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Abstract
Many-objective optimisation problems (MaOPs) have recently received a considerable attention from researchers. Due to the 
large number of objectives, MaOPs bring serious difficulties to existing multi-objective evolutionary algorithms (MOEAs). 
The major difficulties includes the poor scalability, the high computational cost and the difficulty in visualisation. A number 
of many-objective evolutionary algorithms (MaOEAs) has been proposed to tackle MaOPs, but existing MaOEAs have still 
faced with the difficulties when the number of objectives increases. Real-world MaOPs often have redundant objectives 
that are not only inessential to describe the Pareto-optimal front, but also deteriorate MaOEAs. A common approach to the 
problem is to use objective dimensionality reduction algorithms to eliminate redundant objectives. By removing redundant 
objectives, objective reduction algorithms can improve the search efficiency, reduce computational cost, and support for 
decision making. The performance of an objective dimensionality reduction strongly depends on nondominated solutions 
generated by MOEAs/MaOEAs. The impact of objective reduction algorithms on MOEAs and vice versa have been widely 
investigated. However, the impact of objective reduction algorithms on MaOEAs and vice versa have been rarely investi-
gated. This paper studies the interdependence of objective reduction algorithms on MaOEAs. Experimental results show 
that combining an objective reduction algorithm with an MOEA can only successfully remove redundant objectives when 
the total number of objectives is small. In contrast, combining the objective reduction algorithm with an MaOEA can suc-
cessfully remove redundant objectives even when the total number of objectives is large. Experimental results also show 
that objective reduction algorithms can significantly improve the performance of MaOEAs.

Keywords  Evolutionary multi-objective optimisation · Many-objective optimisation · Objective dimensionality reduction · 
Principal component analysis

1  Introduction

In the real world, there often exist problems with more than 
one objective, which are referred as multi-objective prob-
lems (MOPs) [1, 31]. In a MOP, different solutions are likely 
to have an advantage over other objectives, so the Pareto 
dominance concept is commonly-used to compare different 

solutions. Multi-objective optimisation is the process to 
approximate the objective space Pareto Front so that no fur-
ther enhancement on any objective is able to achieve without 
spoiling the rest of objectives [31, 34].

MOPs with four or more objectives are informally 
regarded as many-objective problems (MaOPs) [19]. MaOPs 
appear in many real-world applications, such as automotive 
engine calibration [20], dynamic airspace sectorisation [40], 
water distribution system design [21], sensornet protocol 
optimisation [41], and sequence alignment of proteins [17]. 
MaOPs are increasingly recognised as a key research topic 
in the multi-objective optimisation community [31, 50].

Evolutionary algorithms (EAs) are computer applications 
which mimic biological processes in order to solve complex 
problems. EAs are population-based, black-box optimisation 
methods and do not require particular assumptions such as 
continuity or differentiability [9, 49]. Therefore, EAs are 

 *	 Cao Truong Tran 
	 truongct@lqdtu.edu.vn

	 Xuan Hung Nguyen 
	 nguyenxuanhung@outlook.com

	 Lam Thu Bui 
	 lambt@lqdtu.edu.vn

1	 Research Group of Computational Intelligence, Le Quy 
Don Technical University, 236 Hoang Quoc Viet St, Hanoi, 
Vietnam

http://orcid.org/0000-0002-6323-4387
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-019-00297-4&domain=pdf


	 Evolutionary Intelligence

1 3

very appropriate for addressing MOPs, and plenty of multi-
objective evolutionary algorithms (MOEAs) have been pro-
posed to deal with MOPs [50]. However, because of the 
large number of objectives, when tackling with MaOPs, 
conventional MOEAs encounter serious difficulties [31, 38].

There are three main difficulties associated with MaOPs. 
The first difficulty is the poor scalability of most Pareto dom-
inance based MOEAs such as NSGA-II [15] and SPEA-II 
[51]. The underlying reason is that when there are a large 
number of objectives, almost the entire population become 
non-dominated. This phenomenon makes the Pareto dom-
inance-based selection ineffective, so the convergence of 
MOEAs is seriously degraded [38]. The second difficulty 
is the high computation cost because the size of population 
needed to approximate Pareto-optimal front (POF) increase 
exponentially to the number of objectives [38]. The third dif-
ficulty is the obstacle of the visualisation of solutions own-
ing to the increase in the number of objectives. As a result, 
this makes very difficult for users to choice a final solution 
in MaOPs [38].

The approaches to tackling with MaOPs can be cat-
egorised into preference-ordering approaches and objec-
tive reduction approaches [31]. The preference-ordering 
approaches suppose that there is no redundant objectives in 
the given problem, and aim to induce a preference ordering 
over the nondominated solutions to reduce selection pres-
sure for convergence. Many-objective evolutionary algo-
rithms (MaOEAs) such as NSGA-III [14] belong to these 
approaches. In contrast, the objective reduction approaches 
support that there exist redundant objectives in the given 
problem, and aim to identify a smallest subset of conflict-
ing objectives which generates the same POF as the original 
problem [35, 38].

By removing redundant objectives and keeping only 
essential objectives, objective reduction approaches bring 
potential benefits. If the number of essential objectives could 
be reduced to less than four, objective reduction could make 
an unsolvable problem (many-objective) solvable by using 
any of the existing MOEAs. Even if the number of essential 
objectives are four or more, objective reduction still could 
improve search efficiency, lower computational cost and 
make visualisation and decision-making easier [38, 39].

An objective reduction method operates on the objective 
vectors of the nondominated solutions which are obtained by 
an MOEA or an MaOEA. Consequently, the effectiveness of 
the objective reduction method strongly depends on the abil-
ity of the an MOEA or an MaOEA to search for temporary 
nondominated solutions. The effectiveness of existing objec-
tive reduction approaches have been widely evaluated on 
MOEAs [33, 38], but have not been evaluated on MaOEAs. 
Therefore, how MaOEAs influence and benefit from objec-
tive reduction approaches should be investigated.

The overall goal of this paper is to investigate how 
MaOEAs can benefit from objective reduction algorithms 
when dealing with MaOPs. In order to achieve this goal, 
firstly, the paper examines the influence of temporary 
nondominated solutions obtained by MaOEAs on objec-
tive reduction algorithms. After that, the paper evaluates 
MaOEAs on the given problem with selected objectives 
obtained by reduction algorithms to figure out the advan-
tages which MaOEAs can receive when integrating with 
these objective reduction algorithms.

The rest of this paper is organised as follows. Section 2 
shows an overview of related work. Section 3 describes the 
method and experiment design. Section 4 presents results 
and discussions. Finally, Sect. 5 makes conclusions and 
states future work.

2 � Related work

This section presented related work including multi-objec-
tive optimisation, quality measurements of multi-objective 
optimisation algorithms, many-objective optimisation and 
objective dimensionality reduction approaches.

2.1 � Multi‑objective optimisation

Multi-objective optimisation problem as defined as follows 
[34]:

where there are k (≥ 2 ) objective function fi ∶ ℝ
n → ℝ . The 

decision vectors � = (x1, x2,… , xn)
T belongs to (nonempty) 

feasible region � , which is a subset of decision variable 
space ℝn . All of k objective functions need to be minimised 
simultaneously. It is assumed that there does not exist a sin-
gle solution that is optimal with respect to every objective 
function. The image of region by ℤ = f (�) , which is a sub-
set of the objective space ℝk is called the feasible objective 
region. The elements of ℤ are called objective (function) 
vectors and denoted by � (x) or � = (zl, z2,… , zk)

T , where 
zi = fi(�) for all i = 1,… , k are objective (function) values.

Techniques for solving MOPs can be divided into 
weighted sum techniques and evolutionary computation-
based techniques. Weighted sum techniques solve a MOP 
by converting the problem into a single objective optimisa-
tion problem. After converting, the new problem has a single 
objective function, then it can be solved by using developed 
theory and methods for single objective optimisation. The 
advantages of weighted sum techniques are easy to under-
stand and implement. The fitness combination technique 

(1)
minimize � =

{
f1(�), f2(�),… , fk(�)

}

subject to � ∈ �
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is also computationally efficient. The main disadvantage 
of weighted sum techniques is that the results depends on 
determination of weighting coefficients which is not easy to 
determine in advanced [9].

Evolutionary computation-based techniques solves a 
MOP by using evolutionary algorithms to approximate 
optimal solutions for the problem. By evolving a popula-
tion of solutions, multi-objective evolutionary algorithms 
(MOEAs) are able to approximate a set of optimal solutions 
in a single run. In the past few decades, researchers have 
proposed plenty of MOEAs. Some well-known MOEAs are 
nondominated sorting genetic algorithm II (NSGA-II) [15], 
strength pareto evolutionary algorithm (SPEA) [52], pareto 
archived evolution strategy (PAES) [30].

The Pareto dominance relation is widely used to compare 
solutions in MOEAs. Based on the Pareto dominance rela-
tion, Pareto Optimal Solution, Pareto Set (PS), and Pareto 
Front (PF) are further defined. These terms are defined as 
follows:

Definition 1  A vector � = (u1,… , um)
T is said to domi-

nate another vector � = (v1,… , vm)
T , denoted as � ≺ � , if 

∀i ∈ {1,… ,m} , ui ≤ vi and ∃ j ∈ {1,… ,m} uj < vj.

Definition 2  A feasible solution �∗ ∈ � of problem (1) 
is called a Pareto optimal solution, if ∄ � ∈ � such that 
� (�) ≺ � (�∗).

Definition 3  The set of all the Pareto optimal solu-
tions is called the Pareto set (PS), denoted as 
PS =

{
� ∈ 𝛺 | ∄� ∈ 𝛺, � (�) ≺ � (�)

}

Definition 4  The image of the Pareto set in the objec-
tive space is called the Pareto front (PF), denoted as PF 
= {� (�) | � ∈ PS}.

2.2 � Quality measurements of multi‑objective 
optimisation algorithms

There exist over 50 metrics to compare the performance 
of different MOEAs [36]. Generational distance (GD) and 
inverted generational distance (IGD) are the most com-
monly-used metrics because they still work well when the 
number of objectives increases. GD is a value representing 
how ‘far’ PFknow

1 is from PFtrue
2 and is defined as in Eq. (2):

(2)GD =

�∑m

i=1
d
p

i

�1∕p

m

where m is the number of vectors in PFknow, p = 2, and di 
is the Euclidean distance (in objective space) between each 
vector and the nearest member of PFtrue . This measurement 
reflects the convergence aspect of MOEAs. The smaller GD 
value is, the better algorithm is [36].

GD often does not work well when an MOEA generates 
very few nondominated solutions. IGD is proposed to allevi-
ate the issue, and is defined as in Eq. (3):

where n is the number of vectors in PFtrue , p is often set to 
2, and dj is the Euclidean distance between each vector in 
PFtrue and its nearest vector in PFknow . IGD can reflect both 
the convergence and diversity of an MOEA [36].

2.3 � Many‑objective optimisation

Multi-objective optimisation problems, which have more 
than three objectives, are considered as many-objective opti-
misation problems (MaOPs). There exist a number of many-
objective optimisation evolutionary algorithms (MaOEAs) 
which are proposed to solve MaOPs. Some well-known 
MaOEAs are reference-point based non-dominated sorting 
(NSGA-III) [14], grid-based evolutionary algorithm (GrEA) 
[45], knee point driven evolutionary algorithm (KnEA) [48].

When dealing with these MaOPs, MOEAs encounter 
serious difficulties. One difficulty is that when applying a 
well-known and frequently-used Pareto-dominance-based 
MOEAs such as NSGAII [15] and SPEA2 [51] to MaOPs, 
a large portion of population becomes non-dominated. 
This means these solutions cannot be compared to select 
for next generation (most of them are “good”). When using 
none-Pareto-based MOEAs such as aggregation-based and 
indicator-based approaches, they still have to search simulta-
neously in an exponentially increasing number of directions 
[27, 31]. The second difficulty is that the size of population 
has to increase exponentially to describe the front result 
[27]. Moreover, when deal with MaOPs, we encounter dif-
ficulties to visualise the solution set in order to help decision 
maker to choose the final solution [27].

Approaches to MaOPs can be categorised into preference-
ordering approaches and objective reduction approaches. 
The preference-ordering approaches modify the classical 
MOEAs for MaOPs and can be further divided into four 
groups:

–	 Modification (also called relaxed or improvement) of 
Pareto dominance approach aims at enlarging the domi-
nating area of non-dominated solutions so that some 
of them are more likely to be dominated by others. As 

(3)
IGD =

�∑n

j=1
d
p

j

�1∕p

n

1  The final set of solutions returned by MOEA at termination.
2  Is implicitly defined by the functions composing an MOP.



	 Evolutionary Intelligence

1 3

a result, this reduces portion of non-dominated solu-
tion set. An example of this approach is Grid-based 
Evolutionary Algorithm (GrEA) [45]. Instead of using 
Pareto-dominance, GrEA introduces grid-dominance 
and grid-difference in order to exploits the potential of 
the grid-based approach to strengthen the selection pres-
sure towards the optimal direction while maintaining an 
extensive and uniform distribution among solutions.

–	 Aggregation-based approach decomposes a MaOP into 
many single-objective sub-problems, so these MOEAs 
do not rely on the Pareto dominance when conducting 
the selection. In this approach, some algorithms are pro-
posed such as weighted sum (MOEA/D) [47], weighted 
min-max and vector angle distance scaling (MSOPS) 
[25]). MOEA/D decomposes a multiobjective optimisa-
tion problem into a number of scalar optimisation sub-
problems and optimizes them simultaneously, each sub-
problem is optimized by only using information from its 
several neighboring subproblems. According to both the 
vector angle distance scaling and weighted Tchebycheff 
methods, MSOPS ranks individuals in population and 
enables users to analyse a MaOP at hand, especially in 
terms of bounds and discontinuities of the Pareto Front.

–	 Reference set based approach uses a set of reference 
solutions to measure the quality of solutions. NSGA-III 
[14] is an example. Beside selecting individuals/points 
in good layers, it prioritises individuals/points near to 
reference lines which contructed by ideal point and ref-
erent points evenly distribued in hyperplane. Another 
example is TwoArch2 algorithm [44]. The algorithm 
selects solutions from historical or current populations 
to construct the reference set (called convergence set in 
this algorithm). Thus, the search process is guided by the 
solutions in the reference solution set.

–	 Indicator-based approach which uses indicator values 
such as hypervolume indicator in HypE [2] to guide the 
search process for solving MaOPs. The authors in HypE 
based on that hypervolume indicator is the only single set 
quality measure that is known to be strictly monotonic 
with regard to Pareto dominance, so they proposed a fast 
search algorithm that can do many-objective problems 
become feasible.

Along with preference-ordering approaches, objective reduc-
tion approaches for solving MaOPs is presented in Sect. 2.4.

2.4 � Objective dimensionality reduction

Dimensionality reduction is a machine learning technique 
which removes redundant features from original feature 
set. Dimensionality reduction are widely used in classifi-
cation, regression and clustering. Dimensionality reduc-
tion has remarkable benefits such as improving the model 

performance saving the storage space required and fastening 
the time required for computation [13, 43].

In evolutionary many-objective optimisation, dimension-
ality reduction is usually called objective dimensionality 
reduction. In real applications, there exist problems having 
many objectives,3 in which some of objectives conflict (or 
conflict partially) each others (real conflict), but some do 
not conflict each other, even correlated. If the absence of an 
objective does not affect the Pareto front, then that objective 
is considered redundant. Different from approaches men-
tioned in Sect. 2.3, objective dimensionality reduction aims 
at removing redundant objectives. Instead of directly solving 
a MaOP having redundant objectives, objective dimensional-
ity reduction algorithms are proposed to solve these prob-
lems by eliminating redundant objectives [4, 39].

Objective dimensionality reduction approaches can be 
categorised into three groups: dominance structure based 
approach, correlation based approach, and feature-based 
one [3, 39]. The first group tries to retain the dominance 
relations as much as possible when removing objectives in 
the given nondominated solutions. Brockhoff and Zitzler [6] 
introduced the problem of computing a minimum subset of 
objectives without lossing information (MOSS). They also 
introduced a general notion of conflicts between objective 
sets, and proposed an exact algorithm and a greedy heuristic 
for the NP-hard MOSS problem. In [4, 5], two problems 
� −MOSS4 and k − EMOSS5 were introduced. In these stud-
ies, Brockhoff and Zitzler proposed a greedy algorithms to 
solve these two problems. Singh et al. [39] proposed the 
PCSEA algorithm. Instead of using non-dominated sorting 
and crowding distance for finding non-dominated solution in 
whole space like NSGA-II [15], PCSEA uses a corner-sort 
ranking for finding the corner solutions. After that, a heu-
ristic technique is performed to determine the critical objec-
tives and eliminate redundant ones. Gu et al. [22] presented a 
novel measure for measuring the capacity of preserving the 
dominance structure of an objective set, then they proposed 
a fast algorithm to find a minimum set of objectives preserv-
ing the dominance structure as much as possible.

The second group aims to keep the most conflict objec-
tives and remove the objectives that are low conflict, or 
non-conflict each other. Deb and Saxena [16] proposed a 
principal component analysis (PCA) based evolutionary 
multi-objective optimization procedure, for dimensionality 
reduction. The main assumption is that if two objectives are 

3  Objectives in evolutionary many-objective optimisation are consid-
ered features in dimensionality reduction.
4  Computation of of an objective subset of minimum size, yielding a 
(change) dominance structure with given error.
5  Computation of an objective subset of given size with the minimum 
error.
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negatively correlated (taking the generated Pareto front as 
the data set), then these objectives are in conflict with each 
other. However, when the data points live on a non-linear 
manifold, PCA is often ineffective in revealing the under-
lying dimensionality. To overcome the issue, Saxena et al. 
proposed two new non-linear dimensionality reduction algo-
rithms for evolutionary multi-objective optimization, namely 
C-PCA-NSGAII and MVU-PCA-NSGA-II in [37], L-PCA 
and NL-MVU-PCA in [38].

The third group based on unsupervised feature selec-
tion techniques. Jaimes et al. [33] proposed dimensionality 
reduction schemes for solving � −MOSS and k − EMOSS 
problems. The main idea of these algorithms is to divide 
the objective set into homogeneous neighbourhoods around 
each objective, then retain the center of the most compact 
one and discard its neighbour. This dimensionality reduction 
scheme was later integrated into a MOEA by Jaimes et al. 
[28] to form reduction genetic algorithm.

Another way to categorise objective dimensionality 
reduction is online approaches and offline approaches. Since 
objective dimensionality reductions often integrate with 
MaOEAs, this classification bases on the timing of integrat-
ing. For offline methods, objective dimensionality reduction 
is carried out after obtaining a set of Pareto optimal solu-
tions [8, 33, 38, 39]. With online ones, by iteratively obtain-
ing solution sets and invoking the objective dimensionality 
reduction, the number of objectives can be reduced gradually 
during the search process [7, 23, 24, 28].

Along with feature selection, feature extraction tech-
niques are also used to perform dimensionality reduction. 
The main purpose of feature selection is to find a small sub-
set of the given features in order to represent the given data 
best, is discussed above. Feature extraction (or feature con-
struction) aims at creating novel features from the original 
features to explain data. In Cheung and Gu [11], formulated 
the essential objective as a linear combination of the original 
objectives with the combination weights determined based 
on the correlations of each pair of the essential objectives. In 
Cheung et al. [12], proposed an objective extraction which 
formulates the reduced objective as a linear combination of 
the original objectives to maximize the conflict between the 
reduced objectives, and minimize the correlation between 
each pair of reduced objectives.

Algorithm 1: Framework for linear objective
reduction algorithm
Input: t = 0 and Ft = {f1, f2, ..., fM}

1 begin
2 Run an MOEA/MaOEA, obtain a set of

non-dominated solutions corresponding to Ft.
3 Compute a positive semi-definite matrix

R(M×M)

R =
1
M

XXT

4 From matrix R, compute the eigenvalues
λ1, λ2..., λM ; eigenvectors: V1, V2, ...VM ;
normalise eigenvalues, and sort them
descending together with eigenvector

5 Perform the Eigenvalue Analysis to identify the
set of important objectives Fe ⊆ Ft

6 Perform the Reduced Correlation Matrix
Analysis to identify the identically correlated
subset (S) in Fe. If there no such subset,
Fs = Fe

7 Apply the selection scheme to identify the most
significant objective in each S, to arrive at Fs,
such that Fs ⊆ Fe ⊆ Ft

8 Computation of error
9 if Fs = Ft then

10 Stop and declare Ft as the essential objective
set;

11 Set T = t and compute the total error
12 else
13 set t=t+1, Ft = Fs, and go to Step 2
14 end
15 end

Algorithm 1 shows framework of Linear Principal Com-
ponent Analysis Algorithm (L-PCA algorithm) proposed by 
Saxena et al. [38] for linear objective reduction algorithms. 
This framework will be utilised in the method in the next 
section.

3 � Method and experiment design

This section firstly describes how we investigate the impact 
of a many-objective evolutionary algorithm on an objective 
dimensionality reduction algorithm, and vice versa. Sec-
ondly, it presents the design of experiments including test 
problems and experimental settings.

3.1 � The method

This study is designed to investigate the interaction between 
many-objective evolutionary algorithms and objective 
dimensionality reduction algorithms. Firstly, the study 
examines how a many-objective evolutionary affects the per-
formance of an object dimensionality reduction algorithm. 
The study also evaluates what benefits a many-objective 
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evolutionary algorithm can obtain when it combines with 
an object reduction algorithm.

In order to demonstrate the impact of a many-objective 
evolutionary algorithm on an objective dimensionality 
reduction algorithm, we design experiments to compare 
the performance of an objective dimensionality reduction 
algorithm when it combines with MOEAs and combines 
with MaOEAs. Figure 1 shows the integration of MOEAs/
MaOEAs on an objective dimensionality reduction algo-
rithm. Figure 1a describes the combination of a multi-objec-
tive evolutionary algorithm with an objective dimensional-
ity algorithm while Fig. 1b describes the combination of 
a many-objective evolutionary algorithm with an objective 

dimensionality algorithm. L-PCA algorithm as showed in 
Algorithm 1 is used for as an objective reduction algorithm. 
Two MOEAs—NSGAII [15] and SPEA2 [51]—are used in 
Fig. 1a while two MaOEAs—NSGAIII [14] and SPEA2SDE 
[32]—are used in Fig. 1b.

In order to examine whether an many-objective evolution-
ary algorithm can obtain advantages when it combines with 
an objective reduction algorithm, we design experiments to 
compare the performance of the integration of an many-
objective evolutionary algorithm with an objective reduction 
algorithm against the performance of the many-objective 
evolutionary algorithm alone. Figure 2 shows two ways 
using many-objective evolutionary algorithms to deal with 

start input: 
obj set 

NSGAII/ 
SPEA2

nondominated  
solution set 

objective 
reduction 

selected 
obj set 

stop
condition 

end

obj set <- selected obj set 

true

false

(a) The combination of amulti-objective evolutionary algorithm with an objective dimensionality algorithm.

start input: 
obj set 

NSGAIII/ 
SPEA2SDE

nondominated  
solution set 

objective 
reduction 

selected 
obj set 

stop
condition 

end

obj set <- selected obj set 

true

false

(b) The combination of amany-objective evolutionary algorithm with an objective dimensionality algorithm.

Fig. 1   The integration of MOEAs/MaOEAs on objective dimensionality reduction algorithms

start input: 
obj set MaOEAs 

nondominated  
solution set 

objective 
reduction 

selected 
obj set 

stop
condition 

end

obj set <- selected obj set 

true

false

(a) Integrating an objective dimensionality reduction into a many-objective evolutionary algorithm for dealing with many-
objective problems.

start input: 
obj set MaOEAs 

nondominated  
solution set end

(b) Using a many-objective evolutionary algorithm for dealing with many-objective problems.

Fig. 2   Two ways using many-objective evolutionary algorithms to deal with many-objective problems
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many-objective problems. Figure 2a shows the integration of 
an objective dimensionality reduction into a many-objective 
evolutionary algorithm while Fig. 2b shows a common way 
to use a many-objective evolutionary algorithm for deal-
ing with a many-objective problem. We also use L-PCA as 
showed in Algorithm 1 for removing redundant objectives. 
Five well-known MaOEAs algorithms—GrEA [45], KnEA 
[48], NSGAIII [14], RVEA* [10], �-DEA [46]—are used in 
Fig. 2a and b to search for nondominated solutions.

3.2 � Test problems and experimental design

To study, we use DTLZ5(I,M) problem [26], it is defined as:

The first property of the problem is that the dimensionality 
(I) of the Pareto-optimal front can be changed by setting I 
to an integer between two and M. The second one is that 
Pareto-optimal front is non-convex and follows the relation-
ship: 

∑M

i=1
(f ∗
i
) = 1 . The another property is that there are 

M − I first objectives correlated, while the others and one of 
M − I first objective are conflict each other. The experiments 
are performed on seven versions of DTLZ5(I,M) problem: 
DTLZ5(2,5), DTLZ5(3,5), DTLZ5(5,10), DTLZ5(7,10), 
DTLZ5(5,20) and DTLZ5(7,20).

The experiments use LPCA in [38] for doing objective 
dimensionality reduction. In LPCA, the threshold � , which 
is used to decide which objectives should be included, is set 
to 0.997 as suggested in [38].

All of MOEAs and MaOEAs used the experiments are 
implemented by PlatEMO — an Evolutionary Multi-Objec-
tive Optimisation Platform [42]. The population size is set 
to 200, and the the number of generation is set to 2000. The 
probability of crossover and mutation is set to 0.9 and 0.1, 
respectively. The distribution index for crossover is set to 
5, and the distribution index for mutation is set to 20 [38]. 
The quality of POF provided by the different algorithms is 
evaluated by using generational distance (GD) and inverted 
generational distance (IGD) [36].

min f1(�) = (1 + 100g(�M))cos(�1)cos(�2)… cos(�M−2)cos(�M−1)

min f2(�) = (1 + 100g(�M))cos(�1)cos(�2)… cos(�M−2)sin(�M−1)

min f3(�) = (1 + 100g(�M))cos(�1)cos(�2)… sin(�M−2)

…

min fM−1(�) = (1 + 100g(�M))cos(�1)sin(�2)

min fM(�) = (1 + 100g(�M))sin(�1)

where �i =
�

2
xi for i = 1, 2,… , (I − 1)

�i =
�

4(1 + g(�M))
(1 + 2g(�M)xi) for i = I,… , (M − 1)

g =
∑

xi∈�M
(xi − 0.5)2

0 ≤ xi ≤ 1 for i = 1, 2,… , n

4 � Results

This section firstly presents the results and analysis to 
demonstrate the impact of multi-objective evolutionary 
algorithms and many-objective evolutionary algorithms on 
object dimensionality reduction algorithms. After that, it 
presents results and analysis to show the benefits which an 
many-objective evolutionary algorithm can achieve when 
combining with an objective reduction algorithm.

4.1 � The impact of MOEAs and MaOEAs on objective 
dimentionality reduction

In order to show the impact of MOEAs and MaOEAs on 
objective dimensionality reduction, we examine the impact 
of two pairs of MOEA/MaOEA—NSGAII/NSGAIII and 
SPEA2/SPEA2SDE—on LPCA for objective reduction. 
Firstly, we show some case studies to illustrate how an 
MOEA/MaOEA affects to an objective reduction algorithm 
on a specific problem—DTLZ5(6,8). Subsequently, we show 
the impact of the pairs on different test problems.

4.1.1 � Case study

This section illustrates step by step how LPCA combined 
with MOEA/MaOEA for reducing redundant objectives on 
DTLZ5IM(6,8).

Pair of SPEA2SDE and SPEA2: We show the perfor-
mance of LPCA when combining with SPEA2SDE and 
SPEA2 on DTLZ5(6,8).

Table 1 shows the matrix R with its corresponding eigen-
values and eigenvectors of LPCA when combining with 
SPEA2SDE on DTLZ5(6,8). The correlation matrix R of 
population results is depicted in Table 1a, and the corre-
sponding eigenvalues and eigenvectors6 are presented in 
Table 1b.

Next, the number of significant eigenvectors (V) as deter-
mined as the smallest number of element eigenvalues ( Nv ) 
such that 

∑Nv

j=1
ej ≥ � . We use � = 0.997 as recommended in 

[38]. Firstly, an object fj which has the highest contribution 
to Vj by magnitude is picked. If there exists at least one other 
objective having opposite-sign with the selected objective, 
then the objectives (with opposite-sign) are picked. If not 
(all objectives have the same sign), an objective with the 
second highest contribution by magnitude is selected. Fol-
l ow i n g  t h e s e  s t e p s ,  a  s e t  o f  o b j e c t i ve s 
Fe = {f1, f2, f3, f4, f5, f6, f7, f8} is selected. Then, from Fe we 
identify the subsets of identically correlated objectives 
(RCM-Reduced Correlation Matrix [38]) with the same size 

6  Eigenvalues are normalised, eigenvalues and eigenvectors are 
sorted descending together based on eigenvalues.
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as R except columns not in Fe . We determine potential iden-
tically correlated subset Ŝ1 = Ŝ2 = Ŝ3 = {f1, f2, f3} . Thresh-
old cut Tcor is calculated7 equal to 0.8522. Correlation satisfy 
condition greater than or equals to Tcor  then 
S1 = S2 = S3 = {f1, f2, f3} . In each subset S, we retain the 
objective with the highest selection score, and eliminating 
t h e  o t h e r s . 8  T h e r e f o r e ,  w e  h a v e 
sc = {sc1, sc2, sc3} = {0.228611361, 0.228611498, 0.228611267} , 
then we select objective 2 and remove objectives 1 and 3. So 
we retain Fs = {f2, f4, f5, f6, f7, f8}

Table  2 shows The matrix R with its corresponding 
eigenvalues and eigenvectors of LPCA when combining 
with SPEA2 on DTLZ5(6,8). The correlation matrix R is 
presented in Table 2a, and the eigenvalues and eigenvec-
tor of the correlation R are shown in Table 2b. Based on 
Table 2b, all of eight principal components have to be 
included to account for � = 0.997 , leading to Fe = {f1, 
f2, f3, f4, f5, f6, f7, f8} . When analyzing Reduced Corre-
lation Matrix, we have three potential identically corre-
lated subsets Ŝ1 = Ŝ2 = Ŝ3 = {f1, f2, f3} . Due to all values 

R1,2 = 0.16826,R1,3 = 0.08172,R2,3 = 0.09392 are less than 
Tcor = 0.9751 , the subset of identically correlated objectives 
is empty. As a result, we cannot reduce any objective.

In short, the combination of LPCA with SPEA2 cannot 
reduce any redundant objective while the combination of 
LPCA with SPEA2SDE can correctly reduce redundant 
objectives in DTLZ5(6,8).

Pair of NSGAII and NSGA-III: We show the performance 
of LPCA when combining with NSGA-III and NSGAII on 
DTLZ5(6,8).

Table 3 shows the matrix R with its corresponding eigen-
values and eigenvectors of LPCA when combining with 
NSGAII on DTLZ5(6,8). According to data in Table 3, all 
principal components (eight components) need to accumu-
late to have total which is greater than or equal to � = 0.997 . 
Based on eigenvalues and eigenvectors in Table 3b, set Fe 
(conflicting objectives) is determined as {f1, f2, f3, f4, f5, f6, 
f7, f8} . Then we determine the subsets of identically cor-
related objectives Ŝ in Fe : Ŝ1 = Ŝ2 = {f1, f2} . Due to all val-
ues R1,2 = 0.171481 is less than Tcor = 0.9751 , the subset of 
identically correlated objectives is empty. As a result, we 
cannot remove any objective.

Table  4 shows the matrix R with its correspond-
ing eigenvalues and eigenvectors of LPCA when 
combining with NSGAIII  on DTLZ5(6,8). The 

Table 1   The matrix R with its corresponding eigenvalues and eigenvectors of LPCA when combining with SPEA2SDE on DTLZ5 (6,8)

(a) The correlation matrix R

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
1

1.00E+00 1.00E+00 1.00E+00 − 1.50E−01 − 1.68E−01 − 1.73E−01 − 1.73E−01 − 1.82E−01
f
2

1.00E+00 1.00E+00 1.00E+00 − 1.50E−01 − 1.68E−01 − 1.73E−01 − 1.73E−01 − 1.82E−01
f
3

1.00E+00 1.00E+00 1.00E+00 − 1.50E−01 − 1.68E−01 − 1.73E−01 − 1.73E−01 − 1.82E−01
f
4

− 1.50E−01 − 1.50E−01 − 1.50E−01 1.00E+00 − 1.65E−01 − 2.08E−01 − 1.64E−01 − 1.35E−01
f
5

− 1.68E−01 − 1.68E−01 − 1.68E−01 − 1.65E−01 1.00E+00 − 1.52E−01 − 2.08E−01 − 1.37E−01
f
6

− 1.73E−01 − 1.73E−01 − 1.73E−01 − 2.08E−01 − 1.52E−01 1.00E+00 − 1.97E−01 − 9.28E−02
f
7

− 1.73E−01 − 1.73E−01 − 1.73E−01 − 1.64E−01 − 2.08E−01 − 1.97E−01 1.00E+00 − 2.20E−01
f
8

− 1.82E−01 − 1.82E−01 − 1.82E−01 − 1.35E−01 − 1.37E−01 − 9.28E−02 − 2.20E−01 1.00E+00

(b) The eigenvalues(e) and eigenvector (V) of the correlation matrix R

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

3.94E−01 1.58E−01 1.49E−01 1.44E−01 1.33E−01 2.15E−02 6.26E−12 2.74E−13

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

−5.62E−01 1.51E−02 − 1.94E−03 − 3.37E−03 − 7.90E−03 1.30E−01 1.74E−01 − 7.98E−01
−5.62E−01 1.51E−02 − 1.94E−03 − 3.37E−03 − 7.90E−03 1.30E−01 − 7.78E−01 2.48E−01
−5.62E−01 1.51E−02 − 1.94E−03 − 3.37E−03 − 7.90E−03 1.30E−01 6.04E−01 5.49E−01
8.49E−02 − 2.93E−01 6.70E−01 − 3.34E−01 4.07E−01 4.27E−01 − 2.04E−08 2.17E−08
1.01E−01 2.33E−01 2.41E−01 8.31E−01 − 2.17E−02 4.31E−01 − 1.68E−07 2.44E−10
1.06E−01 4.36E−01 − 5.25E−01 − 1.91E−01 5.50E−01 4.29E−01 − 1.07E−07 1.29E−07
9.80E−02 − 7.00E−01 − 4.48E−01 5.66E−02 − 2.49E−01 4.84E−01 − 7.64E−08 − 4.32E−08
1.16E−01 4.23E−01 1.31E−01 − 3.98E−01 − 6.85E−01 4.04E−01 7.64E−07 3.19E−08

8  Selection score for each objective is calculated sci =
∑Nv

j=1
ej�fij�.

7  Tcor = 1.0 − e
1
(1.0 −M

2�∕M) in which 
e
1
= 0.39416,M

2� = 5,M = 8.
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conflicting objectives along six significant principal com-
ponents are determined as Fe = {f1, f2, f3, f4, f5, f6, f7, f8} . 
C o r r e l a t i o n  Ŝ1 = Ŝ2 = Ŝ3 = {f1, f2, f3}   . 
Tcor = 1.0 − 0.4083(1 − 5∕8) = 0.8469 , and all values 
R1,2 = R1,3 = R2,3 = 1 are greater than Tcor , so there are three 
identically correlated set S1 = S2 = S3 = {f1, f2, f3} . We cal-
culate sc = {0.2591124, 0.2591125,  0.2591124} and retain 
the index of maximum value, so we retain f2 and remove 
others. As a result, we retain Fs = {f2, f4, f5, f6, f7, f8}

In summary, the combination of LPCA with NSGAII can-
not reduce any redundant objective while the combination of 
LPCA with NSGAIII can correctly reduce redundant objec-
tives in DTLZ5(6,8).

4.1.2 � The succeed of objective dimensionality reduction 
when combined with MOEAs/MaOEAs

Table 5 shows the mean and standard deviation of the num-
ber of retained objectives which is done by the combina-
tions of LPCA and MOEAs/MaOEAs — NSGAII, SPEA2, 
NSGAIII and SPEA2SDE — for removing redundant objec-
tives in 20 running times. It also shows the number of times 
which the algorithms correctly retain essential objectives.

It is clear from Table 5 that with nondominated solu-
tions obtained from NSGAII and SPEA2, the objective 

dimensionality reduction algorithm only can successfully 
remove redundant objectives when the number of original 
objectives is small. For example, the combinations of LPCA 
and NSGAII/SPEA2 can exactly remove redundant objec-
tives on DTLZ5(2,5) and DTLZ5(3,5). However, when the 
number of original objectives increases, the combination of 
LPCA with the MOEAs cannot successfully remove redun-
dant objectives. For example, the combination of LPCA 
with NSGAII/SPEA2 is not successful any time in remov-
ing redundant features on DTLZ5(7,10), DTLZ5(5,20) and 
DTLZ5(7,20).

In contrast, with nondominated solutions obtained from 
NSGAIII and SPEA2SDE, the objective dimensionality 
reduction can successfully remove redundant objectives 
even when the number of original objectives increases. For 
example, the combination of LPCA with SPEA2SDE can 
successfully remove redundant objectives in all the six test 
problems while the combination of LPCA with SPEA2SDE 
only cannot successfully remove redundant objectives in two 
cases of DTLZ5(5,20).

In summary, the quality of MOEAs/MaOEAs plays 
important roles to the performance of an objective dimen-
sionality reduction algorithm. The combination of an objec-
tive reduction algorithm with MaOEAs can successfully 
remove redundant objectives even if the number of original 

Table 2   The matrix R with its corresponding eigenvalues and eigenvectors of LPCA when combining with SPEA2 on DTLZ5(6,8)

(a) The correlation matrix R

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
1

1.00E+00 1.68E−01 8.17E−02 − 1.55E−01 − 1.66E−01 − 1.68E−01 − 1.48E−01 − 1.50E−01
f
2

1.68E−01 1.00E+00 9.39E−02 − 1.65E−01 − 1.47E−01 − 1.38E−01 − 1.99E−01 − 1.30E−01
f
3

8.17E−02 9.39E−02 1.00E+00 − 1.69E−01 − 2.30E−01 − 1.35E−01 − 1.29E−01 − 1.72E−01
f
4

− 1.55E−01 − 1.65E−01 − 1.69E−01 1.00E+00 − 1.40E−01 − 1.53E−01 − 9.95E−02 − 6.30E−02
f
5

− 1.66E−01 − 1.47E−01 − 2.30E−01 − 1.40E−01 1.00E+00 − 1.17E−01 − 1.21E−01 − 9.45E−02
f
6

− 1.68E−01 − 1.38E−01 − 1.35E−01 − 1.53E−01 − 1.17E−01 1.00E+00 − 1.18E−01 − 1.52E−01
f
7

− 1.48E−01 − 1.99E−01 − 1.29E−01 − 9.95E−02 − 1.21E−01 − 1.18E−01 1.00E+00 − 1.18E−01
f
8

− 1.50E−01 − 1.30E−01 − 1.72E−01 − 6.30E−02 − 9.45E−02 − 1.52E−01 − 1.18E−01 1.00E+00

(b) The eigenvalues(e) and eigenvector (V) of the correlation matrix R

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

2.00E−01 1.49E−01 1.45E−01 1.37E−01 1.31E−01 1.14E−01 1.03E−01 2.06E−02

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

− 5.04E−01 1.19E−01 7.08E−02 1.19E−01 − 7.38E−02 4.82E−01 6.35E−01 2.78E−01
− 5.11E−01 − 3.04E−02 2.04E−01 − 3.04E−02 − 3.08E−02 2.58E−01 − 7.45E−01 2.66E−01
− 4.73E−01 1.87E−03 − 2.30E−01 1.87E−03 7.36E−02 − 7.72E−01 1.06E−01 3.29E−01
2.41E−01 − 3.37E−01 − 2.65E−01 − 3.37E−01 − 5.97E−01 7.71E−03 − 2.88E−02 3.84E−01
2.82E−01 3.98E−01 6.57E−01 3.98E−01 − 2.96E−01 − 2.07E−01 4.50E−02 4.08E−01
1.50E−01 − 5.56E−01 − 7.93E−02 − 5.56E−01 8.56E−02 1.50E−01 4.72E−02 3.99E−01
2.26E−01 6.09E−01 − 5.80E−01 6.09E−01 1.68E−01 1.97E−01 − 1.50E−01 3.76E−01
2.22E−01 − 1.82E−01 2.36E−01 − 1.82E−01 7.14E−01 − 2.91E−03 4.67E−02 3.60E−01
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objectives is large. However, the combination of an objective 
reduction algorithm with MOEAs often only can remove 
redundant objectives when the number of original objec-
tives is small.

4.2 � The impact of objective dimensionality 
reduction on many‑objective evolutionary 
algorithms

In order to demonstrate the benefits of an objective dimen-
sionality reduction algorithm with an MaOEA, we compare 
the performance of the MaOEA combining the objective 
reduction against the MaOEA alone. Generational distance 
(GD) and inverted generational distance (IGD) are used to 
examine the algorithms.

Table 6 shows the mean and standard deviation (in paren-
theses) of GD and IGD of five MaOEAs including GrEA, 
KnEA, NSGAIII, RVEA*, and �-DEA. IGD1 and GD1 refer 
to IGD and GD of the MaOEAs without combining with 
any objective dimensionality reduction algorithm, respec-
tively. IGD2 and GD2 refer to IGD and GD of the MaOEAs 
combining with LPCA for removing redundant objectives, 
respectively. The table also shows the mean and standard 
deviation of the number of objectives which are retained 
after carrying out objective reduction.

To investigate whether results of the MaOEAs using 
objective reduction are significant different to the MaOEAs 
in a statistical sense, Wilcoxon rank-sum test is performed 
[18]. The null hypothesis is that the performance of the 
two methods are similar with significant level at 0.05, and 
the alternative hypothesis is that the performance of the 
two methods is significant different. In Table 6. The results 
are given at the end of each cells with ↑ , or ↓ symbols. 
The cells ending with ↑ or ↓ show that the null hypothesis 
is rejected. ↑ means that IGD2 or GD2 are significant bet-
ter than IGD1 or GD1 while ↓ means that IGD2 or GD2 are 
significant worse than IGD1 or GD1.

As can be seen from Table 6 that the performance of the 
combination of MaOEAs and objective reduction is sig-
nificantly better than MaOEAs alone in almost all cases. 
In detail, IGD2 is significant better than IGD1 on 22 of 30 
cases, and GD2 is also significant better than GD1 in 22 of 
30 cases. Moreover, IGD2 is only significant worse than 
IGD1 on 1 of 30 cases, and GD2 is significant worse than 
GD1 in 2 of 30 cases.

In conclusion, combining with an objective dimension-
ality reduction algorithm to remove redundant objectives, 
an many-objective evolutionary algorithm can achieve sig-
nificant better performance than using the algorithm alone.

Table 3   The matrix R with its corresponding eigenvalues and eigenvectors of LPCA when combining with NSGAII on DTLZ5(6,8)

(a) The correlation matrix R

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
1

1.00E+00 1.71E−01 5.69E−02 − 6.12E−02 − 6.58E−02 − 8.24E−02 − 1.08E−01 − 1.86E−01
f
2

1.71E−01 1.00E+00 8.45E−02 − 1.02E−01 − 2.00E−01 − 9.16E−02 − 7.13E−02 − 1.58E−01
f
3

5.69E−02 8.45E−02 1.00E+00 2.48E−03 − 1.28E−01 − 9.47E−02 − 1.99E−01 − 2.28E−01
f
4

− 6.12E−02 − 1.02E−01 2.48E−03 1.00E+00 − 5.87E−02 − 1.68E−01 − 1.44E−01 − 1.72E−01
f
5

− 6.58E−02 − 2.00E−01 − 1.28E−01 − 5.87E−02 1.00E+00 − 1.09E−02 − 1.85E−01 − 2.19E−01
f
6

− 8.24E−02 − 9.16E−02 − 9.47E−02 − 1.68E−01 − 1.09E−02 1.00E+00 − 1.99E−01 − 1.25E−01
f
7

− 1.08E−01 − 7.13E−02 − 1.99E−01 − 1.44E−01 − 1.85E−01 − 1.99E−01 1.00E+00 − 6.98E−02
f
8

− 1.86E−01 − 1.58E−01 − 2.28E−01 − 1.72E−01 − 2.19E−01 − 1.25E−01 − 6.98E−02 1.00E+00

(b) The eigenvalues(e) and eigenvector (V) of the correlation matrix R

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

1.88E−01 1.68E−01 1.48E−01 1.36E−01 1.20E−01 1.12E−01 9.94E−02 2.84E−02

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

−4.54E−01 1.40E−01 − 1.67E−01 − 2.04E−01 4.86E−01 2.67E−01 6.00E−01 1.93E−01
−4.41E−01 3.70E−01 − 2.48E−01 − 4.37E−02 7.42E−02 1.61E−01 − 7.16E−01 2.48E−01
−4.92E−01 1.36E−02 8.36E−02 3.08E−01 − 3.11E−01 − 6.50E−01 1.93E−01 3.15E−01
−1.36E−01 − 1.59E−01 7.10E−01 2.54E−01 − 9.99E−02 5.12E−01 − 3.74E−02 3.38E−01
5.12E−02 − 6.22E−01 7.25E−02 − 3.91E−01 3.88E−01 − 2.91E−01 − 2.41E−01 3.99E−01
5.42E−02 − 3.96E−01 − 5.91E−01 9.09E−02 − 4.72E−01 3.48E−01 1.13E−01 3.54E−01
2.85E−01 4.45E−01 1.66E−01 − 6.04E−01 − 3.58E−01 − 5.59E−02 1.31E−01 4.23E−01
5.02E−01 2.75E−01 − 1.33E−01 5.21E−01 3.87E−01 − 9.17E−02 3.08E−02 4.74E−01
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5 � Conclusion and future work

This paper investigated the interaction between objective 
dimensionality reduction algorithms and many-objective 
evolutionary algorithms. The experiments were designed to 
evaluate the impact of many-objective evolutionary algo-
rithms on the performance of objective dimensionality 
reduction algorithms. The paper then examined the benefits 
which many-objective evolutionary algorithms can achieve 
when combining with objective reduction algorithms to 
removing redundant objectives. The results showed that the 
performance of an objective dimensionality reduction algo-
rithm strongly depends on algorithms which generate non-
dominated solutions. By combining with an many-objective 
evolutionary algorithm, an objective dimensionality reduc-
tion can successfully remove redundant objective even when 
the number of original objectives is large. The results also 
demonstrated that combining with an objective reduction 
algorithm to remove redundant objectives can significantly 
improve the performance of many-objective evolutionary 
algorithms.

This paper focused on LPCA for performing objective 
dimensionality reduction. There exist other objective reduc-
tion methods, but the performance of these methods has 
not been examined when combining with many-objective 

evolutionary computation algorithms. Therefore, the future 
work could investigate how these objective reduction meth-
ods can improve the performance of many-objective evolu-
tionary computation algorithms.

Acknowledgements  This research is funded by Ministry of Science 
and Technology under Bilateral and Multilateral Research Programs 
(the grant for Face Recognition).

Appendix

This section further investigates the proposed methods 
when using a clustering method for objective dimensional-
ity reduction.

Integrating clustering objective 
dimensionality reduction algorithm 
into MaOEAs

Based on correlation coefficient (where �(x, y) is the correla-
tion coefficient between random variables x and y, the range 
of � is from − 1 to 1), Jaimes et al. [33] used (1 − �) ∈ [0, 2] 
to measure the degree of correlation between two objectives 

Table 4   The matrix R with its corresponding eigenvalues and eigenvectors of LPCA when combining with NSGAIII on DTLZ5(6,8)

(a) The correlation matrix R

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
1

1.00E+00 1.00E+00 1.00E+00 4.07E−01 − 6.93E−02 − 4.72E−02 − 1.11E−01 − 7.15E−02
f
2

1.00E+00 1.00E+00 1.00E+00 4.07E−01 − 6.93E−02 − 4.72E−02 − 1.11E−01 − 7.15E−02
f
3

1.00E+00 1.00E+00 1.00E+00 4.07E−01 − 6.93E−02 − 4.72E−02 − 1.11E−01 − 7.15E−02
f
4

4.07E−01 4.07E−01 4.07E−01 1.00E+00 − 2.11E−01 3.59E−02 − 2.47E−01 − 3.90E−02
f
5

− 6.93E−02 − 6.93E−02 − 6.93E−02 − 2.11E−01 1.00E+00 − 2.38E−01 − 2.05E−01 − 2.90E−01
f
6

− 4.72E−02 − 4.72E−02 − 4.72E−02 3.59E−02 − 2.38E−01 1.00E+00 − 3.19E−01 − 2.95E−01
f
7

− 1.11E−01 − 1.11E−01 − 1.11E−01 − 2.47E−01 − 2.05E−01 − 3.19E−01 1.00E+00 − 3.05E−01
f
8

− 7.15E−02 − 7.15E−02 − 7.15E−02 − 3.90E−02 − 2.90E−01 − 2.95E−01 − 3.05E−01 1.00E+00

(b) The eigenvalues(e) and eigenvector (V) of the correlation matrix R

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

4.08E−01 1.74E−01 1.63E−01 1.49E−01 9.17E−02 1.36E−02 1.44E−12 −1.23E−16

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

−5.44E−01 9.63E−02 − 1.92E−02 − 1.15E−02 1.65E−01 − 1.83E−02 4.28E−01 − 6.95E−01
−5.44E−01 9.63E−02 − 1.92E−02 − 1.15E−02 1.65E−01 − 1.83E−02 − 8.16E−01 − 2.36E−02
−5.44E−01 9.63E−02 − 1.92E−02 − 1.15E−02 1.65E−01 − 1.83E−02 3.88E−01 7.19E−01
−3.11E−01 − 2.81E−01 3.41E−02 8.09E−02 − 8.74E−01 − 2.31E−01 − 1.50E−06 − 3.42E−10
6.48E−02 3.79E−01 2.52E−01 − 7.53E−01 − 8.17E−02 − 4.64E−01 − 7.37E−07 − 6.43E−10
3.31E−03 − 4.55E−01 6.46E−01 2.42E−01 3.16E−01 − 4.67E−01 − 6.83E−07 − 5.03E−10
1.03E−01 6.00E−01 − 1.48E−01 5.84E−01 − 4.46E−02 − 5.15E−01 − 1.51E−06 − 7.77E−10
3.42E−02 − 4.29E−01 − 7.03E−01 − 1.66E−01 2.14E−01 − 4.97E−01 − 1.17E−06 − 6.91E−10
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in approximation set of Pareto Front in MOPs. In which, 
zero value indicates that objectives x and y are completely 
positively correlated and a value of 2 indicates that x and y 
are completely negatively correlated. A negative correlation 
between two objectives means that one objective increases 
while the other decreases and vice versa. On the other hand, 
if the correlation is positive, then both objectives increase 
or decrease at the same time. Following this way, the more 
negative correlation between two objectives leads to the 
more conflict between the objectives. In [33], based on a 
correlation matrix of a non-dominated set obtained using 
an evolutionary algorithm, the objective set is first divided 
into homogeneous neighborhoods. The distance between the 
objectives is considered as the conflict between the objec-
tives. Thereafter, the most compact neighborhood is chosen, 
and all the objectives in it except the center one are removed, 
as they are the least conflicting.

MICA-NORMOEA and OC-ORA algorithms are devel-
oped in [23, 24], respectively. In these algorithms, interde-
pendence coefficient matrix is calculated, then PAM cluster-
ing algorithm [29] and NSGA-II [15] are invoked iteratively 
to reduce the redundant objectives until criterion is satisfied. 
The main different between these methods with LPCA is 
the relationship between pair of objectives. While LPCA 
use linear relationship, the method represents nonlinear one.

The framework of these algorithms (MICA-NORMOEA 
and OC-ORA) is shown

Step 1. Set an iteration counter t = 0 ; original objective set is 
Ft = f1, f2,… , fM , and the number of predefined clusters is k.

Step 2. Initialize a random population Pt run NSGA-II 
corresponding to Ft and obtain a non-dominated set At

Step 3. Calculate the interdependence coefficient matrix 
based on the non-dominated set At and use the PAM cluster-
ing algorithm to divide the objective set Ft into k clusters.

Step 4. According to the clusters of objective set Ft 
obtained in Step 3, remove one of the redundant or the most 
interdependent objective from Ft according to the above 
objective reduction rules, and the remaining objective set 
is denoted as Ft+1

Step 5. If Ft = Ft+1 then stop; else t ∶= t + 1 ; Ft ∶= Ft+1 ; 
return to Step 2.

The results

These are done same as in Sect. 3. When calculating inter-
dependence, the number of subintervals is set as 20, and the 
threshold � is set as 0.9.

Table 7 shows the mean and standard deviation (in paren-
theses) of GD and IGD of five MaOEAs including GrEA, 
KnEA, NSGAIII, RVEA*, and �-DEA. IGD1 and GD1 refer Ta
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Table 6   The values of IGD, GD of true Pareto ( IGD
1
 , GD

1
 ); number of objective retain (R) and IGD, GD ( IGD

2
 , GD

2
 ) after carrying out objec-

tive dimensionality reduction (LPCA)

Bold indicates that the proposed method is better than the benchmark methods

Problem DTLZ5IM DTLZ5IM DTLZ5IM DTLZ5IM DTLZ5IM DTLZ5IM

I 2 3 5 7 5 7

M 5 5 10 10 20 20

GrEA
Retain 2.000E+00±0.000E−15 3.000E+00±0.000E−15 4.950E+00±2.179E−01 7.000E+00±0.000E−15 1.865E+01±3.623E+00 1.805E+01±4.642E+00

IGD
1

2.680E−03 ± 
0.000E−15

5.946E−03 ± 
2.236E−04

2.033E−02 ± 
2.500E−03

2.387E−02 ± 
2.133E−03

1.476E+00 ± 
8.208E−01

1.212E+00 ± 7.224E−01

IGD
2

2.522E−03 ± 
0.000E−15↑

5.334E−03 ± 
0.000E−15↑

1.462E−02 ± 
1.497E−02↑

1.887E−02 ± 
5.477E−04↑

1.500E+00 ± 
7.864E−01

1.211E+00 ± 7.230E−01

GD
1

1.322E−04 ± 
0.000E−15

2.144E−03 ± 
0.000E−15

1.047E−02 ± 
8.944E−04

1.809E−02 ± 
3.873E−04

1.032E+01 ± 
2.840E+00

9.390E+00 ± 4.004E+00

GD
2

1.247E−04 ± 
0.000E−15↑

2.232E−03 ± 
0.000E−15↓

9.877E−03 ± 
2.366E−03

1.641E−02 ± 
5.000E−04↑

1.040E+01 ± 
2.816E+00

9.390E+00 ± 4.004E+00

KnEA
Retain 2.000E+00 ± 

0.000E−15
3.000E+00 ± 

0.000E−15
5.000E+00 ± 

0.000E−15
7.000E+00 ± 

0.000E−15
5.000E+00 ± 

0.000E−15
7.000E+00 ± 0.000E−15

IGD
1

2.111E−04 ± 
0.000E−15

2.809E−03 ± 
0.000E−15

1.287E−02 ± 
1.000E−03

2.271E−02 ± 
1.803E−03

1.172E−02 ± 
1.162E−03

2.380E−02 ± 2.958E−03

IGD
2

3.220E−04 ± 
0.000E−15↓

2.851E−03 ± 
0.000E−15

1.320E−02 ± 
2.335E−03

2.218E−02 ± 
2.510E−03↑

2.029E−02 ± 
2.213E−02

2.164E−02 ± 
1.360E−03↑

GD
1

1.345E−04 ± 
0.000E−15

2.217E−03 ± 
0.000E−15

1.279E−02 ± 
2.291E−03

5.611E−02 ± 
4.067E−02

1.178E−02 ± 
1.500E−03

4.902E−02 ± 2.560E−02

GD
2

1.308E−04 ± 
0.000E−15

1.997E−03 ± 
0.000E−15↑

1.281E−02 ± 
5.950E−03↑

2.951E−02 ± 
1.047E−02↑

9.049E−01 ± 
2.131E+00↑

2.595E−02 ± 
1.073E−02↑

NSGAIII
Retain 2.000E+00 ± 

0.000E−15
3.000E+00 ± 

0.000E−15
5.000E+00 ± 

0.000E−15
7.000E+00 ± 

0.000E−15
4.900E+00 ± 

3.000E−01
6.950E+00 ± 2.179E−01

IGD
1

4.261E−03 ± 
1.183E−03

7.297E−03 ± 
6.325E−04

2.165E−02 ± 
3.066E−03

2.789E−02 ± 
5.822E−03

3.447E−02 ± 
6.771E−03

3.928E−02 ± 2.837E−03

IGD
2

1.113E−03 ± 
0.000E−15↑

5.786E−03 ± 
0.000E−15↑

2.063E−02 ± 
8.367E−04

2.501E−02 ± 
9.220E−04↑

3.290E−02 ± 
2.828E−03

3.821E−02 ± 
7.717E−03↑

GD
1

1.133E−04 ± 
0.000E−15

2.446E−03 ± 
0.000E−15

1.468E−02 ± 
1.658E−03

2.297E−02 ± 
2.012E−03

9.310E−01 ± 
2.145E+00

3.197E−02 ± 2.729E−02

GD
2

1.338E−04 ± 
0.000E−15↓

2.407E−03 ± 
3.873E−04↑

1.532E−02 ± 
1.265E−03

2.041E−02 ± 
1.323E−03↑

4.355E−01 ± 
1.831E+00↑

2.096E−02 ± 5.263E−03

RVEA*
Retain 2.000E+00 ± 

0.000E−15
3.000E+00 ± 

0.000E−15
5.000E+00 ± 

0.000E−15
7.000E+00 ± 

0.000E−15
4.850E+00 ± 

6.538E−01
7.000E+00 ± 0.000E−15

IGD
1

1.296E−03 ± 
4.472E−04

3.917E−03 ± 
0.000E−15

1.873E−02 ± 
1.396E−03

2.204E−02 ± 
8.367E−04

2.306E−02 ± 
5.196E−03

2.892E−02 ± 1.936E−03

IGD
2

1.062E−04 ± 
0.000E−15↑

1.773E−03 ± 
0.000E−15↑

9.925E−03 ± 
3.162E−04↑

1.391E−02 ± 
2.236E−04↑

1.483E−02 ± 
7.849E−03↑

2.413E−02 ± 
1.107E−02↑

GD
1

3.151E−04 ± 
0.000E−15

3.246E−03 ± 
0.000E−15

1.874E−02 ± 
1.500E−03

2.294E−02 ± 
7.416E−04

2.730E−02 ± 
5.710E−03

3.598E−02 ± 1.746E−03

GD
2

1.054E−04 ± 
0.000E−15↑

1.809E−03 ± 
0.000E−15↑

1.131E−02 ± 
5.916E−04↑

1.404E−02 ± 
2.236E−04↑

9.721E−03 ± 
2.898E−03↑

1.073E−02 ± 
3.755E−03↑

�-DEA
Retain 2.000E+00 ± 

0.000E−15
3.000E+00 ± 

0.000E−15
5.000E+00 ± 

0.000E−15
7.000E+00 ± 

0.000E−15
4.950E+00 ± 

2.179E−01
7.000E+00 ± 0.000E−15

IGD
1

8.212E−03 ± 
1.072E−03

1.057E−02 ± 
1.140E−03

2.617E−02 ± 
2.739E−03

2.803E−02 ± 
1.643E−03

3.696E−02 ± 
3.302E−03

4.131E−02 ± 2.748E−03

IGD
2

2.600E−06 ± 
0.000E−15↑

1.155E−05 ± 
0.000E−15↑

9.050E−06 ± 
0.000E−15↑

1.180E−04 ± 
0.000E−15↑

5.956E−04 ± 
2.490E−03↑

1.400E−03 ± 
5.784E−03↑

GD
1

1.193E−04 ± 
0.000E−15

1.852E−03 ± 
0.000E−15

1.584E−02 ± 
1.673E−03

2.356E−02 ± 
2.500E−03

1.646E−02 ± 
3.399E−03

2.361E−02 ± 4.533E−03

GD
2

1.950E−06 ± 
0.000E−15↑

1.155E−05 ± 
0.000E−15↑

9.050E−06 ± 
0.000E−15↑

1.180E−04 ± 
0.000E−15↑

4.959E−04 ± 
2.074E−03↑

2.605E−03 ± 
1.100E−02↑
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Table 7   The values of IGD, GD of true Pareto ( IGD
1
 , GD

1
 ); the number of objective retain (R) and IGD, GD ( IGD

2
 , GD

2
 ) after carrying out 

clustering objective dimensionality reduction

Problem DTLZ5IM DTLZ5IM DTLZ5IM DTLZ5IM DTLZ5IM DTLZ5IM
I 2 3 5 7 5 7

M 5 5 10 10 20 20

GrEA
Retain 2.250E+00 ± 

4.330E−01
3.000E+00 ± 

0.000E−15
5.000E+00 ± 

0.000E−15
7.050E+00 ± 

2.179E−01
5.300E+00 ± 

1.418E+00
8.550E+00 ± 

2.673E+00
IGD

1
2.591E−03 ± 

0.000E−15
5.812E−03 ± 

0.000E−15
1.877E−02 ± 

1.432E−03
2.279E−02 ± 

1.304E−03
2.938E−01 ± 

4.426E−01
6.942E−01 ± 

6.047E−01
IGD

2
2.344E−03 ±  

0.000E−15↑
5.001E−03 ±  

0.000E−15↑
1.010E−02 ±  

3.162E−04↑
1.863E−02 ±  

8.367E−04↑
4.494E−02 ±  

4.519E−02↑
2.056E−01 ±  

4.208E−01↑
GD

1
1.260E−04 ± 

0.000E−15
2.080E−03 ± 

0.000E−15
9.498E−03 ± 

2.236E−04
1.792E−02 ± 

4.472E−04
4.240E+00 ± 

1.917E+00
7.165E+00 ± 

3.227E+00
GD

2
1.215E−04 ±  

0.000E−15↑
2.134E−03 ± 

0.000E−15↓
9.770E−03 ± 

0.000E−15↓
1.608E−02 ±  

5.477E−04↑
1.125E+00 ±  

1.413E+00↑
1.707E+00 ±  

3.027E+00↑
KnEA
Retain 2.250E+00 ± 

4.330E−01
2.950E+00 ± 

2.179E−01
5.050E+00 ± 

2.179E−01
6.900E+00 ± 

4.359E−01
5.050E+00 ± 

2.179E−01
6.850E+00 ± 

3.571E−01
IGD

1
1.980E−04 ± 

0.000E−15
2.706E−03 ± 

2.236E−04
1.206E−02 ± 

1.183E−03
2.217E−02 ± 

2.820E−03
1.162E−02 ± 

1.000E−03
2.241E−02 ± 

3.017E−03
IGD

2
3.026E−04 ± 

0.000E−15↓
3.663E−03 ± 

3.975E−03
1.175E−02 ± 

9.220E−04
2.128E−02 ± 

1.342E−03
1.138E−02 ±  

1.549E−03↑
2.312E−02 ± 

6.708E−03
GD

1
1.280E−04 ± 

0.000E−15
2.139E−03 ± 

0.000E−15
1.213E−02 ± 

2.191E−03
5.609E−02 ± 

4.084E−02
1.164E−02 ± 

1.072E−03
4.740E−02 ± 

2.459E−02
GD

2
1.230E−04 ±  

0.000E−15↑
1.904E−03 ±  

2.236E−04↑
1.050E−02 ±  

1.162E−03↑
 2.536E−02 ±  

6.979E−03↑
2.079E−02 ±  

4.735E−02↑
2.626E−02 ±  

9.290E−03↑
NSGAIII
Retain 2.000E+00 ± 

0.000E−15
3.150E+00 ± 

3.571E−01
5.000E+00 ± 

0.000E−15
7.000E+00 ± 

0.000E−15
5.150E+00 ± 

1.276E+00
6.850E+00 ± 

1.314E+00
IGD

1
4.118E−03 ± 

1.183E−03
7.339E−03 ± 

7.746E−04
2.061E−02 ± 

2.530E−03
2.728E−02 ± 

5.895E−03
1.764E−02 ± 

7.420E−03
2.892E−02 ± 

9.327E−03
IGD

2
3.300E−06 ±  

0.000E−15↑
2.491E−03 ±  

5.745E−03↑
2.595E−04 ±  

3.162E−04↑
2.317E−03 ±  

0.000E−15↑
4.798E−02 ± 

7.772E−03↓
2.425E−02 ± 

1.893E−02
GD

1
9.980E−05 ± 

0.000E−15
2.463E−03 ± 

0.000E−15
1.358E−02 ± 

1.072E−03
2.247E−02 ± 

1.483E−03
1.486E+00 ± 

4.120E+00
2.830E−02 ± 

2.145E−02
GD

2
3.300E−06 ±  

0.000E−15↑
4.385E−04 ±  

7.746E−04↑
2.718E−04 ±  

3.873E−04↑
2.354E−03 ±  

3.162E−04↑
8.419E−02 ±  

2.939E−01↑
4.547E−03 ±  

6.477E−03↑
RVEA*
Retain 2.250E+00 ± 

4.330E−01
3.050E+00 ± 

2.179E−01
5.000E+00 ± 

0.000E−15
7.000E+00 ± 

0.000E−15
3.600E+00 ± 

9.165E−01
6.000E+00 ± 

1.449E+00
IGD

1
1.283E−03 ± 

3.162E−04
3.768E−03 ± 

0.000E−15
1.756E−02 ± 

5.916E−04
2.123E−02 ± 

0.000E−15
1.364E−02 ± 

7.981E−03
2.390E−02 ± 

6.719E−03
IGD

2
1.394E−04 ±  

0.000E−15↑
1.780E−03 ±  

3.873E−04↑
9.755E−03 ±  

5.916E−04↑
1.409E−02 ±  

3.873E−04↑
5.424E−02 ± 

1.822E−02↓
4.328E−02 ± 

1.584E−02↓
GD

1
3.098E−04 ± 

0.000E−15
3.121E−03 ± 

0.000E−15
1.741E−02 ± 

3.162E−04
2.216E−02 ± 

2.236E−04
1.981E−02 ± 

7.416E−03
3.160E−02 ± 

6.535E−03
GD

2
1.223E−04 ±  

0.000E−15↑
1.839E−03 ±  

3.162E−04↑
1.135E−02 ±  

3.162E−04↑
1.450E−02 ±  

3.162E−04↑
1.195E−03 ±  

3.122E−03↑
4.194E−03 ±  

5.362E−03↑
�-DEA
Retain 2.000E+00 ± 

0.000E−15
3.150E+00 ± 

3.571E−01
5.050E+00 ± 

2.179E−01
7.000E+00 ± 

0.000E−15
4.500E+00 ± 

8.062E−01
6.850E+00 ± 

3.571E−01
IGD

1
8.000E−03 ± 

1.095E−03
1.050E−02 ± 

1.025E−03
2.472E−02 ± 

1.830E−03
2.674E−02 ± 

6.325E−04
2.942E−02 ± 

9.937E−03
3.900E−02 ± 

3.033E−03
IGD

2
3.300E−06 ±  

0.000E−15↑
9.810E−04 ±  

2.168E−03↑
1.173E−03 ±  

4.324E−03↑
1.667E−03 ±  

0.000E−15↑
1.472E−02 ±  

1.990E−02↑
7.132E−03 ±  

1.588E−02↑
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to IGD and GD of the MaOEAs without combining with 
objective dimensionality reduction algorithm, respectively. 
IGD2 and GD2 refer to IGD and GD of the MaOEAs com-
bining with clustering objective dimensionality reduction 
(OCA-ORA) for removing redundant objectives, respec-
tively. The table also shows the mean and standard devia-
tion of the number of objectives which are retained after 
carrying out objective reduction. The table indicates the 
performance of the combination of MaOEAs and cluster-
ing objective reduction is significantly better than MaOEAs 
alone in almost all cases. In detail, IGD2 is significant better 
than IGD1 on 21 of 30 cases, and GD2 is also significant 
better than GD1 in 28 of 30 cases. Moreover, IGD2 is only 
significant worse than IGD1 on 4 of 30 cases, and GD2 is 
significant worse than GD1 in 2 of 30 cases.

In summary, the proposed methods can be combined 
with different objective dimensionality reduction methods 
to improve evolutionary computation many objective opti-
misation algorithms.
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