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ABSTRACT

In this paper, we introduce a novel algorithm for finding a
common point of the solution set of a class of equilibrium
problems involving pseudo-monotone bifunctions and satisfy-
ing the Lipschitz-type condition and the set of fixed points of
a quasi-nonexpansive in a real Hilbert space. This algorithm
can be considered as a combination of the subgradient extra-
gradient method for equilibrium problems and the Ishikawa
method for fixed point problems. The strong convergence of
the iterates generated by the proposed method is obtained
under the main assumptions that the fixed-point mapping is
demiclosed at 0 and Lipschitz-type constant of the cost
bifunction is unknown. Some numerical examples are imple-
mented to show the computational efficiency of the pro-
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posed algorithm.

1. Introduction

Let H be a real Hilbert space with an inner product (-,-) and the induced
norm ||-||. Let C be a nonempty closed convex subset of H and f:
C x C — R be a function satisfying f(x,x) = 0 for all x € C. Such a func-
tion is called the equilibrium bifunction. The equilibrium problem (shortly
EP(C, f)), in the sense of Blum, Muu and Oettli [1, 2], is stated as follows:

Find x* € C such that f(x",y) > 0,Vy € C. (1.1)

The solution set of EP(C, f) is denoted by Sol(C, f). Problem (1.1) is also
well known as the Ky Fan inequality due to his contribution in this field
[3]. Although problem EP(C, f) has a simple formulation, it is quite general
in the sense that, it includes as special cases, many known mathematical
models as: variational inequality problems, optimization problems, fixed
point problems, saddle point problems, the Nash equilibrium problem in
noncooperative game; see, for example, [1, 2, 4-6].

CONTACT Bui Van Dinh @) vandinhb@gmail.com &) Department of Mathematics, Le Quy Don Technical
University, Hanoi, Vietnam.
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The existence and solution methods for equilibrium problems have been
intensively studied in cases the bifunction f is monotone or general mono-
tone [4, 7-12], nonmonotone [13, 14] in Hilbert spaces or Banach spaces
setting [15].

Let T: C — C be a mapping and Fix(T) be the set of fixed points of T;
that is, Fix(T) = {p € C: Tp = p}. Recall that T is said to be nonexpansive
if for all x,yeC, ||Tx—Ty|| <|lx—y||. If Fix(T) is nonempty and
|| Tx—p|| < ||x—p||,Vx € C,p € Fix(T), then T is called quasi-nonexpansive.
It is well-known that Fix(T) is closed and convex when T is quasi-nonex-
pansive [16]. A mapping T is said to be pseudo contractive if for all x,y €
C and 7>0 we have

=yl < [[(1 + 7)(x=y) —(Tx=Ty)|.

Most of the methods for finding a fixed point of mapping T are deduced
from the Mann iteration [17]:

{ﬁea (1.2)

X = ok 4+ (1—o) T,

where the parameter sequence {oy} C (0,1) and satisfies some certain con-
ditions. It was proved that the sequence {x'} weakly converges to a fixed
point of mapping T.

Another well-known method to find a fixed point of a Lipschitzian
pseudo contractive map was proposed by Ishikawa [18] as follows

K e,
yk = ok + (l—ock)Txk, (1.3)
X = Bk + (1— ) D

where 0< o <f, <1 for all k. He proved that if limy_, f;, =
LY (1 — o) (1 — B) =00, then {xf} generated by (1.3) converges
weakly to a fixed point of mapping T (see [18, 19]).

In order to get the strong convergence algorithm, the Halpern iteration
was proposed as follows (see [20])

{ﬁea (1.4)

X = opx® 4+ (1—o ) TAK,

where {oy} C (0,1), limg_ooox =0 and > o, ax = +oo. It was showed
that the sequence {x*} generated by (1.4) converges strongly to a fixed
point of mapping T.

In recent years, many researchers studied the problem of finding a com-
mon element of the set of solutions of an equilibrium problem and the set
of fixed points of a nonexpansive or demicontractive mapping; see, for
instance, [21-25] and the references therein. The motivation for studying
such a problem is its possible application to mathematical models whose
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constraints can be expressed as fixed-point problems and/or equilibrium
problems. This happens, especially, in the practical problems as signal proc-
essing, network resource allocation, image recovery and Nash-Cournot oli-
gopolistic equilibrium models in economy [15, 26-29].

For obtaining a common element of the set of solutions of EP(C, f) and
tixed points of a x-demicontractive mapping T, Hieu [30] proposed to
modify the Halpern subgradient extragradient method for variational
inequality problems [11, 31] to get the following algorithm:

Algorithm 1.1
Choose x” € C and parameters 4, {0}, { f¢} such that 0<A<min{3.-, 5-}.
0<o<1, limy_oo ax = 0 and ) ;7| ax = +00; 0<a < f < 5%,
Step 1. Solve two strongly convex optimization problems

o 1
P = argmin{if (', y) + - [ly—|| : y € C}
1
2t = argmin{Zf (/y) + 2 [ly—=[| : y € Hils,

where Hy = {x € H : (xk—AwkF—y* x—y*) <0} and wk € 9,f (5, y5).

Step 2. Compute t* = oyx® + (1—oy )25,

karl = ﬁthk + (l_ﬂk)tk

Set k := k+ 1 and go back to Step 1.

Where cy, ¢, are Lipschitz-type constants of the bifunction f.

He proved in [30] that if the bifunction f is pseudomonotone, Lipschitz-
type continuous, weakly continuous and convex with respect to the second
variable and the mapping T is x-demicontractive and demiclosed at zero
such that Q = Sol(C,f) N Fix(T) # 0. Then the sequences{x*} generated by
Algorithm 1.1 converges strongly to x* = Pg(x°).

One advantage of this algorithm is that in Step 1 we only have to solve
one strongly convex program on the constraint set C instead of two as in
literature [25, 32] since Hy is a half-space. This may help to reduce the cost
of computation, especially when C has got a complicated structure.
However, to apply this algorithm one requires to know the Lipschitz-type
constants of the bifunction f. In some cases, the Lipschitz-type constants of
f are unknown or difficult to estimate so we cannot apply this algo-
rithm directly.

In this paper, we modify Hieu’s iteration process for finding a common
element of the set of solutions of an equilibrium problem and the set of
tixed points of a quasi-nonexpansive mapping in a real Hilbert space in
which the bifunction f is pseudomonotone on C with respect to Sol(C, f).
More precisely, we propose to use the subgradient extragradient algorithm
[33,34] for solving the equilibrium problem combining with the Ishikawa’s
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process for mapping T instead of the Halpern’s iteration as in Algorithm 1.
Moreover, our algorithm could be applied directly for the case the
Lipschitz-type constants of the bifunction f are unknown.

The rest of paper is organized as follows. The next section contains some
preliminaries on the metric projection, equilibrium problems and convex
optimization. The Ishikawa subgradient extragradient algorithm and its
convergence is presented in the third section. The last section is devoted to
presentation of examples and numerical results.

2. Preliminaries

Let C be a nonempty closed convex subset of H. We denote the metric
projection onto C by Pc. Namely, for each x € H, P¢(x) is the unique elem-
ent in C such that

[lx=Pc(x)]] < [[x=y||,Vy € C.

For example, if C=H={y € H: (a,y) + b <0}, for some a € H and b €
R, is a half space. Then we have
X it xe€ H,
Py(x) = x__(a,x)—zkb it x¢H.
[lal]

It is well-known that the metric projection P has the following properties:

Lemma 1. Suppose that C is a nonempty closed convex subset in H. Then
we have

(a) Pc(x) is singleton and well defined for every x;

(b) z= Pc(x) if and only if (x—z,y—z) <0, Vy € C;

©  |[Pe(x)=Pc(y)||* < (Pc(x)=Pc(y),x—y), ¥x,y € H;

(&) |IPc()=Pc(y)|I* < [lx=y|P~llx—Pc(x)=y + Pcy)II*, Vx,y € H.
We recall the following definitions.

Definition 1. [1, 2, 35] Let f: H x H — R be a bifunction, and C be a
nonempty, closed and convex subset of H, () # D C C. Bifunction f is said
to be:

(a) strongly monotone with constant t>0 if

fley) +f(x) < —tllx—y|[>,Vx,y € C;
(b) monotone on C if
flxy) +f(,x) <0,Yx,y € C;
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(c) pseudo monotone on C if
Vx,y € Cf(xy) 2 0= f(y,x) <0;

(d) pseudo monotone on C with respect to D if
Vx' € D,Vy € G f(x",y) 2 0, = f(3x") < 0;

(e) Lipschitz-type continuous on C if there exist positive constants c¢; and c;
such that

feoy) +f(n2) > f(x2)—allx—yl~ally—2| ¥x.y.z € C.

From Definition 1, we have the followings:

(i) (a)= (b) = (c)= (d),¥YD C C.

(i) If f(x,y) = (F(x),y—x), for a mapping F: H — H. Then the notions
of monotonicity of bifunction f collapse to the notions of monoton-
icity of mapping F, respectively. Moreover, if mapping F is Lipschitz
with constant L on C, ie., ||F(x)—F(y)|| < L||x—y||,Vx,y € C. Then, f
is also Lipschitz-type continuous on C (see [35, 36]), for example,
with constants ¢; = £, ¢, =%, for any €>0.

Now, let ¢ : C — (—00; 400| be a proper, convex and lower semicontin-
uous function and p>0, the proximal mapping of ¢ with p is defined by

. 1
prox,,(x) = arg min{pe(y) + §||y—x||2 :y € ChxeH.

The followings are well-known properties of the proximal mapping
(see [37]).

Lemma 2. For all x € H, u € C, the following three claims are equivalent:

(i)  u = proxye(x).

(i) ** € 0¢(u).
(iii)  (x—u,y—u) < p(¢(y)—@(u)) for any y € C.
The following lemmas will be used in the sequel.

Lemma 3. ([38, Lemma 2.5]) Let {si} be a sequence of nonnegative real
numbers such that:

where {2k}, {0k}, {ni} satisfy the following conditions:
(i) {7\.](} (- [0, 1], zc:O 7\.k = 00, Or H,?il(l — 7\,]() = 0;

(ii) limsup o < 0;

k—o0
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oo
(iii) Mg > OVk >0, Y- M<oo.
k=0

Then lim s = 0.

k—o0

Lemma 4. (see [39]) Let {r} be a sequence of nonnegative real numbers
such that there exists a subsequence {ry,} of {rx} such that r,<ry1,Vj € N.
Then there exists a nondecreasing sequence {my} C N such that
lim,_.o my = 00, and the following properties are satisfied by all (sufficiently
large) number k € N :

rmk S rmk+1: and 'k S rmk+1~

In fact, my is the largest number m in the set {1,2,...,k} such that 1, <tp.

3. Main results

Now we are in a position to present an algorithm to find a common point
of the solution set of an equilibrium problem and the fixed point of a map-
ping. To do so, we need the following blanket assumptions.

Asumption A.

(A;) fis weakly continuous on C x C;

(Az) f(x,-) is convex, lower semicontinuous, and subdifferentiable on C, for
all x € C;

(A3) fis pseudomonotone on C with respect to Sol(C, f);

(A4) fis Lipschitz-type continuous on C.

(As) T is quasi-nonexpansive mapping such that I - T is demiclosed
at zero.

It is well-known that if the bifunction f and the mapping T satisfy
Assumptions A, then the solution set Sol(C, f) of EP(C, f) is closed and
convex [4] and the set of fixed points of mapping T, Fix(T) is closed and
convex [37]. Therefore Q = Sol(C,f) N Fix(T) is closed and convex.
However, it is not given explicitly, we cannot find one point x* € Q dir-
ectly. The following algorithm give us a way to get x* € Q.

Algorithm 3.1
Initialization. Pick x* = x8 € C, p,>0,d € (0,1), and choose
sequences {fy}, {0}, { B} {7} such that {g} C [0,1], limg oo gy = 1,
{30 C L3 € (O 1) {8} € [1B1C (013} CL71C (0,1) and a+ ft
7% = L, Vk.
Iteration k (k=0, 1, 2,...). Having x* do the following steps:
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Step 1. Solve the strongly convex program
) 1
mln{f(xk,y) —i—2—pk ly—x* -y € C}CP(xk)
to obtain its unique solution y¥.
Step 2. Take w* € O,f (x, %),
Hi = {x € H: (¢ —pwf—y x—) <o},

and
1
2= argmin{f(yk,y) +2—pk Hy—kaz ty € Hk}.

Step 3. Compute

tk == )ukxg -+ (1—/11{)2](,
' = et + (1= ) TXN,
X = oguk + B2k + v, TtE

Set p = f(xk, 25)—f (4%, 2)—f (xF, F) and set
O 1k Kl 1 11k ok[2 } :
min< — (||x*— + |2 = s Pp ¢s if p>0
o [mind S 1)
Pl otherwise,

and go to Iteration k with k replaced by k + 1.
Remark 1. e If f(x,y) = (F(x),y—x), where F: C — H is a mapping. Then
Step 1 and Step 2 becomes

¥ = Pe(x"—pF(x")),

and
2 — Pry (P pF ).

Since Hy, is a half space, z5 can be computed explicitly.

e From the definition of {p;} in Algorithm 2, it can be seen that {p,} is
a decreasing sequence. In addition, if f satisfies the Lipschitz-type condition
with constants L, and L, on C then we have.

p = f(H ) —f 0N )~ (5. 5)
< Lyl | =yH1° + Lafly* =2
< max{Ly, L} (|| + [ly*=2"|").

Therefore p; > min{m, 0o} Vk.
The following theorem give us the convergence of Algorithm 3.1.
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Theorem 1. Suppose that the set Q = Sol(C,f) N Fix(T) is nonempty, and
the sequence {A} C (0,1), satisfies D .o, Ak = 00, limy_oo A4k = 0. Then
under Assumptions A the sequences {x*},{y*}, {z*} generated by Algorithm
3.1 converge strongly to the solution x* = Pq(x8).

Before presenting the proof of Theorem 1, we need the following lemma.
Lemma 5. The sequences {x*}, {z"}, {t*} and {u*} are bounded.
Proof. Let x* € Q = Sol(C,f) N Fix(S). It follows from the definition of t*
that
|[t5—x*|] = || X + (1—Ag) 25—
A + (1= (=)
< il —x || + (1= | |25 =7
From the definition of u* we have
[ =[] = [l + (1) X" =7
= [l (" =) 4 (Lp) (T =) |
< gl ] (L) [ =7

=[] =

(3.1)

Since
= argmin{f05) + 51— 1 € i
Pk
by Lemma 2, we obtain
P05 9)—f (05, 2") = (62", y—2"), ¥y € Hi.
Substituting y = x* in to the above inequality, we get

pr(FORx)—f (1, 29) > (=28 x" =2, (3.2)

Since x* € Sol(C,f) and y* € C,f(x*,y*) > 0. By the pseudo monotonicity
of f we have f(y*,x*) < 0. So, we get from (3.2) that

—pif 05, 25) > (xF—2F, v —2F). (3.3)
Since w* € 0,f(xk, y¥), we have
FEEN ) = (0fy—yh), vy € C.
Therefore
F ) (4 2 ok ).
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So

pr(f (5, 25 =f (5, 55)) = pi(oh, 2 —yF). (3.4)
Since z¥ € Hy, we have

(xF—prot =y, 2=k <o
So
prlf, 2 —yF) > (F—yk, ZF—yF). (3.5)
From (3.3), (3.4), and (3.5) we deduce that
20 (f (4, 2)—f (0, ) —f (F)9) 2 2((FF =2 0" —2") + (K 25 5)

or

2p(f (4, 29) = F (5, 2) —f (£ )9)) = |IZ"—X*I|2—2||x"—x*||2 ,
HE =4I+ =41

Thus

R s e (3.6)
F20ulf 5,2 0, 2)—F ().

By definition of p, we have
[l2* | <|!xk—x*||2—||xk—yk|\2—|IZ"—J/"I|2
R PE e (F, 29— (01,25 —f (,51))

<l | P oy ][ P (37
+ ﬁlémxk—ykuz + (1251
|k '[P (1—ﬂ5) (1P + I —541P)
Pk+1
Since limkﬁmﬁé =0 € (0;1), there exists N > 0 such that
|25 —x* (3.8)
It is clear that
[ x| = [lod + Bt + 9, Tt x|

— ok =x") + B(—x") + 9 (T =)
< ol '] + BellE—']| + 7l | TE x|
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Therefore, for all kK > N we have
[l =] < (o A Bl =+ el |5 ="]
< (o A Bl =" A 7 8 =] + (L= [ ="
= [0+ Bre+ 2= 2] =[]+ el [ =7
= (L=yidae) [ =" || 4 il | ="

< max{|[x—x*||, [|]x* —x*||} < - < max{|[xf—x"

N—x*|}.

> >

Hence the sequence {x‘} is bounded. Consequently, the sequences
{ZF%, {y*}, {t*}, and {4’} are bounded. This completes the proof of
Lemma 5. 0

Now we prove Theorem 1.

Since Q is a nonempty closed and convex subset in the real Hilbert space
H, there exists the unique element x* € Q such that x* = Po(xf). By
Lemma 1, we have

(x8—x",p—x") < 0,Vp € Q. (3.9)

k+1 ' we have

From definition of x
[ =2 = [lomad® + B2 + 9 T x|
= [low(u—x") + (2" —x") + (Tt —x")
= o [u x|+ Bl [ =[P+ il T =
— ot Bl [ =2 [P oy | | TH* =¥ | = Bl | T =24
< ol | x| Bl [2F x|+ ol | T =7
— ol T | = By | T 2|
< o[ =[P 4 B2 = | ||

— 0| TE | = By | TH =2 .

2
|

So
[ =7 < o[ = | + Bl [ = [* + el + (1= 2) 2 =7
— oyl | TE = || = Byl | T =2 P
< o[t —x"| P + Bl |2 =[P + 224 —x", £ —x)
+ (1= ) pell2* =" | P — oyl | TE =0 = By | T 2|
= o[t —x"||* + [Br + (1)l |12 ="
+ 22k (", 1 =Xy —oy || TE — || — By || TE =24 .
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Combining with (3.1) and (3.7), for all kK > N, we have
P <P
+ i (L= i (|1 =P = = P =[5 =)
1Bt (=207 7 S + [l =HP)

k+1
o+ 224, (08—, 5 =) — oy || T — ¥ || — By | TH—2F |
=(1= i)l =x[* = <1_ ppk 5) (|| =17 + 125 =541

k1
+ 2249, (08—, 15 =) — oy | | T — ¥ || — By | TEE =25,

(3.10)
where 7, = 1—o—Ak)y
Therefore,
* p
1 x| P <[ ||2—(1——’<5) tl 1P + |1 P)
Pi+1
+ 20—, ") — oy || TE— | P = By | T —2¥| .
(3.11)
We now consider two distinct cases.
Case 1. There exists M > N such that
|| x| < [F—x*||, V> M.
In this case, the limit of {||x*—x*||} exists, say limi .o ||x* —x*|| =a > 0.

From (3.11), we have

P 2 2 w112 w112
(1——5)rk<||xk—yk|| {25 gAY < [l | P |
Pkt
+2757 5 (68—, th—x*).

Since ax € [, &) C (0,1) and limg_,o 4k = 0, we have that liminf;_.. 7 >

1—2>0. In addition, limy_, —%5) = 1-5>0,{t*} is bounded, we get
+

in the limit of the above inequality tha

lim |[x*—y*|| =0 and lim [|ZF—y*|| = 0. (3.12)
k—o0 k—o0

Therefore, limy ., ||x*—2¥|| = 0.
Because ||uf—xF|| = (1 — ;)| Tx*—x¥|| and limy_..o i, = 1, we get

lim ||u*—xF|| = 0. (3.13)
k—o0

So, lim ., ||z5—u|| = 0.
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Similarly, we have
lim |[t*—2zF]| = 0, and lim ||t — x*|| = 0. (3.14)
k—o00 k—o0
Since the sequence {x*} is bounded, there exists a subsequence {x"*} that

converges weakly to some p® € H, such that

limsup (x¥—x*, x* —x*) = lim (xf—x", x™—x") = (xf—x", p'—x").  (3.15)

k—o00

Combining with (3.12) and (3.14) we get the sequences
{y"},{z"}, {t"}, {u™} converge weakly to p° and p° € C.
Since y™ = prox, kf(x”k,,)(xnk); by Lemma 2, we have

puy (f ) ~f (&%) 2 (&—y™,y=y™) Wy € C.
Let k — oo, using the continuity of f and lim, . p, = p>0, we obtain
f )% p") = 0.
So

f(p%y) >0,¥y € C.

This means that p° is a solution of EP(C,f).
Next, we need to show that p° € Fix(T). Indeed, from (3.10), we have

A =P < (=2 | |7 =] | + 22k (8 —x", £ —x7)
—ou || TEF — ¥ || = By | TEF — 2|
< (12 || =[P 4 225, (a8 —x*, £ —x")

— oy | T — | .

Therefore, we have

0 = lim (]! —x"|* — [|x* —x"|P")
k—o0
< likrninf(—)»kkaxk — x| [P A 22 (o — X%, 5 — 1) — oy ]| T — oF|]?)
— 00
= — limsup oy || THF —uk|)* < —p limsup || Ttk —uk||?.
k—o0 k—o0

Therefore,

lim ||Tt*—u¥|| = 0.
k—o0

It is clear that
|| Tt =] < || TE =] + [ =] + || =24
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Combining this with (3.13) and (3.14) we get
lim || Tt —t%|| = 0.

Since {t"™} converges weakly to p°, limy .. ||Tt"—t"|| =0 and I-T is
demiclosed at zero, we can conclude that p° € Fix(T). Hence

P’ € Q= Sol(C,f) N Fix(T).
From (3.9), (3.15), we obtain
limsup (x8 —x*, x* —x*) = (x8—x", p’—x*) < 0.

k—o00
So
limsup (x¢ —x*, t*—x*) = limsup (x —x*, t*—x*)
o + li]1<nsup (8 —x", ;(kﬂ—ojc*) <0.

From (3.10), Vk > M, we get
[ = F < (U= A [ =" |7 o+ 22070 =", 5 x").
By Lemma 3, we have
lim [+ = 0.

k

Hence x* converges strongly to x*.

Case 2. There exists a subsequence {||x™ — x*||} of {|[x* —x*||} such that
|| —x*||<||x"™+1—x*||, Vk € N. From Lemma 4, there exists a nondecreas-
ing sequence {my;} C N such that limy_.., mx =00, and the following
inequalities are satisfied by all k € N

e < [ ot < [l (.16)

From (3.11), we have

) e e e e |
Pmy+1
+2 A, Oy (68—, t7—x*) .

Since liminfy . T, > 1—2>0 and limy_, <1 - kalé) =1-0>0, we get
mp+
from the above inequality that ¢

lim ||x™—y™|| =0, lim || —y™|| = 0.
n—0o0 n—oo
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Using the same argument as in the proof of the Case 1, we obtain
limsup (x —x*, ™ —x") < 0.

k—oo
For all m; > N, we have
[ =22 < (1= Ao Dy ™ =5 A 2,7 (=", 75 =),

From (3.16) we have

P < (1o Do [ =1 2 (5, 17 —7).

Therefore,
|| || < 2(x8—x", ™ —x*), Vmy > N.
Since

limsup (xf —x*, "™ —x") <0,

k—oo
we get in the limit that
lim [[x™*!—x*|| = Oand lim ||x"—x*|| = 0.
k—o00 ko0

From (3.16), we have ||xF—x*|| < ||x™F1—x*|].
Therefore, lim o |[x*—x*|| = 0.

O

When T = I- the identity mapping of H, we get the following algorithm
for solving the EP(C, f) in which the Lipschitz-type constants of the bifunc-

tion f are not required to be known.

Algorithm 3.2

Initialization. Pick x" =x8 € C, p,>0,0 € (0,1), and choose sequences

{o} {Beh{ney  such  that  {ou} € [3] € (0,1), {8} C [ 8] C

(0,1), {3} C [,»7] € (0,1) and o + f; + 7; = 1, Vk.
Iteration k (k=0, 1, 2,...). Having x* do the following steps:
Step 1. Solve the following strongly convex program

. 1
mm{f(xk,y) +2—pk ||y—xk||2 1y € C}CP(xk)

to obtain its unique solution y.
Step 2. Take w* € O, (x*,y),

Hi = {x € H: (xX*—pw*—y* x—") <0}

Compute

1
= arg min{f(yk,y) —1-2—‘0k||y—xk||2 (Y€ Hk}.
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Step 3. Compute

tk - )ukxg + (1_;uk)zk,

Set p = f(xk, 25)—f (¥, 25)—f (x*, *) and set
.0 ,
_ ) min{= (M + 141 o), i p>0
Pik+1 2p

P> otherwise,

and go to Iteration k with k replaced by k + 1.
The following corollary can be deduced immediately from Theorem 1.

Corollary 1. Suppose that the solution set Sol(C,f) of EP(C,f) is nonempty
and {4} C (0,1) is a sequence such that Y -, A = oo and limy_ 4k =
0. Then under assumptions (A1), (Az), (As), and (As), the sequences
{xkY, {y*}, and {z*} generated by Algorithm 3.2 converge strongly to the
solution x* = Psyc, f)(x5).

When f(x,y) = (F(x),y—x) for every x,y € C, where F:C—H is a
mapping, the equilibrium problem (1.1) reduces to the following vari-
ational inequality problem (VIP):

find x* € C such that (F(x),y—x) > 0Vy € C.
In this case, we get the following algorithm for finding a common element

of the set of solutions of (VIP) and the set of fixed points of a quasi-nonex-
pansive mapping in a real Hilbert space.

Algorithm 3.3
Initialization. Pick x° =xf € C,p,>0,6 € (0,1), and choose sequences
{mehs {ou}, {Bi}s {7i} such that {4} C [0,1], limgoo pyp = 1, {ou} C [n,0] C
(0,1), (B} C [ B1 € (0,1), {1} C [7] € (0.1) and . + i + 7 = LVk.
Iteration k (k=0, 1, 2,...). Having x* do the following steps:
Step 1. Compute

¥ = Pe(x*—piF(x")).
Step 2. Take wF = xk,
Hy = {x € H: (xX*—pwf—F x—F) <o}
Compute

2 = Py (¢ —pF()).
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Step 3. Compute

' = e + (1= TxN,
K = oguk + Bzt + y Tt

Set p = <F(xk),zk—xk>—(F0/k) ZX—yF)—(F(x¥), y*—xF) and set

_ mln{ (Hx P+ =)o, i p>0
Pik+1 =

Pk otherwise,

and go to Iteration k with k replaced by k + 1.
From Theorem 1, we get the following corollary.

Corollary 2. Suppose that Q = Sol(C,F) N Fix(T) is nonempty, and the
sequence {4} C (0,1), satisfies D ;o A = 00, limy_ooc 4 = 0.  Then
under Assumptions A the sequences {x*},{y*},{z"} generated by
Algorithm 3.3 converge strongly to the solution x* = Pg(x8).

4. Examples and numerical results

In this section, we consider four examples to illustrate the convergence of
Algorithm 3.1 with the aim to compare its numerical behavior with an
existing strongly convergent algorithm, namely the Halpern subgradient
extragradient method (HSEM) introduced in [30] as follows.

Algorithm 4.4 (see [30, Algorithm 4.4]).
Initialization. Choose xy € H and parameters 4, {ox}, {f;} satisfy the
following conditions
1L.0<A<min{3}-, 5~
ii. o € (0,1), hmk_,Oo =0, Y 1o, o = F00.
ii. 0<a<fr<i3E.
Iteration k (k = 0,1, ...). Having x* do the following steps:
Step 1. Solve two strongly convex optimization problems

o 1
Y= argmin{if(x“y) + ||lx*=y|* 1y € C}

B 1
X = argmin{if (Y5 y) + 5ka—sz 1y € Hi},

where Hy = {v € H : (x*— i —y*, v—yk) <0}, 0f € sz(xk,yk).

Step 2. Compute  xM! = (1-B )tk + B.T(t"), where t* = oxo +
(1—oy)zk. Set k := k+ 1 and go back Step 1.

All the programs are written in Mathlab R2014 and performed on a
Laptop with Intel(R) Core(TM) i3-4005U CPU @ 1.70 GHz, 1700 Mhz, 2
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Table 1. The number of Iterations and CPU times (in second) computed by Algorithm 3.1 and
4.4 in Example 1.

Alg 3.1 Alg 4.4
Iter. 1139 1888
Cpu(s) 45.74 74.02

Core(s), 4 Logical Processor(s), Ram 4.00 GB. To terminate the Algorithms,
we use the stopping criteria Err = ka“ - ka < ¢ for some £>0.

Example 1. In this test, we consider our problem in the space H = R’ and
the bifunction f : H x H — R which comes from the Nash-Cournot equi-
librium model [36, 40] defined as follows.

fxy)=(Px+Q+qy—x).

where, P,Q € R>® are two matrices of order 5 such that Q is symmetric,
positive semidefinite and Q—P is negative semidefinite. From the results in

[36], the bifunction f satﬁsﬁei conditions (A;) - (A4) with the Lipschitz-
P-Q

type constants L; = L, = *==". We take the data in [36], in detail,
3.1 2 0 0 0 1.6 1 0 0 O
2 36 0 0 0 1 1.6 O 0 O
P = 0 0 35 2 0f, Q= 0 0O 15 1 O
0 0 2 33 0 0 0 1 1.5 0
0 0 0 0 3 0 0 0o 2

and r=(1,-2-12-1)", C={xeR*:Y x>-1,-5<x <5,
i=1;5}.
We consider the mapping T : R* — R is given by the following formula:

Z Ti(x),

T(x) =

ur] —

where

T .
Ty(x) = { (xl,...,x,-,...,xs)T %f x; < a;
(X1, eees Gy o X5) if x;>a;,

with i=1,5 and a = (1,1,1,1,1)". From [28] we can see that T is a quasi-
nonexpansive mapping and Fix(T) = N2_, Fix(T;). We illustrate the conver-
gence of Algorithm 3.1 and compare it with Algorithm 4.4 in [30]. In
Algorithm 4.4, we take A = @,ak = 7> B = 5. While, in Algorithm
3.1, we choose p,=1000,0 = 0.9, A = 7>y = 1= 7> % = 0.2, =
0.4,7; = 0.4. The starting point is x* = (1,3,1,1,2)". The stopping criteria
is Err = ||x*"1—xk|| < & with & = 107°. In this case, the approximate solu-
tion computed by Algorithm 3.1 is

(—0.724815,0.803666,0.720101, —0.866164, O.200635)T
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Figure 1. The number of iterations in Algorithms 3.1 and 4.4 - Example 1.
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Figure 2. The change of p, in Example 1.

while the approximate solution computed by Algorithm 4.4 is
(—0.724586,0.80402,0.719916, —0.865651,0.201025)T.

The detailed result is reported in Table 1 and in Figure 1. Moreover, the
number of changes of parameter p, is also reported in Figure 2.

Example 2. In this example, two matrices P,Q € R"*" are generated ran-
domly and vector g is chosen randomly with its elements in [—#,n]. The
feasible set C is a polyhedral convex set and is defined as follows

C={xeR": Ax < b,Ib < x < ub}

where A is a matrix of order m x n (n = 5,10,15,20 and m = 50, 100)
with its entries generated randomly in [—2,2] and b € R" is a vector with
its elements generated randomly in [1, 3], Ib is the zero vector, ub is a vector
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Table 2. Experiment for Example 2.

m=50 m=100
Alg 3.1 Alg 4.4 Alg 3.1 Alg 4.4
n € CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.
5 107 ° 20.82 430 23.99 594 23.96 440 26.09 622
10 - 41.15 805 49.89 1136 40.60 800 56.22 1134
15 - 4391 1139 67.91 1888 53.83 923 71.93 1306
20 - 137.37 1133 172.51 1602 160.82 1160 215.40 1640

— & —Alg.44
—e— Alg. 3.1

109 1lXee 7%l

0 200 400 600 800 1000 1200 1400 1600 1800
Number of Iter.

Figure 3. Number of iterations in Algorithm 3.1 and 4.4 - Example 2.

with its elements generated randomly in [0,n]. The mapping T is
defined by

X if ||x|| <2
— 2x
Tx) =19 25 if |jx)|>2.
|||
The parameters in both algorithms are chosen as in Example 1. The stopping
criteria is Err = ||x¥"1—x¥|| < & = 107°. The results computed by Algorithm
3.1 and 4.4 are showed in Table 2 and in Figure 3 (with m = 100, n = 20).

Example 3. In the next example, two matrices P, Q € R"*", the feasible set
C, and the parameters in Algorithms 3.1 and 4.4 are chosen as in Example
2, q is the zero vector. While, the mapping T is given by

T(x) = %Z Ty(x),

where



20 M. HYDUC ET AL.

Table 3. Experiment for Example 3.

m =50 m=100
Algorithm 3.1 Algorithm 4.4 Algorithm 3.1 Algorithm 4.4

n € CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.
5 10°° 20.14 429 20.14 429 18.65 382 24.18 540
10 - 42.49 747 54.49 1056 43.22 688 50.10 1134
15 - 47.65 848 50.63 1047 60.10 941 67.26 1333
20 - 146.50 1192 191.64 1685 149.02 111 190.30 1479

X if |jx—ai|| <2

Ti(x) = 2(x—a;) .
(X) =) 29280 ey 1>2,
[l — ai|

with i = 1,2 and

. (c, x)zc
le]]

a1 =(=20,...0)", a4, = (20,...0) ", c = (1,1,...1)".

{x if (c,x) <1

As before, we choose the stopping criteria is Err = ||x*!1—x*|| < &= 107°.
The results are showed in Table 3. From these results, we can see that,
under the same tolerance, Algorithm 3.1 has a competitive advantage over
Algorithm 4.4, especially in the number of iterative steps (Iter.) and the
time of execution in second (CPU(s)).

Example 4. In the last example, we suppose that H = L*([0,1]) with the
inner product

(5y) == Jx<t>y<t>dr

and the induced norm

1
][ = J Ix(¢) e, Vix € L

0

We consider the feasible set C={x € H: ||x|| <2} and the following
bifunction f : H x H — R given by (see [41]).

fxy) = <G—HXII>x, y—x>.

From the results of [41], the bifunction f satisfies Condition (A4) with the
Lipschitz-type constants L; = L, = . The mapping T is given by
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Table 4. Experiment for Example 4.
Iter. Cpu(s)
Alg. 33 705 1.28

-6

0 100 200 300 400 500 600 700 800
Number of Iter.

Figure 4. Numerical behavior of Algorithm 3.3 in Example 4.

x if [|x|| <1
Tx) =9 X if ||lx||>1.
1]l
We choose p, = 6,0 =0.9, 4 = iq> i = 1= 7> % = 0.2, B = 0.4, 7 =
0.4. The starting point is x° = 355 (sin (—3t) + cos (—10¢t)). We choose the
stopping criteria is Err = ||x**1—x¥|| < & = 107°. The results are showed in
Table 4 and in Figure 4.

5. Conclusion

This paper has proposed a novel algorithm for finding a common point of
the solution set of a pseudomonotone equilibrium problem and the set of
tixed points of a quasi-nonexpansive mapping in a real Hilbert space. We
have described how to incorporate the subgradient extragradient method
with the Ishikawa iteration. The strong convergence of the presented algo-
rithm is obtained when the Lipschitz-type constants of the bifunction is
unknown. We have also considered some numerical examples to illustrate
the convergence and also the advantage of the new algorithm over some
existing methods in this field.
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