica-
440tions, stand-alone MD is usually unsuccessful due to high
441foulant concentrations that can lead to membrane wetting
442and the consequent termination of the MD process.
443Applying FO pre-treatment has been a successful strategy to
444contain foulants in the FO feed solution and hence prevent
445wetting of the MD membrane [57, 61, 63–65]. The foulants
446in the wastewater feed can accumulate on the FO membrane,
447but their effects on FO water flux are significantly lower
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448 compared with those of membrane wetting onMDwater flux.
449 Moreover, the inclusion of two high retention membrane pro-
450 cesses in FO-MD hybrid systems results in the double-barrier
451 treatment of wastewaters, therefore enhancing the removal of
452 contaminants such as organic micropollutants, oil, and partic-
453 ularly surfactants. For example, the FO-MD hybrid treatment
454 of domestic sewage and urine achieved almost complete re-
455 moval of total organic carbon (TOC), total nitrogen (TN), and
456 ammonium nitrogen (NH4

+-N), considerably higher than the
457 removal rates of the same contaminants treated by the stand-
458 alone FO process [60, 66]. Furthermore, MD allows for the
459 effective regeneration of FO draw solutions of hypersalinity
460 since water flux and the complete salt rejection of the MD
461 process are not susceptible to its feed water salt concentration.
462 Thus, the FO-MD hybrid process can be operated at a higher
463 osmotic driving force and hence be compatible with more
464 concentrated wastewater feeds. More importantly, as heat is
465 the primary power input to MD, FO-MD hybrid systems can
466 offer energy- and cost-saving treatment of wastewaters when
467 waste heat or solar thermal energy is readily available.
468 Finding proper draw solutions plays a vital role in realising
469 the practical applications of the FO-MD hybrid process. Ideal
470 FO draw solutions are expected to offer high water flux but
471 minimal reverse salt flux and to be effectively regenerated by
472 MD. A great number of draw solutions have been exploited
473 for the FO process alone, but only several of them are suitable
474 for the FO-MD hybrid process as they need to be non-volatile
475 and possess a low risk of membrane wetting to the MD pro-
476 cess. The most notable examples of the draw solutions for the
477 FO-MD hybrid process are high charged salts of sodium in-
478 cluding ethylenediaminetetraacetic disodium (EDTA-2Na)
479 [62], sodium phosphate (Na3PO4) [67], and their mixture
480 [68]. Compared with NaCl, which is the most common FO

481draw solution, high charged salts draw solutions that exhibit
482higher water flux but significantly lower reverse salt flux due
483to their larger ions [69]. Moreover, the diluted draw solutions
484of the high charged sodium salts can be completely recovered
485by the MD regeneration process. For example, the MD regen-
486eration process of the diluted draw solutions containing single
487EDTA-2Na or Na3PO4 and their mixture retained 100% dis-
488solved salts in the feedwater, producing distillate of excellent
489purity. However, it is noteworthy that the pH of the high
490charged salt draw solutions profoundly affects the salt disso-
491ciation in the solution, exerting critical impacts of the FO
492process water and reverse salt flux. Therefore, the high
493charged draw solutions might require pH adjustment so that
494the FO-MD hybrid process can achieve the optimum water
495separation performance [67, 68].
496Although FO-MD systems offer complementary functions,
497the hybrid process has several challenges. In the merged FO-
498MD hybrid process (Fig. 3a), the FO draw solution and the
499MD feed flow in the same module, allowing for compact FO-
500MD hybrid systems. However, merging the FO draw solution
501and the MD feed in the same module inevitably leads to a
502reduction in the driving force for MD [60]. This is due to heat
503dissipation from the FO draw/MD feed solution to both the
504FO feed and MD permeate streams, resulting in a lower tem-
505perature (and hence reduced partial vapour pressure) gradient
506across the MD membrane. In the same way, the increased
507temperature of the FO draw solution might adversely affect
508the FO membrane integrity and promote the FO reverse salt
509flux. The issues with heat dissipation and its adverse effects on
510both FO and MD performance can be prevented when using
511the side-by-side FO-MD hybrid process whereby the FO draw
512solution and the MD feed are separated (Fig. 3b).
513Nevertheless, the side-by-side hybrid process is less compact

Fig. 3 The schematic diagram of the a merged and b side-by-side hybrid FO-MD process: the FO process extracts water from the feed solution to the
draw solution while the MD process simultaneously recovers fresh water and regenerates the diluted draw solution
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514 and requires additional heating the MD feed and cooling the
515 FO draw solution, thus raising the process of overall energy
516 consumption.Moreover, in both merged and side-by-side FO-
517 MDhybrid processes, the presence of volatile compounds and
518 ammonia in the source wastewaters has a high potential for
519 accumulation at the MD distillate, subsequently contaminat-
520 ing the distillate. Finally, hybrid MD-FO can lead to highly
521 concentrated effluent that needs to be further managed. The
522 demand for post-treatment of the concentrated effluent and the
523 additional treatment to remove volatile organics from MD
524 distillate will invariably require more materials and incur ad-
525 ditional operational costs. These factors must be considered if
526 the hybrid MD-FO process is to be economically and practi-
527 cally effective.
528 Another challenge to the FO-MD hybrid process is to
529 achieve the balance in water transfer rates between the FO
530 and the MD unit to sustain continuous process operation. In
531 general, the feasibility of an FO-MD process for continuous
532 operation requires strict water management; that is, a water
533 balance between the two individual units. So far, most studies
534 on the hybrid FO-MD process have focused only on demon-
535 strating the treatment viability using lab-scale FO and MD
536 units in batch operation, few have trialled continuous opera-
537 tion [2, 70–72]. It is worth emphasising that FO and MD have
538 a different driving force, and the influences of the feed salt
539 concentration on water transfer in these two processes are
540 unique. For example, the FO process is typically applied with
541 asymmetric membranes (including commercial ones) [53]. In
542 such asymmetric membrane systems, the existing internal
543 concentration polarisation (ICP) effect in the draw solution
544 channel—which is regarded as the Achilles heel—exerts great
545 influence on the FO water flux [57]. The draw solution con-
546 centration decreases along with water penetration from the
547 feed to the draw side; however, the declining trend in water
548 flux does not have a linear relationship with the salt content
549 owing to the ICP, particularly at a high concentration level.
550 On the other hand, the influence of the draw solution salt
551 content and the concentration polarisation effect onMDwater
552 flux is negligible. In this manner, the water equilibration be-
553 tween the FO and MD components becomes rather compli-
554 cated, resulting in the frequent adjustment of operating tem-
555 peratures in MD. Thus, future works on the FO-MD hybrid
556 process need to particularly focus on process optimisation to
557 achieve the optimum performance of each single unit as well
558 as the balance in water transfer rates between these two units.
559 Indeed, it appears that imbalances between the FO and MD
560 sides of the hybrid system are not fully understood or ad-
561 dressed in the literature [70].
562 It is noteworthy that so far hybrid FO-MD systems have
563 been demonstrated only at a lab-scale level, and significant
564 effort is required to facilitate the large-scale and commercial
565 hybrid FO-MD applications. A comprehensive review of hy-
566 brid FO systems carried out by Chekli et al. [72] highlighted

567the FO-MD system as a promising application for producing
568high-quality water from polluted waters. However, their find-
569ings also indicated that several limitations should be overcome
570before the process can become feasible at a large scale. These
571include membrane pore wetting, a low feed recovery rate,
572uncertainty related to the availability of low-cost energy
573sources for the draw solution regeneration by MD, and eco-
574nomic costs. These limitations appear to be pertinent to the FO
575and MD process on their own. The comprehensive review of
576the hybrid FO-MD literature also indicated non-uniformity
577and non-accuracy of experimental results [72]. This could be
578due to the use of a large variety of feed and draw solutions, the
579short duration of experiments, the wide variety of membranes,
580and non-similar operating conditions.

581Regeneration of Liquid Desiccant Solutions for Air
582Conditioning Systems

583One emerging strategic application of MD is for the regener-
584ation of liquid desiccant solutions used in liquid desiccant air
585conditioning (LDAC) systems. In recent years, LDAC has
586become an energy-saving alternative to conventional vapour
587compression-based air conditioners [73–75]. In conventional
588air conditioners, the air is dehumidified by overcooling to dew
589point temperature to facilitate the moisture condensation to
590liquid water; then, the dehumidified air is reheated to the de-
591sired temperature. Thus, a significant amount of energy is
592wasted for overcooling and reheating the air in these systems.
593On the contrary, the LDAC process dehumidifies the air by
594directly absorbing the air moisture to a concentrated liquid
595desiccant solution, thus obviating the need for overcooling
596and the subsequent reheating of the air. Therefore, the energy
597consumption of the LDAC process is noticeably lower com-
598pared with that of conventional air conditioners [73–75].
599Combining MD for the regeneration of liquid desiccant solu-
600tions potentially reduces the energy cost of the LDAC process
601asMD can utilise low-grade waste heat and the abundant solar
602energy that coincides with the demand for air conditioning.
603Regeneration of liquid desiccant solutions is vital to the
604efficiency of the LDAC process. One typical LDAC system
605consists of an air dehumidifier and a desiccant solution regen-
606erator. In the air dehumidifier, when the concentrated liquid
607desiccant solution absorbs moisture (i.e. latent heat) to dehu-
608midify the air, it is diluted by the absorbedmoisture, leading to
609a reduction in the desiccant concentration. As the dehumidifi-
610cation capacity of the liquid desiccant solution profoundly
611depends on the solution concentration, the diluted liquid des-
612iccant solution needs to be regenerated prior to the next dehu-
613midification cycle. In most current LDAC systems, the diluted
614liquid desiccant solution is regenerated using the traditional
615thermal evaporation method, in which the diluted desiccant
616solution is heated to about 90 °C and flows counter-
617currently with a hot air stream through packing media
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618 [76–78]. The evaporation of water requires significant thermal
619 energy; therefore, liquid desiccant solution regeneration con-
620 tributes over 75% to the total energy consumption of the
621 LDAC process [78]. Moreover, desiccant carryover is an in-
622 trinsic technical problem pertinent to the thermal evaporation
623 regeneration method [76, 77]. Due to the direct contact in the
624 packing media, small desiccant droplets are swept away by the
625 hot air stream in the regenerator. The desiccant carryover issue
626 poses a serious risk of corrosion and detrimental health effects
627 and inevitably results in desiccant solution replenishment in
628 the LDAC process. Thus, great effort has been devoted to
629 exploring innovative technologies, including MD, for the re-
630 generation of a liquid desiccant solution to replace the thermal
631 evaporation method (Fig. 4).
632 Compared with the thermal evaporation regenerationmeth-
633 od, MD has several noticeable advantages including the capa-
634 bility of using waste heat or renewable energy and the process
635 resistance to the desiccant carryover issue. As water transfer
636 across the MD membrane occurs when exists a transmem-
637 brane vapour pressure difference, the MD regeneration of liq-
638 uid desiccant solution process can be operated at a mild solu-
639 tion temperature, enabling the utilisation of low-grade waste
640 heat or the solar thermal energy available on site to reduce the
641 energy cost of LDAC. It is worth noting that desiccant solu-
642 tion regeneration primarily contributes to the total energy of
643 the LDAC process. Thus, the exploration of MD for the re-
644 generation of the liquid desiccant solution might considerably
645 drive down the operation cost of the LDAC process.
646 Furthermore, the MD membrane only allows for the perme-
647 ation of water vapour but not liquid water; therefore, the MD
648 process can achieve a complete salt rejection during the regen-
649 eration of liquid desiccant solution if membrane pore wetting
650 does not occur. As a result, the desiccant carryover issue can
651 be eradicated when using MD for the regeneration of the liq-
652 uid desiccant solution.
653 The technical feasibility of MD for liquid desiccant solu-
654 tion regeneration has been experimentally demonstrated
655 [79–84]. These experimental works have proven the MD via-
656 bility for the regeneration of liquid desiccant solutions at dis-
657 cernibly low solution temperature without the desiccant car-
658 ryover issue. For example, Duong et al. [81, 83] experimen-
659 tally investigated the direct contact MD regeneration of liquid
660 desiccant solutions of halide salts (e.g. LiCl, CaCl2, and mixed
661 CaCl2/LiCl), and manifested that the direct contact MD pro-
662 cess could regenerate the desiccant solutions at feed operating
663 temperature as low as 55 °C, and exhibited a complete rejec-
664 tion of dissolved desiccant salts. However, a great challenge to
665 the MD regeneration of the liquid desiccant solution for
666 LDAC is the hypersaline nature of the solution. The hypersa-
667 linity of liquid desiccant solution together with polarisation
668 effects severely restrains water flux and hence the regenera-
669 tion capacity of the MD process [81, 83]. Indeed, the direct
670 contact MD process at the feed temperature of 65 °C could

671only concentrate the LiCl solution up to 29 wt.%, above this
672concentration, the direct contact MD process achieved zero
673water flux [83]. The limited regeneration capacity of the MD
674process can be improved by elevating the feed operating tem-
675perature and deploying the vacuum configuration: a vacuum
676MD system at feed temperature of 70 °C could concentrate the
677LiCl solution up to 40 wt.% [82]. It is, however, noteworthy
678that the vacuum MD process at elevated feed temperature
679requires additional equipment (e.g. steam raiser, vacuum
680pump, and condenser) and heat input, thus entailing increased
681process complexity and investment and operational costs.
682Therefore, further studies are needed to develop innovative
683MD configurations that can regenerate the hypersaline desic-
684cant solutions at reasonable investment and operational costs.
685It is noted that most experimental studies on MD regener-
686ation of liquid desiccant solutions for LDAC report no issue
687with membrane wetting, and the MD process exhibits a nearly
688complete salt rejection [79, 81, 83, 85]. This is a marked
689advantage of MD over the conventional thermal evaporation
690method for the regeneration of liquid desiccant solutions.
691Generally, the MD process with liquid desiccant solution
692feeds is more resistant to membrane wetting than that with
693wastewaters because of two reasons. Firstly, liquid desiccant
694solutions are prepared from fresh water and pure desiccant
695salts; thus, they are largely free of organic matter and surfac-
696tant that can cause membrane wetting. Secondly, desiccant
697salts at high concentration in liquid desiccant solutions in-
698crease the solution surface tension [86], hence elevating the
699liquid entry pressure (LEP) and reducing the risk ofmembrane
700wetting as expressed in the Eq. (4). Few studies have reported
701the issue with precipitation of corrosion products on the mem-
702brane surface during the MD regeneration of LiCl and CaCl2

Fig. 4 The schematic diagram of the combined MD/LDAC process: the
hot and humid air from outside is dehumidified by the cool liquid
desiccant solution in the dehumidifier before circulating to buildings,
while the MD process simultaneously regenerates the diluted liquid
desiccant and produces fresh water
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703 desiccant solutions [81]. Nevertheless, membrane wetting did
704 not occur and the mostly pure distillate was obtained during
705 these MD tests with the liquid desiccant solutions.
706 Another direction for future researches on MD regenera-
707 tion of liquid desiccant solutions is process modelling and
708 simulation. It is noteworthy that while there have been a great
709 number of modelling and simulation works on the MD pro-
710 cess for seawater desalination applications, very few studies
711 have been devoted to simulation and optimisation of the MD
712 regeneration of liquid desiccant solutions. As mentioned
713 above, the MD process of liquid desiccant solutions suffers
714 severely from the solution hypersalinity and polarisation ef-
715 fects, resulting in much lower water flux compared with the
716 seawater MD desalination process. Mass and heat transfer
717 along the membrane inside MD membrane modules during
718 the regeneration of liquid desiccant solutions might consider-
719 ably deviate from that duringMDdesalination of seawater and
720 other diluted saline solutions. Indeed, Duong et al. [81, 83]
721 have stressed the need for modelling and simulation of the
722 MD regeneration of liquid desiccant solutions with the inclu-
723 sion of concentration polarisation in heat and mass transfer
724 calculation. Moreover, the simulation of a pilot-scale direct
725 contact MD process of seawater feed has shown marked de-
726 clines in solution temperature and water flux along the mem-
727 brane [87]. These reductions are envisaged to be more signif-
728 icant during the MD process for liquid desiccant solution re-
729 generation given its hypersalinity and severe polarisation ef-
730 fects. Therefore, it is critical to simulate and optimise the MD
731 process of liquid desiccant solutions, particularly at the pilot or
732 large-scale operations.
733 The majority of researches on MD regeneration of liquid
734 desiccant solutions so far have focused on the process techni-
735 cal feasibility demonstration, while the economic viability of
736 the process for this application has not been examined. This
737 can be attributed to the fact that MD has just been recently
738 proposed for the regeneration of liquid desiccant solutions for
739 LDAC and the lack of commercial MD membranes and sys-
740 tems. Even with the primary MD application for seawater
741 desalination, there have been widely dispersed reports on the
742 costs and the economic viability of the process as summarised
743 in [88]. Moreover, the costs of the MD process for regenera-
744 tion of liquid desiccant solution might by far differ from that
745 for seawater desalination because the main product for the
746 former is the concentrated desiccant solution while that of
747 the latter is fresh water. For seawater MD desalination, the
748 process-specific energy consumption is the amount of energy
749 (i.e. thermal and electric) required to obtain one volumetric
750 unit of fresh water (i.e. kWh/m3). A different approach is
751 required to assess the specific energy consumption of MD
752 regeneration of liquid desiccant solution as fresh water is only
753 a process by-product. Thus, future researches on MD regen-
754 eration of liquid desiccant solutions need to address the eco-
755 nomic aspects of the process.

756Treatment of Acid Effluents for Beneficial Reuse

757As a strategic desalination process, MD has been applied in
758unique areas where other desalination processes are not tech-
759nically or economically viable. One of those areas is the treat-
760ment of acid effluents from mining and metal-plating indus-
761tries for the recovery of valuable minerals and fresh water.
762Given the rapid development of these industries, acid effluents
763have become a serious source of environmental issues world-
764wide. Largely, acid effluents have discernibly low pH and
765high contents of toxic metals and sulphates (Table 2), causing
766severe water pollution if directly discharged into the environ-
767ment [93, 94]. The most common treatment chain of acid
768effluents consists of alkali addition for pH adjustment follow-
769ed by a conventional process such as coagulation, floccula-
770tion, or precipitation. However, these conventional processes
771are considered inefficient and environmentally unfriendly for
772the treatment of complex acid effluents [95]. Pressure-driven
773membrane filtration processes including nanofiltration (NF),
774FO, and RO have been evaluated for acid effluent treatment,
775but the strong acidic nature and high concentrations of dis-
776solved metals in the effluents pose detrimental impacts on the
777separation efficiency and integrity of the membranes [92,
77896–98]. Unlike the pressure-driven membrane processes,
779MD is resistant to the negative impacts of acid and much less
780affected by dissolved metals and sulphates; therefore, it has
781been explored as a potential technology platform for the treat-
782ment of acid effluents. Moreover, as MD is capable of con-
783centrating the effluents to their saturation limits, it can facili-
784tate the recovery of valuable minerals together with fresh wa-
785ter from the acid effluents.
786Acid mine drainage (AMD) is one of the most common
787acid effluents worldwide, and its treatment by MD has been
788demonstrated in several recent studies [95, 96, 99–101]. For
789example, real AMD from Tinto River in Spain has been ex-
790perimentally treated by the MD process with two different
791configurations: air gap and water gap [95]. Although the real
792AMD had noticeably high concentrations of metals (e.g. iron,
793zinc, copper, manganese, cobalt, and nickel) and sulphate, the
794MD process achieved high water flux (i.e. 16.8 and 10.16
795L/m2 h respectively for the water gap and air gap configura-
796tion) and produced excellent distillate with average electrical
797conductivity (EC) below 19 μS/cm in all tests [95].
798Particularly, the acidic nature of the AMD feed water did not
799pose any impacts on the MD membrane, and the MD process
800obtained fresh distillate with neutral pH of 7.6, despite the
801AMD feed had a low pH of 2.1 [95]. The authors of the study
802[95] also assessed the STEC and GOR of the MD process and
803highlighted the potential of MD for the sustainable treatment
804of AMD. In another study, Hull and Zodrow [100] examined
805the feasibility of MD treatment of an acid rock drainage (i.e.
806one type of AMD) feed at a high water recovery ratio (i.e.
80780%) with respect to membrane scaling under two scenarios:
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808 with and without thermal pre-treatment. The experimental re-
809 sults demonstrated that the MD process operated at the 34 °C
810 temperature difference between the hot feed and the cold dis-
811 tillate could achieve an initial water flux of 38.4 L/m2 h and
812 dissolved salt rejection > 99% [100]. The MD process oper-
813 ated at 80% water recovery suffered from membrane scaling
814 caused by iron hydroxide, leading to a slight decrease in water
815 flux with operating time [100]. However, a chemical-free ther-
816 mal precipitation pre-treatment was effective at preventing
817 membrane scaling and the resulting water flux decline during
818 the MD treatment of acid rock drainage [100]. At the water
819 recovery ratio of 80%, the MD process concentrated the min-
820 eral concentrations in the acid rock drainage by 5-folds, bring-
821 ing valuable minerals to their saturation limits and thus facil-
822 itating their recovery in a subsequent process [100].
823 Acidic effluents from metal-plating processes have also
824 been treated by MD for beneficial reuse of minerals and fresh
825 water [102–104]. As a growing industry, metal-plating gener-
826 ates a huge volume of acidic wastewaters with high concen-
827 trations of heavy metals such as chromium and nickel. These
828 heavy metals are toxic in aqueous environments, but they are
829 valuable minerals and their resources have been depleted. As a
830 result, the treatment of metal-plating effluents for beneficial
831 reuses has been prioritised over direct discharge into the en-
832 vironment. The MD process has been demonstrated for the
833 treatment of metal-plating effluents and showed promising
834 results. Duong et al. [102] trialled the MD process for the
835 treatment of nickel electroplating effluent to simultaneously
836 facilitate the recovery of nickel and obtain fresh water (Fig. 5).
837 The MD process at the mild feed operating temperature of 60
838 °C increased the nickel concentration in the effluent by > 100-
839 folds, from 0.3 to 33.0 g/L (i.e. near the nickel saturated

840concentration), and produced fresh water with quality compa-
841rable with that of RO permeate [102]. At such a high concen-
842tration, nickel sulphate precipitated on the MDmembrane but
843only led to a slight reduction in the process water flux (i.e. by
84420%) and did not cause membrane wetting [102]. The authors
845also conducted a preliminary analysis of thermal energy sav-
846ing when combining MD with chemical precipitation/
847electrodeposition for the treatment of nickel electroplating ef-
848fluent for beneficial reuses and reported that the thermal ener-
849gy consumption of the nickel recovery process could be sig-
850nificantly reduced by the utilising the sensible heat of the MD
851concentrated effluent [102]. In another study, Tomaszewska
852et al. [104] deployedMD to treat a real metal pickling solution
853for the recovery of metals (e.g. copper, iron, zinc, and magne-
854sium) and hydrochloric acid (i.e. HCl). At the feed and distil-
855late temperatures of 70 and 20 °C, the MD process could
856extract nearly all HCl from the pickling solution and at the
857same time increased the concentrations of the metals in the
858solution more than two-fold, hence promoting the recovery of
859those metals in the crystalline form [104]. The technical via-
860bility of MD for the treatment of real metal-plating effluents
861was also demonstrated in the study conducted by Zoungrana
862et al. [103] using the modified direct contact MD
863configuration.
864Beyond the desalination applications, MD has also been
865tested for the recovery of acids from acidic wastewaters.
866Kesieme et al. [105] experimentally assessed the feasibility
867of direct contact MD for acid and water recovery from real
868sulphuric acid (i.e. H2SO4) or HCl leach solutions disposed of
869a hydrometallurgical plant. Experimental results showed that
870the direct contact MD process with the H2SO4 leach solution
871retained > 99.9% sulphate in the concentrate and recovered >
87280% fresh water from the solution. The acid was then extract-
873ed from the concentrate using solvent extraction [101]. On the
874other hand, the direct contact MD process with the HCl leach
875solution captured the acid on the permeate side at a concen-
876tration of 1.10 M, leaving behind only 0.41 M in the feed.
877These experimental results confirmed that MD is technically
878viable for the recovery of H2SO4 and HCl from their leach
879solutions.
880From the lab-scale works, MD has proved its applicability
881for the recovery of acid and critical minerals from various acid
882effluents. However, it must be noted that there remain several
883key challenges that need to be overcome prior to the industrial
884realisation of MD for this strategic desalination. These chal-
885lenges include the relatively low MD water flux (i.e. com-
886pared with pressure-driven membrane processes), flux reduc-
887tions caused by concentration polarisation, membrane wetting
888in long-term operation, high MD module and system costs,
889and the significantly high thermal energy consumption [4, 25,
890106]. These challenges are similar to those faced by the stra-
891tegic applications of MD for the regeneration of FO draw
892solution and liquid desiccant solutions for LDAC systems. It

t2:1 Table 2 Characteristics of several acid effluents reported in the
literature

t2:2 Water characteristics and element
compositions

References

t2:3 [89] [90] [91] [92]

t2:4 General characteristics

t2:5 pH 2.4 3.3 2.6 1.3

t2:6 Conductivity (mS/cm) 3.6 n.a. n.a. 18.2

t2:7 Element compositions (mg/L)

t2:8 SO4
2- n.a. 1950.0 n.a. 18.2

t2:9 Ca 561.2 1070.0 500.0 347.0

t2:10 Fe 835.0 186.0 443.0 467.0

t2:11 Mg 384.8 384.8 771.0 n.a.

t2:12 Na 192.0 14.0 158.0 18.6

t2:13 Ni 1.8 n.a. 1.3 102.0

t2:14 Zn 0.9 n.a. 410.0 82.0

t2:15 Cu 0.2 n.a. 35.3 95.7

n.a., not available
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893 is also worth emphasising that the application of MD for the
894 strategic treatment of acid effluents has not been demonstrated
895 at the pilot or large-scale levels; therefore, future researches on
896 the MD process of acid effluents need to focus on the pilot and
897 large-scale demonstrations particularly regarding the chal-
898 lenges pointed out above.

899 Conclusions

900 This paper comprehensively reviewed four strategic water
901 treatment applications of MD, including decentralised small-
902 scale desalination for fresh water provision in remote areas,
903 hybridisation with FO for treatment of challenging polluted
904 waters, regeneration of liquid desiccant solutions for air con-
905 ditioning, and treatment of acid effluents for beneficial reuses.
906 For each strategic application, the opportunities and technical
907 challenges pertinent to the MD process were analysed, and
908 current status as well as future directions of the MD develop-
909 ment were discussed. Amongst the four strategic water treat-
910 ment applications reviewed here, decentralised small-scale
911 MD desalination for fresh water supply in remote areas has
912 advanced the most, confirmed by a great number of pilot and
913 small-scale demonstrations. Small-scale renewable energy-
914 driven MD desalination systems are technically viable to pro-
915 vide fresh water in remote areas where other mature desalina-
916 tion processes are not practical. However, more works onMD
917 configuration modification and process optimisation are re-
918 quired to enhance energy efficiency and reduce water produc-
919 tion costs. For the regeneration of FO draw solution and liquid
920 desiccant solution, the technical viability of MD has been
921 proven: MD can regenerate these hypersaline solutions with-
922 out any issue of membrane wetting and achieve high-quality
923 fresh water. Future works onMD regeneration of these hyper-
924 saline solutions need to focus on the pilot and large-scale
925 demonstrations to evaluate the economic viability. Finally,
926 the MD process has also been successfully demonstrated for

927the treatment of acid effluents for critical minerals and fresh
928water recovery by extensive lab-scale studies. The MD pro-
929cess is resistant to the strong acidic nature and high contents of
930metals and sulphates in the effluents; thus, it can effectively
931treat the acid effluents for beneficial reuse. Like for the stra-
932tegic regeneration of FO draw solution and liquid desiccant
933solution, the economic practicality of MD for the treatment of
934acid effluents requires more future studies on the pilot and
935large-scale demonstrations.
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