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Abstract. The consolidation acceleration of embankment with sand drain has been studied in 

many researchs and standards. However, the pressure distribution on the surface of soft ground 

with the appearance of sand drain has not focused. Intuitively, because of the much higher 

stiffness of sand drain compared to this of soft soil, the stress concentration at the top of sand 

drain occurred along with the pressure decrease on the surface of soft ground. In this paper, the 

Finite Element Analysis (FEA) is implemented to obtain a labeled database with inputs are 

sand drain and soft soil moduluses, diameter of sand drains and distance between them. The 

predicted variable is the ratio of pressure on the surface of soft ground with and without sand 

drain (K) obtained based on simulation with Plaxis. Consequently, the developed database used 

as the input of a machine learning model, the Random Forest Regression (RFR). To the end, 

observations from FEA reinforced the initial intuition of this phenomenon and a predicting 

model for K also proposed with Random Forest Regression.  

1. Introduction 

The use of sand drain to accelarate the consolidation process has been studied and widely accepted in 

many researches (e.g. [1, 2, 3] .etc) and codes (e.g. [4, 5].etc). Lekha et al. [1] proposed a generalized 

governing equation for sand drain consolidation with time-dependent loading. Wan-Huan and Shuai [2] 

applied differential quadrature method for unsaturated consolidation. Koy et al. in [3] used numerical 

analysis for clay consolidation including the heat injection and sand drain. Another concern on sand 

drain is the increase of the stabitility of the overall structure ([6, 7]). Ramkrishnan et al. [6] simulated 

the behaviour of the seepage while Mahmood et al. [7] stressed on stability of dam foundation with 

sand drain.  

To the authors‟ best knowledge, the change of pressure on the surface of soft soil with the 

appearance of sand drain are not discussed or, at least, not fully developed in literature. According to 

[2] and [3], sand drain improves the drainage efficiency without compacting the soft soil. Practically, 

the sand drain already has the density to some level due to the previous construction process. This 

density is nessessary to maintain the shape stability and drainage ability of the sand drain. The void 

ratio of sand drain can be found by Eq.1 [8] with an assumption that sand drain diameter is constant:  
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  (1) 

where: εtk is sand void ratio after construction process; εo is initial sand void ratio, obtained by 

experiment; kyc is the required ratio of the volume of sand V0 and the design volume of the sand drain 
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Vtk. kyc commly ranges within (1.2†1.3) and appear in Eq.1a:   

 
0 yc tkV k V   (1a) 

Considering to the fact that the medium sand to coarse sand are used in practice, εo are choosen 

within [0.7†1.0] in this paper. Subtituting this range to Eq.1, εtk ranges within [0.31†0.67] or sand in 

the sand drain is classified as medium to very dense [9]. Arcording to [9], the corresponding sand 

modulus (Ec), angle of internal friction (φc), and cohesion (cc) are [30†50] MPa, [35†40] degree and 

[1†3] kPa, respectively. 

Comparing to the sand modulus, the soft soil modulus (Eđy) is significantly lower at less than 5 MPa 

[10]. This difference is the cause of the stress concentration at the top of the sand drains and the 

reduction of pressure on the surface of soft soil layer. However, current standards only considered this 

effect on sand pile [11] (Fig.1) and there is an ignorance of this effect on sand drain (e.g. [4, 5]) 

leading to the over estimation of calculated results versus the monitoring results [12]. 

 

Figure 1. The scheme for calculating the soft ground with sand piles  (Hđy - thickness of 

soft soil, L - distance between sand piles, D - diameter of sand pile, S0 - vertical 

settlement of soft ground without sand pile, St - vertical settlement of soft ground with 

sand pile, Sx/2 - horizontal displacement of sand pile, P1 - pressure on the surface of the 

soft ground, Pc - pressure on the top of sand pile, P2 - pressure of embankment [11]). 

Onsite monitoring results on settlement of soft soil with the sand drain is consistently lower than 

the settlement of soft soil without the sand drain at around 5 to 15% [12]. Evgeniev I.E [12] proposed 

Eq.2 as an approximation of settlement of soil with sand drain: 
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where: e0 is the initial void ratio; ep is the void ratio under the external load; dc is the diameter of sand 

drain; L is the distance among sand drains; h is the thickness of soft soil with sand drain. 

Dobrov E.M [13] has been analytically and numerically proofed the existance of the “hanging 

effect” insteads of the well-known arching effect in the soft soil domain. The embankment presssure 

on soft soil depends on distance among sand drains, diameter of them, moduluses of soft soil and 

material made of sand drain. These are the importance variables focused in this paper as the input 

features to predict the ratio of embankment pressure on the surface of soft ground with and without 

sand drain (designated as K). The numerical analyses implemented by Finite Element method with 

Plaxis 2D software. 

Regression modelling the K metric from the database of such Finite Element Analysis (FEA) then 

implement as a supervised learning task in machine learning. Along with Artificial Neutral Network 

(ANN) and Support Vector Machine (SVM), Random Forest is a powerful machine learning tool [14]. 

This ensemble learning method developed by Ho in [15, 16] and then commonly used for geotechnical 

problems for predicting concerned variables. For instance, Kohestani et al. in [17] implement Random 
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Forest Regression (RFR) to predict liquefaction potential of soil under an earthquake based on field 

records with the comparison to ANN and SVM models. In a further study of Kohestani, RFR is the 

best model for predicting maximum surface settlement of soil due to earthquake [3]. The maximum 

surface settlement caused by tunnel construction are the predicted variable of RFR in [18]. Unxial 

compressive strength and Young modulus of rock have been successfully predicted in [19]. In this 

study, a RFR model is developed to predict the K metric based on the data obtained from Finite 

Element Analysis (FEA). 

2. Methodology 

2.1 Numerical method for stress analysis the embankment on soft soil reinforced by sand drain 

The FEA with Plaxis 2D is implemented in this study to model the embankment on soft soil reinforced 

by sand drain using the triangular plane element type. Fig.2 provides the diagram of the problem with 

three types of soils (i.e. the soft soil, embankment soil and the sand drain) along with their dimensions. 

The Mohr - Coulomb model is used for the nonlinear behaviour of the materials incorperating with the 

Newton Raphson method to solve the nonlinear equations.  

 

Figure 2. Diagram of the vertical sand drains  

Dimensions of sand drain includes the height (Hdy, equals to the thickness of the soft soil), the 

diameter (D) and distance between sand drains (L). The deformation modulus (Edy), angle of internal 

frictions (φdy), cohesions (Cdy) of soft soil and the deformation modulus of sand drain (Ec) are also the 

critical input variables. The Ec corresponding to the angle of internal frictions (φc) and cohesions (Cc) 

[5]. The embankment soil has the thickness H and self weight γ. The ground water table is constant at 

the surface of the soft ground. The critical output of FEA is the vertical pressure on the surface of the 

soft ground with sand drain p1. Designating p2 as the vertical pressure on the surface of the soft ground 

without sand drain (p2 = γ. H), the K ratio of p1/p2 can be written as:  

 
c c cK f(E , c , , E , c , , D, L, H, )dy dy dy    (3) 

To develop a simplified model, variable selection is conducted to reduce the features space. The 

strong correlation of Ec φc, cc for sand drain and Edy φdy, cdy for soft soil leads to the represent of Ec and 

Edy only is sufficient for model developing. Also, because of the the appearance of H and γ in both p1 

and p2 (i.e. the normalization characteristic of K), these variables can be removed in the predicting 

model. Consequently, the f function in Eq.3 can be condensed as: 

 c đyK f(E , D, L, E )     (4) 

Table 1 provides the database composed by all input variables and the p1 obtained by 144 runs on 

Plaxis. The predicted variable (K) then calculated by p1/p2. 
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Table 1. Database obtained from FEA with Plaxis 

# Ec φc cc D L Eđy φđy cđy H γ p1  p2=γ.H (p1-p2)/p1 K 

 kPa Degree kPa m m kPa Degree kPa m kN/m3 kPa kPa %  

1 30000 35.0 1.0 0.35 1.55 2000 8.30 8.00 3.00 20.00 -56.81 -60.00 5.32 0.9468 

2 35000 36.5 1.5 0.35 1.55 2000 8.30 8.00 3.00 20.00 -56.50 -60.00 5.83 0.9417 

3 40000 38.0 2.0 0.35 1.55 2000 8.30 8.00 3.00 20.00 -56.17 -60.00 6.38 0.9362 

4 45000 39.0 2.5 0.35 1.55 2000 8.30 8.00 3.00 20.00 -55.94 -60.00 6.77 0.9323 

5 50000 40.0 3.0 0.35 1.55 2000 8.30 8.00 3.00 20.00 -55.71 -60.00 7.15 0.9285 

6 30000 35.0 1.0 0.35 1.55 4100 14.00 20.00 3.00 20.00 -53.22 -60.00 11.30 0.8870 

7 35000 36.5 1.5 0.35 1.55 4100 14.00 20.00 3.00 20.00 -51.98 -60.00 13.37 0.8663 

8 40000 38.0 2.0 0.35 1.55 4100 14.00 20.00 3.00 20.00 -50.81 -60.00 15.32 0.8468 

9 45000 39.0 2.5 0.35 1.55 4100 14.00 20.00 3.00 20.00 -49.73 -60.00 17.12 0.8288 

10 50000 40.0 3.0 0.35 1.55 4100 14.00 20.00 3.00 20.00 -48.92 -60.00 18.47 0.8153 

11 40000 38.0 2.0 0.35 1.40 4100 14.00 20.00 3.00 20.00 -49.12 -60.00 18.13 0.8187 

12 40000 38.0 2.0 0.35 1.75 4100 14.00 20.00 3.00 20.00 -52.82 -60.00 11.97 0.8803 

13 40000 38.0 2.0 0.35 2.45 4100 14.00 20.00 3.00 20.00 -56.12 -60.00 6.47 0.9353 

14 40000 38.0 2.0 0.35 3.15 4100 14.00 20.00 3.00 20.00 -57.74 -60.00 3.77 0.9623 

15 40000 38.0 2.0 0.35 3.85 4100 14.00 20.00 3.00 20.00 -58.59 -60.00 2.35 0.9765 

16 40000 38.0 2.0 0.35 4.55 4100 14.00 20.00 3.00 20.00 -59.08 -60.00 1.53 0.9847 

… … … … … … … … … … … … … … … 

134 30000 35.0 1.0 0.45 3.60 4100 14.00 20.00 3.00 20.00 -58.09 -60.00 3.19 0.9682 

135 35000 36.5 1.5 0.45 3.60 4100 14.00 20.00 3.00 20.00 -57.60 -60.00 4.00 0.9600 

136 40000 38.0 2.0 0.45 3.60 4100 14.00 20.00 3.00 20.00 -57.12 -60.00 4.79 0.9521 

137 45000 39.0 2.5 0.45 3.60 4100 14.00 20.00 3.00 20.00 -56.66 -60.00 5.57 0.9443 

138 50000 40.0 3.0 0.45 3.60 4100 14.00 20.00 3.00 20.00 -56.20 -60.00 6.34 0.9366 

139 35000 36.5 1.5 0.35 1.55 4100 14.00 20.00 3.00 20.00 -51.88 -60.00 13.53 0.8647 

140 35000 36.5 1.5 0.35 1.55 4100 14.00 20.00 3.50 20.00 -60.61 -70.00 13.41 0.8659 

141 35000 36.5 1.5 0.35 1.55 4100 14.00 20.00 4.00 20.00 -69.42 -80.00 13.22 0.8678 

142 35000 36.5 1.5 0.35 1.55 4100 14.00 20.00 4.50 20.00 -79.07 -90.00 12.14 0.8786 

143 35000 36.5 1.5 0.35 1.55 4100 14.00 20.00 5.00 20.00 -88.75 -100.00 11.25 0.8875 

144 35000 36.5 1.5 0.35 1.55 4100 14.00 20.00 5.50 20.00 -98.47 -110.00 10.48 0.8952 

 

2.2. The principal of Random Forest Regression 

In Random Forest method, each “tree” of the forest refers to the Decision Tree, which splitting the 

input space of a single feature k after each node of the tree with a threshold tk into the left and the right 

subset. A decision tree uses the Classification And Regression Tree algorithm [20] for training with 

the objective or the empirical risk function in the following form for regression problem  

  min ,
left right

k left right

m m
J k t MSE MSE

m m

 
  

 
   (5) 

where: 
/left rightMSE  is the Mean Squared Error of the left/right subset, formulation for MSE provided 

in Table 4; 
/left rightm is the sample of the left/right subset.  

Fig.2 provides an illustration of a decision tree. Starting with the root node which has no children 

with the depth is zero, the children nodes has the depth is d+1 with d is the depth of their parent. The 

nodes without any children are defined as the leaf nodes. Decision tree in Fig.2 has the maximum 

depth dmax = 3 with 8 leaf nodes.  

In Random Forest algorithm, each tree in the forest is a Decision Tree trained by a subset of 

database randomly chosen from the database. In the database with few features as in this paper (i.e. 4 

features), sampling features [16] are not conducted. The random choice is the so-called bagging or 

bootstrap aggregating if sampling with replacement is conducted. Without the replacement, the 

sampling is designated as pasting. Results from all Decision Trees are used to aggregate the final 

prediction in the voting process. The mechanism of Random Forest algorithm is provided in Fig.3. 
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Figure 3. Example of a Decision Tree 

 

 
Figure 4. Mechanism of predicting process in Random Forest Regression 

The Random Forest Regression is implemented with Python, a programing language. In this 

process, the overall database is divided into train set and test set with the ratio of 0.8/0.2, respectively. 

The train set are used for training process in Fig.3 and the test set used for validating the obtained 

model. The training process includes the grid search, a process of scanning for the appropriate model 

by gradually changing hyperparameters. Bootstrap or pasting, number of decision trees, minimum 

samples split, minimum samples leaf and max depth are hyperparameters considered in the fine-tuning 

process. Explaination of these hyperparameters provided in Fig.3. Feature importance is calculated 

based on the average depth of node of each feature because the feature closer to the root node tend to 

be more importance. 

 

3.  Results and Discussion 

3.1. Results from FEA  

An arbitrary FE simulation is choosen in the database for observation on the stress concentration 

phenomenon with the D=0.35m, L=1.55m and the material properties provided in Table 2. Fig.4 

illustrates the contours of vertical effective stress under the embankment with and without sand drain.  
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Table 2. Properties of soils in the observation (Fig.5 and 6) 

Type of soil 
γ  

(kN/m3) 

φ  

(Degree) 

c  

(kPa) 

E  

(kPa) 

Embankment 20 40 3 50000 

Sand (in sand drain) 19 38 2 40000 

Soft soil 17 14 20 4100 

 

   

 (a) (b)  

Figure 5. The contours map of effective stress σz
‟
(kN/m

2
) 

(a) without sand drain; (b) with sand drain 

Figure 6. The distribution of vertical effective 

stress in section I-I and II-II 

Fig.5 illustrates the contours map of stress distribution in soil. The distribution of the vertical 

effective stress along the cross section I-I and II-II (Fig.1 and 5) due to the depth provided in Fig.6. 

Base on the data from FEA (Table 1), the contour plot of K ratio with the variation of L/D and Ec/Eđ is 

established in Fig.7. 

 
Figure 7. Contours of K ratio vesus L/D and Ec/Eđ 

 

3.2. Results of RFR  

The set of candidate hyperparameters for the model provided in Table 3 for the grid search. The grid 

search is conducted twice, the first search scanning for loose grid of hyperparameters. Once the first 

search finished, the second search is implemented with finer interval of hyperparameters distributed 
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around the best hyperparameters found in the first search. The “best” set of parameters found based on 

its lowest MSE on the training set. Table 4 provides the MSE of the final model along with 2 other 

evaluation metrics, the Mean Absolute Error, MAE and the Coefficient of determination, R
2
.  Fig.8 

illustrates the plot of simulated K versus predicted K. Fig.9 provides the results of the feature 

importance analysis.  

Table 3. Grid search for hyperparameter tuning 

Hyperparameter Explaination 
First grid 

search  

“Best” 

hyperparameter*  
Second grid search 

“Best” 

hyperparameter** 

Bootstrap 
Whether bootstrap 

samples used  
True, False True True True 

n_estimators 
Number of decision 

trees 

100, 1000, 

10000 
100 50, 100, 200, 300, 400 100 

min_samples_split 

The minimum 

number of samples 

required to split an 

internal node 

2, 5, 10 2 1, 2, 3, 4 1 

min_samples_leaf 

The minimum 

number of samples 

required to be at a 

leaf node 

1, 2, 4 2 2 2 

max_depth  
maximum depth of 

the tree (dmax) 

10, 20, 30, 40, 

50, None 
40 

30, 32, 34, 36, 38, 40, 

42, 44, 46, 48, 50 
36 

* After First grid search 

** After Second grid search 

  

Figure 8. Scatter plot of simulated K versus 

predicted K. 

Figure 9. Feature importance of input 

variables 

Table 4. Evaluation metrics for chosen model 

Metric Equation Result on train set Result on test set 

Mean squared error 
n

2

i i

i=1

1
MSE = (y -f )

n
 0.00003 0.00012 

Mean absolute error 


 
n

i i

i 1

1
MAE = y f

n
 0.00309 0.00711 

Coefficient of 

determination 

( )

( )













n
2

i i

2 i 1

n
2

i

i 1

y f

R  = 1-

y y

 
0.98983 0.96156 
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Table 5. Input variables and K from test set (FEA) versus predicted K from RFR 

 

# Ec D L Edy 
K_test 

(simulated with FEA) 

K_pred 

(predicted with RFR) 

1 40000 0.350 1.550 4100 0.8468 0.8317 

2 35000 0.400 1.600 4100 0.8411 0.8699 

3 50000 0.400 2.000 4100 0.8459 0.8460 

4 30000 0.400 2.400 2000 0.9749 0.9735 

5 40000 0.400 3.200 4100 0.9516 0.9518 

6 30000 0.450 3.150 4100 0.9565 0.9563 

7 45000 0.450 3.150 2000 0.9777 0.9783 

8 35000 0.400 2.000 2000 0.9563 0.9538 

9 35000 0.450 3.150 4100 0.9462 0.9462 

10 30000 0.400 1.600 2000 0.9317 0.9361 

11 45000 0.450 2.700 4100 0.9006 0.9173 

12 40000 0.450 2.250 4100 0.8772 0.8707 

13 50000 0.400 3.200 2000 0.9830 0.9835 

14 50000 0.450 1.800 2000 0.9085 0.9123 

15 45000 0.450 2.700 2000 0.9673 0.9687 

16 40000 0.400 2.800 2000 0.9791 0.9794 

17 45000 0.400 2.000 2000 0.9492 0.9453 

18 45000 0.350 1.550 4100 0.8288 0.8208 

19 50000 0.450 2.700 4100 0.8887 0.9107 

20 30000 0.450 2.700 2000 0.9745 0.9736 

21 30000 0.350 1.550 2000 0.9630 0.9561 

22 45000 0.450 1.800 4100 0.7991 0.8181 

23 35000 0.400 3.200 2000 0.9864 0.9866 

24 45000 0.400 2.000 4100 0.8608 0.8608 

25 40000 0.450 1.800 2000 0.9185 0.9212 

26 35000 0.450 1.800 4100 0.8416 0.8736 

27 40000 0.450 3.600 2000 0.9851 0.9852 

28 35000 0.350 1.550 4100 0.8678 0.8764 

29 45000 0.400 2.400 4100 0.9002 0.9116 

3.3. Discussion  

As can be seen in Fig.5, results from FEA matched with the intuition of the stress decrease in soft 

ground and increase in sand drain. This conclusion is further supported by Fig.6. From point 0, the 

lines presented for relationship between vertical stress versus depth of section I-I and II-II overlapped 

with this of the embankment self weight (i.e. γ×H). The seperation occurred at point A (z=-1.75m, 

σ‟z=-35 kN/m2) with the appearance of the stress concentration around the head of the sand drain due 

to the difference in moduluses of sand and soft soil. The stress versus depth relationship turned into 

nonlinear with a decrease in section I-I and an increase in II-II. To the end (z=-3m), the stress at 

section II-II is almost double the stress at section I-I (i.e. 89 kN/m
2
 versus 51 kN/m

2
). The vertical 

pressure at the surface of the soft soil reduced from 60 kN/m
2
 to 51 kN/m

2
 compared to the hydrostatic 

pressure or K=0.8235.  

Statistical analysis on database in Table 1 shows a relatively wide range of K from 0.793 to 0.995. 

This ratio has a strong positive correlation with L/D as can be seen in Fig.7. The dashed contour 

presented for the boundary of K larger than 0.95, which can be used as the suggestion of considering 

to the effect of pressure reduction on soft ground. This threshold can be subjectively choosen for 

practical purposes. 

For the developed RFR model, it is reasonable for the error of the model (i.e. MSE and MAE) on 

the train set relatively low compared to the predicted variable of K which ranges within 0.793 to 
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0.995. The model also has the low errors on the test set implies the regulation or the successfully 

avoidance of overfitting of the chosen model. With such low errors, the model reasonably has high R
2
 

which closes to the maximum of 1. The scatter plot in Fig.8 illustrates the success of the model with 

the narrow scattering of the datapoints around the 1:1 line. Table 5 provides a detailed comparison of 

predicted K from the RFR versus the K from simulation with FEA on the test set. It is noted that the 

test set is not contributed to the training process or the developed model has not “seen” these data 

before. 

Fig.9 provides the results of the feature importance analysis with L is ranked first as the most effect 

variable to the K with the importance level of 0.5129. It is reasonably to rank the Modulus of soft soil 

Edy to the second important variable and followed by the Modulus of sand drain (Ec). Diameter of the 

sand drain has the least effect to K with the importance level of 0.1025. 

4. Conclusions 

The paper focuses on the pressure reduction on the surface of the soft ground with sand drain. FEA 

and RFR are incorporated to develop the regression model for predicting the ratio of pressure on the 

soft soil surface with and without sand drain (K). An observation on a random run is provided with 

discussion in detail to reinforce the initial intuition. Simulation with FEA provides a sufficient 

database for predicting K with R
2
 on the test set of database up to 0.9616. Important factors from RFR 

reveals the critical role of distance between sand drains and the least impact of diameter of sand drain 

to K. 

Inputs of the machine learning model (i.e. Ec, Edy, L, D) can be easily collected and made the model 

applicable. Prediciting the decrease factor of pressure on the surface of soft ground with and without 

sand drain is useful for the practical consolidation problem. The study proposes to consider this 

reduction along with the conventional approach of focused on consolidation merely. Results can be the 

preliminary work for implementing the guidance of finding reduction factor K in standards or for 

practical design. 
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