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The Ishikawa Subgradient Extragradient Method for
Equilibrium Problems and Fixed Point Problems in
Hilbert Spaces

Manh Hy Duc, Ha Nguyen Thi Thanh, Thanh Tran Thi Huyen, and Bui
Van Dinh

Department of Mathematics, Le Quy Don Technical University, Hanoi, Vietnam

ABSTRACT
In this paper, we introduce a novel algorithm for finding a
common point of the solution set of a class of equilibrium
problems involving pseudo-monotone bifunctions and satisfy-
ing the Lipschitz-type condition and the set of fixed points of
a quasi-nonexpansive in a real Hilbert space. This algorithm
can be considered as a combination of the subgradient extra-
gradient method for equilibrium problems and the Ishikawa
method for fixed point problems. The strong convergence of
the iterates generated by the proposed method is obtained
under the main assumptions that the fixed-point mapping is
demiclosed at 0 and Lipschitz-type constant of the cost
bifunction is unknown. Some numerical examples are imple-
mented to show the computational efficiency of the pro-
posed algorithm.
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1. Introduction

Let H be a real Hilbert space with an inner product h�, �i and the induced
norm jj � jj: Let C be a nonempty closed convex subset of H and f :
C � C ! R be a function satisfying f ðx, xÞ ¼ 0 for all x 2 C: Such a func-
tion is called the equilibrium bifunction. The equilibrium problem (shortly
EP(C, f)), in the sense of Blum, Muu and Oettli [1, 2], is stated as follows:

Find x� 2 C such that f ðx�, yÞ � 0, 8y 2 C: (1.1)

The solution set of EP(C, f) is denoted by Sol(C, f). Problem (1.1) is also
well known as the Ky Fan inequality due to his contribution in this field
[3]. Although problem EP(C, f) has a simple formulation, it is quite general
in the sense that, it includes as special cases, many known mathematical
models as: variational inequality problems, optimization problems, fixed
point problems, saddle point problems, the Nash equilibrium problem in
noncooperative game; see, for example, [1, 2, 4–6].
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University, Hanoi, Vietnam.
� 2020 Taylor & Francis Group, LLC

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
https://doi.org/10.1080/01630563.2020.1737937

http://crossmark.crossref.org/dialog/?doi=10.1080/01630563.2020.1737937&domain=pdf&date_stamp=2020-03-10
https://doi.org/10.1080/01630563.2020.1737937
http://www.tandfonline.com


The existence and solution methods for equilibrium problems have been
intensively studied in cases the bifunction f is monotone or general mono-
tone [4, 7–12], nonmonotone [13, 14] in Hilbert spaces or Banach spaces
setting [15].
Let T : C ! C be a mapping and Fix(T) be the set of fixed points of T;

that is, FixðTÞ ¼ fp 2 C : Tp ¼ pg: Recall that T is said to be nonexpansive
if for all x, y 2 C, jjTx�Tyjj � jjx�yjj: If Fix(T) is nonempty and
jjTx�pjj � jjx�pjj, 8x 2 C, p 2 FixðTÞ, then T is called quasi-nonexpansive.
It is well-known that Fix(T) is closed and convex when T is quasi-nonex-
pansive [16]. A mapping T is said to be pseudo contractive if for all x, y 2
C and s>0 we have

jjx�yjj � jjð1þ sÞðx�yÞ�sðTx�TyÞjj:
Most of the methods for finding a fixed point of mapping T are deduced
from the Mann iteration [17]:

x0 2 C,
xkþ1 ¼ akxk þ ð1�akÞTxk,

�
(1.2)

where the parameter sequence fakg � ð0, 1Þ and satisfies some certain con-
ditions. It was proved that the sequence fxkg weakly converges to a fixed
point of mapping T.
Another well-known method to find a fixed point of a Lipschitzian

pseudo contractive map was proposed by Ishikawa [18] as follows

x0 2 C,
yk ¼ akxk þ ð1�akÞTxk,
xkþ1 ¼ bkx

k þ ð1�bkÞTyk

8<
: (1.3)

where 0 � ak � bk � 1 for all k. He proved that if limk!1 bk ¼
1,

P1
k¼1ð1� akÞð1� bkÞ ¼ 1, then fxkg generated by (1.3) converges

weakly to a fixed point of mapping T (see [18, 19]).
In order to get the strong convergence algorithm, the Halpern iteration

was proposed as follows (see [20])

x0 2 C,
xkþ1 ¼ akx0 þ ð1�akÞTxk,

�
(1.4)

where fakg � ð0, 1Þ, limk!1 ak ¼ 0 and
P1

k¼1 ak ¼ þ1: It was showed
that the sequence fxkg generated by (1.4) converges strongly to a fixed
point of mapping T.
In recent years, many researchers studied the problem of finding a com-

mon element of the set of solutions of an equilibrium problem and the set
of fixed points of a nonexpansive or demicontractive mapping; see, for
instance, [21–25] and the references therein. The motivation for studying
such a problem is its possible application to mathematical models whose
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constraints can be expressed as fixed-point problems and/or equilibrium
problems. This happens, especially, in the practical problems as signal proc-
essing, network resource allocation, image recovery and Nash-Cournot oli-
gopolistic equilibrium models in economy [15, 26–29].
For obtaining a common element of the set of solutions of EP(C, f) and

fixed points of a j-demicontractive mapping T, Hieu [30] proposed to
modify the Halpern subgradient extragradient method for variational
inequality problems [11, 31] to get the following algorithm:

Algorithm 1.1
Choose x0 2 C and parameters k, fakg, fbkg such that 0<k<minf 1

2c1
, 1
2c2
g:

0<ak<1, limk!1 ak ¼ 0 and
P1

k¼1 ak ¼ þ1; 0<a � bk � 1�j
2 :

Step 1. Solve two strongly convex optimization problems

yk ¼ argminfkf ðxk, yÞ þ 1
2
jjy�xkjj : y 2 Cg

zk ¼ argminfkf ðyk, yÞ þ 1
2
jjy�xkjj : y 2 Hkg,

8><
>:

where Hk ¼ fx 2 H : hxk�kwk�yk, x�yki � 0g and wk 2 @2f ðxk, ykÞ:
Step 2. Compute tk ¼ akx0 þ ð1�akÞzk,

xkþ1 ¼ bkTt
k þ ð1�bkÞtk:

Set k :¼ kþ 1 and go back to Step 1.
Where c1, c2 are Lipschitz-type constants of the bifunction f.
He proved in [30] that if the bifunction f is pseudomonotone, Lipschitz-

type continuous, weakly continuous and convex with respect to the second
variable and the mapping T is j-demicontractive and demiclosed at zero
such that X ¼ SolðC, f Þ \ FixðTÞ 6¼ ;: Then the sequencesfxkg generated by
Algorithm 1.1 converges strongly to x� ¼ PXðx0Þ:
One advantage of this algorithm is that in Step 1 we only have to solve

one strongly convex program on the constraint set C instead of two as in
literature [25, 32] since Hk is a half-space. This may help to reduce the cost
of computation, especially when C has got a complicated structure.
However, to apply this algorithm one requires to know the Lipschitz-type
constants of the bifunction f. In some cases, the Lipschitz-type constants of
f are unknown or difficult to estimate so we cannot apply this algo-
rithm directly.
In this paper, we modify Hieu’s iteration process for finding a common

element of the set of solutions of an equilibrium problem and the set of
fixed points of a quasi-nonexpansive mapping in a real Hilbert space in
which the bifunction f is pseudomonotone on C with respect to Sol(C, f).
More precisely, we propose to use the subgradient extragradient algorithm
[33,34] for solving the equilibrium problem combining with the Ishikawa’s
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process for mapping T instead of the Halpern’s iteration as in Algorithm 1.
Moreover, our algorithm could be applied directly for the case the
Lipschitz-type constants of the bifunction f are unknown.
The rest of paper is organized as follows. The next section contains some

preliminaries on the metric projection, equilibrium problems and convex
optimization. The Ishikawa subgradient extragradient algorithm and its
convergence is presented in the third section. The last section is devoted to
presentation of examples and numerical results.

2. Preliminaries

Let C be a nonempty closed convex subset of H: We denote the metric
projection onto C by PC. Namely, for each x 2 H, PCðxÞ is the unique elem-
ent in C such that

jjx�PCðxÞjj � jjx�yjj, 8y 2 C:

For example, if C ¼ H ¼ fy 2 H : ha, yi þ b � 0g, for some a 2 H and b 2
R, is a half space. Then we have

PHðxÞ ¼
x if x 2 H,

x�ha, xi þ b

jjajj2 a if x 62 H:

8<
:

It is well-known that the metric projection PC has the following properties:

Lemma 1. Suppose that C is a nonempty closed convex subset in H. Then
we have

(a) PCðxÞ is singleton and well defined for every x;
(b) z ¼ PCðxÞ if and only if hx�z, y�zi � 0, 8y 2 C;
(c) jjPCðxÞ�PCðyÞjj2 � hPCðxÞ�PCðyÞ, x�yi,8x, y 2 H;

(d) jjPCðxÞ�PCðyÞjj2 � jjx�yjj2�jjx�PCðxÞ�yþ PCðyÞjj2, 8x, y 2 H:

We recall the following definitions.

Definition 1. [1, 2, 35] Let f : H�H ! R be a bifunction, and C be a
nonempty, closed and convex subset of H, ; 6¼ D � C: Bifunction f is said
to be:
(a) strongly monotone with constant s>0 if

f ðx, yÞ þ f ðy, xÞ � �sjjx�yjj2, 8x, y 2 C;

(b) monotone on C if

f ðx, yÞ þ f ðy, xÞ � 0, 8x, y 2 C;
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(c) pseudo monotone on C if

8x, y 2 C, f ðx, yÞ � 0 ) f ðy, xÞ � 0;

(d) pseudo monotone on C with respect to D if

8x� 2 D, 8y 2 C, f ðx�, yÞ � 0, ) f ðy, x�Þ � 0;

(e) Lipschitz-type continuous on C if there exist positive constants c1 and c2
such that

f ðx, yÞ þ f ðy, zÞ � f ðx, zÞ�c1jjx�yjj2�c2jjy�zjj2, 8x, y, z 2 C:

From Definition 1, we have the followings:

(i) ðaÞ ) ðbÞ ) ðcÞ ) ðdÞ,8D � C:
(ii) If f ðx, yÞ ¼ hFðxÞ, y�xi, for a mapping F : H ! H: Then the notions

of monotonicity of bifunction f collapse to the notions of monoton-
icity of mapping F, respectively. Moreover, if mapping F is Lipschitz
with constant L on C, i.e., jjFðxÞ�FðyÞjj � Ljjx�yjj, 8x, y 2 C: Then, f
is also Lipschitz-type continuous on C (see [35, 36]), for example,
with constants c1 ¼ L

2e , c2 ¼ Le
2 , for any e>0:

Now, let u : C ! ð�1;þ1	 be a proper, convex and lower semicontin-
uous function and q>0, the proximal mapping of u with q is defined by

proxquðxÞ ¼ arg minfquðyÞ þ 1
2
jjy�xjj2 : y 2 Cg, x 2 H:

The followings are well-known properties of the proximal mapping
(see [37]).

Lemma 2. For all x 2 H, u 2 C, the following three claims are equivalent:

(i) u ¼ proxquðxÞ:
(ii) x�u

q 2 ouðuÞ:
(iii) hx�u, y�ui � qðuðyÞ�uðuÞÞ for any y 2 C:

The following lemmas will be used in the sequel.

Lemma 3. ([38, Lemma 2.5]) Let fskg be a sequence of nonnegative real
numbers such that:

skþ1 � ð1�kkÞsk þ kkdk þ gk, 8k � 0,

where fkkg, fdkg, fgkg satisfy the following conditions:

(i) fkkg � ½0, 1	, P1
k¼0 kk ¼ 1, or

Q1
k¼1ð1� kkÞ ¼ 0;

(ii) limsup
k!1

dk � 0;
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(iii) gk � 08k � 0,
P1
k¼0

gk<1:

Then lim
k!1

sk ¼ 0:

Lemma 4. (see [39]) Let frkg be a sequence of nonnegative real numbers
such that there exists a subsequence frkjg of frkg such that rkj<rkjþ1, 8j 2 N:

Then there exists a nondecreasing sequence fmkg � N such that
limn!1mk ¼ 1, and the following properties are satisfied by all (sufficiently
large) number k 2 N :

rmk � rmkþ1, and rk � rmkþ1:

In fact, mk is the largest number m in the set f1, 2, :::, kg such that rm<rmþ1:

3. Main results

Now we are in a position to present an algorithm to find a common point
of the solution set of an equilibrium problem and the fixed point of a map-
ping. To do so, we need the following blanket assumptions.
Asumption A:

ðA1Þ f is weakly continuous on C � C;
ðA2Þ f ðx, �Þ is convex, lower semicontinuous, and subdifferentiable on C, for
all x 2 C;

ðA3Þ f is pseudomonotone on C with respect to Sol(C, f);
ðA4Þ f is Lipschitz-type continuous on C.
ðA5Þ T is quasi-nonexpansive mapping such that I – T is demiclosed
at zero.

It is well-known that if the bifunction f and the mapping T satisfy
Assumptions A, then the solution set Sol(C, f) of EP(C, f) is closed and
convex [4] and the set of fixed points of mapping T, Fix(T) is closed and
convex [37]. Therefore X ¼ SolðC, f Þ \ FixðTÞ is closed and convex.
However, it is not given explicitly, we cannot find one point x� 2 X dir-
ectly. The following algorithm give us a way to get x� 2 X:

Algorithm 3.1
Initialization. Pick x0 ¼ xg 2 C, q0>0, d 2 ð0, 1Þ, and choose
sequences flkg, fakg, fbkg, fckg such that flkg � ½0, 1	, limk!1 lk ¼ 1,
fakg� ½a,�a	� ð0,1Þ,fbkg� ½b,�b	� ð0,1Þ,fckg� ½c,�c	� ð0,1Þ and akþbkþ

ck ¼1,8k:
Iteration k (k¼ 0, 1, 2,… ). Having xk do the following steps:
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Step 1. Solve the strongly convex program

min

�
f ðxk, yÞ þ 1

2qk
jjy�xkjj2 : y 2 C

�
CPðxkÞ

to obtain its unique solution yk:
Step 2. Take wk 2 @2f ðxk, ykÞ,

Hk ¼ fx 2 H : hxk�qkw
k�yk, x�yki � 0g,

and

zk ¼ argmin

�
f ðyk, yÞ þ 1

2qk
jjy�xkjj2 : y 2 Hk

�
:

Step 3. Compute

tk ¼ kkxg þ ð1�kkÞzk,
uk ¼ lkx

k þ ð1�lkÞTxk,
xkþ1 ¼ akuk þ bkz

k þ ckTt
k:

Set q ¼ f ðxk, zkÞ�f ðyk, zkÞ�f ðxk, ykÞ and set

qkþ1 ¼
min

�
d
2q

ðjjxk�ykjj2 þ jjzk�ykjj2Þ, qk
�
, if q>0

qk, otherwise,

8<
:

and go to Iteration k with k replaced by kþ 1:

Remark 1. 
 If f ðx, yÞ ¼ hFðxÞ, y�xi, where F : C ! H is a mapping. Then
Step 1 and Step 2 becomes

yk ¼ PCðxk�qkFðxkÞÞ,
and

zk ¼ PHkðxk�qkFðykÞÞ:
Since Hk is a half space, zk can be computed explicitly.

 From the definition of fqkg in Algorithm 2, it can be seen that fqkg is

a decreasing sequence. In addition, if f satisfies the Lipschitz-type condition
with constants L1 and L2 on C then we have.

q ¼ f ðxk, zkÞ�f ðyk, zkÞ�f ðxk, ykÞ
� L1jjxk�ykjj2 þ L2jjyk�zkjj2
� maxfL1, L2gðjjxk�ykjj2 þ jjyk�zkjj2Þ:

Therefore qk � minf d
2maxfL1, L2g , q0g, 8k:

The following theorem give us the convergence of Algorithm 3.1.
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Theorem 1. Suppose that the set X ¼ SolðC, f Þ \ FixðTÞ is nonempty, and
the sequence fkkg � ð0, 1Þ, satisfies

P1
k¼0 kk ¼ 1, limk!1 kk ¼ 0. Then

under Assumptions A the sequences fxkg, fykg, fzkg generated by Algorithm
3.1 converge strongly to the solution x� ¼ PXðxgÞ:
Before presenting the proof of Theorem 1, we need the following lemma.

Lemma 5. The sequences fxkg, fzkg, ftkg and fukg are bounded.

Proof. Let x� 2 X ¼ SolðC, f Þ \ FixðSÞ: It follows from the definition of tk

that

jjtk�x�jj ¼ jjkkxg þ ð1�kkÞzk�x�jj
¼ jjkkðxg�x�Þ þ ð1�kkÞðzk�x�Þjj
� kkjjxg�x�jj þ ð1�kkÞjjzk�x�jj:

From the definition of uk we have

jjuk�x�jj ¼ jjlkxk þ ð1�lkÞTxk�x�jj
¼ jjlkðxk�x�Þ þ ð1�lkÞðTxk�x�Þjj
� lkjjxk�x�jj þ ð1�lkÞjjxk�x�jj
¼ jjxk�x�jj:

(3.1)

Since

zk ¼ argmin

�
f ðyk, yÞ þ 1

2qk
jjy�xkjj2 : y 2 Hk

�
,

by Lemma 2, we obtain

qkðf ðyk, yÞ�f ðyk, zkÞÞ � hxk�zk, y�zki, 8y 2 Hk:

Substituting y ¼ x� in to the above inequality, we get

qkðf ðyk, x�Þ�f ðyk, zkÞÞ � hxk�zk, x��zki: (3.2)

Since x� 2 SolðC, f Þ and yk 2 C, f ðx�, ykÞ � 0: By the pseudo monotonicity
of f we have f ðyk, x�Þ � 0: So, we get from (3.2) that

�qkf ðyk, zkÞ � hxk�zk, x��zki: (3.3)

Since xk 2 @2f ðxk, ykÞ, we have

f ðxk, yÞ�f ðxk, ykÞ � hxk, y�yki, 8y 2 C:

Therefore

f ðxk, zkÞ�f ðxk, ykÞ � hxk, zk�yki:

8 M. HYDUC ET AL.



So

qkðf ðxk, zkÞ�f ðxk, ykÞÞ � qkhxk, zk�yki: (3.4)

Since zk 2 Hk, we have

hxk�qkx
k�yk, zk�yki � 0:

So

qkhxk, zk�yki � hxk�yk, zk�yki: (3.5)

From (3.3), (3.4), and (3.5) we deduce that

2qkðf ðxk, zkÞ�f ðyk, zkÞ�f ðxk, ykÞÞ � 2ðhxk�zk, x��zki þ hxk�yk, zk�ykiÞ
or

2qkðf ðxk, zkÞ�f ðyk, zkÞ�f ðxk, ykÞÞ � jjzk�x�jj2�jjxk�x�jj2
þjjxk�ykjj2 þ jjzk�ykjj2:

Thus

jjzk�x�jj2 � jjxk�x�jj2�jjxk�ykjj2�jjzk�ykjj2
þ2qkðf ðxk, zkÞ�f ðyk, zkÞ�f ðxk, ykÞÞ: (3.6)

By definition of qk we have

jjzk�x�jj2 �jjxk�x�jj2�jjxk�ykjj2�jjzk�ykjj2

þ 2
qk
qkþ1

qkþ1ðf ðxk, zkÞ�f ðyk, zkÞ�f ðxk, ykÞÞ

�jjxk�x�jj2�jjxk�ykjj2�jjzk�ykjj2

þ qk
qkþ1

dðjjxk�ykjj2 þ jjzk�ykjj2Þ

¼jjxk�x�jj2� 1� qk
qkþ1

d
� �

ðjjxk�ykjj2 þ jjzk�ykjj2Þ:

(3.7)

Since limk!1
qk
qkþ1

d ¼ d 2 ð0; 1Þ, there exists N � 0 such that

jjzk�x�jj � jjxk�x�jj, 8k � N: (3.8)

It is clear that

jjxkþ1�x�jj ¼ jjakuk þ bkz
k þ ckTt

k�x�jj
¼ jjakðuk�x�Þ þ bkðzk�x�Þ þ ckðTtk�x�Þjj
� akjjuk�x�jj þ bkjjzk�x�jj þ ckjjTtk�x�jj:
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Therefore, for all k � N we have

jjxkþ1�x�jj � ðak þ bkÞjjxk�x�jj þ ckjjtk�x�jj
� ðak þ bkÞjjxk�x�jj þ ckðkkjjxg�x�jj þ ð1�kkÞjjxk�x�jjÞ
¼ ak þ bk þ ckð1�kkÞ½ 	jjxk�x�jj þ ckkkjjxg�x�jj
¼ ð1�ckkkÞjjxk�x�jj þ ckkkjjxg�x�jj
� maxfjjxg�x�jj, jjxk�x�jjg � � � � � maxfjjxg�x�jj, jjxN�x�jjg:

Hence the sequence fxkg is bounded. Consequently, the sequences
fzkg, fykg, ftkg, and fukg are bounded. This completes the proof of
Lemma 5. w

Now we prove Theorem 1.
Since X is a nonempty closed and convex subset in the real Hilbert space

H, there exists the unique element x� 2 X such that x� ¼ PXðxgÞ: By
Lemma 1, we have

hxg�x�, p�x�i � 0,8p 2 X: (3.9)

From definition of xkþ1, we have

jjxkþ1�x�jj2 ¼ jjakuk þ bkz
k þ ckTt

k�x�jj2
¼ jjakðuk�x�Þ þ bkðzk�x�Þ þ ckðTtk�x�Þjj2
¼ akjjuk�x�jj2 þ bkjjzk�x�jj2 þ ckjjTtk�x�jj2
�akbkjjuk�zkjj2�akckjjTtk�ukjj2�bkckjjTtk�zkjj2

� akjjuk�x�jj2 þ bkjjzk�x�jj2 þ ckjjTtk�x�jj2
�akckjjTtk�ukjj2�bkckjjTtk�zkjj2

� akjjuk�x�jj2 þ bkjjzk�x�jj2 þ ckjjtk�x�jj2
�akckjjTtk�ukjj2�bkckjjTtk�zkjj2:

So

jjxkþ1�x�jj2 � akjjuk�x�jj2 þ bkjjzk�x�jj2 þ ckjjkkxg þ ð1�kkÞzk�x�jj2
�akckjjTtk�ukjj2�bkckjjTtk�zkjj2

� akjjuk�x�jj2 þ bkjjzk�x�jj2 þ 2kkckhxg�x�, tk�x�i
þ ð1�kkÞckjjzk�x�jj2�akckjjTtk�ukjj2�bkckjjTtk�zkjj2

¼ akjjuk�x�jj2 þ bk þ ð1�kkÞck½ 	jjzk�x�jj2
þ 2kkckhxg�x�, tk�x�i�akckjjTtk�ukjj2�bkckjjTtk�zkjj2:
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Combining with (3.1) and (3.7), for all k � N, we have

jjxkþ1�x�jj2 �akjjxk�x�jj2
þ bk þ ð1�kkÞck½ 	ðjjxk�x�jj2�jjxk�ykjj2�jjzk�ykjj2Þ
þ bk þ ð1�kkÞckÞ½ 	 qk

qkþ1
dðjjxk�ykjj2 þ jjzk�ykjj2Þ

þ 2kkckhxg�x�, tk�x�i�akckjjTtk�ukjj2�bkckjjTtk�zkjj2

¼ð1�kkckÞjjxk�x�jj2� 1� qk
qkþ1

d
� �

skðjjxk�ykjj2 þ jjzk�ykjj2Þ

þ 2kkckhxg�x�, tk�x�i�akckjjTtk�ukjj2�bkckjjTtk�zkjj2,
(3.10)

where sk ¼ 1�ak�kkck:
Therefore,

jjxkþ1�x�jj2 �jjxk�x�jj2� 1� qk
qkþ1

d
� �

skðjjxk�ykjj2 þ jjzk�ykjj2Þ

þ 2kkckhxg�x�, tk�x�i�akckjjTtk�ukjj2�bkckjjTtk�zkjj2:
(3.11)

We now consider two distinct cases.

Case 1. There exists M � N such that

jjxkþ1�x�jj � jjxk�x�jj, 8k � M:

In this case, the limit of fjjxk�x�jjg exists, say limk!1 kxk � x�k ¼ a � 0:
From (3.11), we have

1� qk
qkþ1

d
� �

skðjjxk�ykjj2 þ jjzk�ykjj2Þ � jjxk�x�jj2�jjxkþ1�x�jj2

þ2kkckhxg�x�, tk�x�i:
Since ak 2 ½a, �a	 � ð0, 1Þ and limk!1 kk ¼ 0, we have that lim infk!1 sk �
1��a>0: In addition, limk!1 1� qk

qkþ1
d

� �
¼ 1�d>0, ftkg is bounded, we get

in the limit of the above inequality that

lim
k!1

jjxk�ykjj ¼ 0 and lim
k!1

jjzk�ykjj ¼ 0: (3.12)

Therefore, limk!1 jjxk�zkjj ¼ 0:
Because jjuk�xkjj ¼ ð1� lkÞjjTxk�xkjj and limk!1 lk ¼ 1, we get

lim
k!1

jjuk�xkjj ¼ 0: (3.13)

So, limk!1 jjzk�ukjj ¼ 0:
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Similarly, we have

lim
k!1

jjtk�zkjj ¼ 0, and lim
k!1

ktk � xkk ¼ 0: (3.14)

Since the sequence fxkg is bounded, there exists a subsequence fxnkg that
converges weakly to some p0 2 H, such that

limsup
k!1

hxg�x�, xk�x�i ¼ lim
n!1hx

g�x�, xnk�x�i ¼ hxg�x�, p0�x�i: (3.15)

Combining with (3.12) and (3.14) we get the sequences
fynkg, fznkg, ftnkg, funkg converge weakly to p0 and p0 2 C:
Since ynk ¼ proxqnk f ðx

nk , :ÞðxnkÞ, by Lemma 2, we have

qnk

�
f ðxnk , yÞ�f ðxnk , ynkÞÞ � hxnk�ynk , y�ynki, 8y 2 C:

Let k ! 1, using the continuity of f and limn!1 qnk ¼ q>0, we obtain

f ðp0, yÞ�f ðp0, p0Þ � 0:

So

f ðp0, yÞ � 0, 8y 2 C:

This means that p0 is a solution of EPðC, f Þ:
Next, we need to show that p0 2 FixðTÞ: Indeed, from (3.10), we have

jjxkþ1�x�jj2 � ð1�kkckÞjjxk�x�jj2 þ 2kkckhxg�x�, tk�x�i
�akckkTtk � ukk2�bkckkTtk � zkk2

� ð1�kkckÞjjxk�x�jj2 þ 2kkckhxg�x�, tk�x�i
�akckjjTtk�ukjj2:

Therefore, we have

0 ¼ lim
k!1

ðjjxkþ1 � x�jj2 � jjxk � x�jj2Þ
� liminf

k!1
ð�kkckjjxk � x�jj2 þ 2kkckhxg � x�, tk � x�i � akckjjTtk � ukjj2Þ

¼ � limsup
k!1

akckjjTtk�ukjj2 � �ac limsup
k!1

jjTtk�ukjj2:

Therefore,

lim
k!1

jjTtk�ukjj ¼ 0:

It is clear that

jjTtk�tkjj � jjTtk�ukjj þ jjuk�xkjj þ jjxk�tkjj:
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Combining this with (3.13) and (3.14) we get

lim
k!1

jjTtk�tkjj ¼ 0:

Since ftnkg converges weakly to p0, limk!1 jjTtnk�tnk jj ¼ 0 and I�T is
demiclosed at zero, we can conclude that p0 2 FixðTÞ: Hence

p0 2 X ¼ SolðC, f Þ \ FixðTÞ:
From (3.9), (3.15), we obtain

limsup
k!1

hxg�x�, xk�x�i ¼ hxg�x�, p0�x�i � 0:

So

limsup
k!1

hxg�x�, tk�x�i ¼ limsup
k!1

hxg�x�, tk�xki
þ limsup

k!1
hxg�x�, xk�x�i � 0:

From (3.10), 8k � M, we get

jjxkþ1�x�jj2 � ð1�kkckÞjjxk�x�jj2 þ 2kkckhxg�x�, tk�x�i:
By Lemma 3, we have

lim
k!1

jjxk�x�jj2 ¼ 0:

Hence xk converges strongly to x�:

Case 2. There exists a subsequence fjjxnk � x�jjg of fjjxk � x�jjg such that
jjxnk�x�jj<jjxnkþ1�x�jj, 8k 2 N: From Lemma 4, there exists a nondecreas-
ing sequence fmkg � N such that limk!1mk ¼ 1, and the following
inequalities are satisfied by all k 2 N

jjxmk�x�jj � jjxmkþ1�x�jj, jjxk�x�jj � jjxmkþ1�x�jj: (3.16)

From (3.11), we have

1� qmk

qmkþ1
d

� �
smkðjjxmk�ymk jj2 þ jjzmk�ymk jj2Þ � jjxmk�x�jj2�jjxmkþ1�x�jj2

þ2kmkamkhxg�x�, tmk�x�i:

Since lim infk!1 smk � 1��a>0 and limk!1 1� qmk
qmkþ1

d
� �

¼ 1�d>0, we get
from the above inequality that

lim
n!1 jjxmk�ymk jj ¼ 0, lim

n!1 jjzmk�ymk jj ¼ 0:
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Using the same argument as in the proof of the Case 1, we obtain

limsup
k!1

hxg�x�, tmk�x�i � 0:

For all mk � N, we have

jjxmkþ1�x�jj2 � ð1�kmkcmk
Þjjxmk�x�jj2 þ 2kmkcmk

hxg�x�, tmk�x�i:
From (3.16) we have

jjxmkþ1�x�jj2 � ð1�kmkcmk
Þjjxmkþ1�x�jj2 þ 2kmkcmk

hxg�x�, tmk�x�i:
Therefore,

jjxmkþ1�x�jj2 � 2hxg�x�, tmk�x�i, 8mk � N:

Since

limsup
k!1

hxg�x�, tmk�x�i � 0,

we get in the limit that

lim
k!1

jjxmkþ1�x�jj ¼ 0and lim
k!1

jjxmk�x�jj ¼ 0:

From (3.16), we have jjxk�x�jj � jjxmkþ1�x�jj:
Therefore, limk!1 jjxk�x�jj ¼ 0: w

When T � I- the identity mapping of H, we get the following algorithm
for solving the EP(C, f ) in which the Lipschitz-type constants of the bifunc-
tion f are not required to be known.

Algorithm 3.2
Initialization. Pick x0 ¼ xg 2 C, q0>0, d 2 ð0, 1Þ, and choose sequences
fakg, fbkg, fckg such that fakg � ½a, �a	 � ð0, 1Þ, fbkg � ½b, �b	 �
ð0, 1Þ, fckg � ½c,�c	 � ð0, 1Þ and ak þ bk þ ck ¼ 1, 8k:
Iteration k (k¼ 0, 1, 2,… ). Having xk do the following steps:
Step 1. Solve the following strongly convex program

min

�
f ðxk, yÞ þ 1

2qk
jjy�xkjj2 : y 2 C

�
CPðxkÞ

to obtain its unique solution yk:
Step 2. Take wk 2 @2f ðxk, ykÞ,

Hk ¼ fx 2 H : hxk�qkw
k�yk, x�yki � 0g:

Compute

zk ¼ arg min

�
f ðyk, yÞ þ 1

2qk
jjy�xkjj2 : y 2 Hk

�
:
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Step 3. Compute

tk ¼ kkxg þ ð1�kkÞzk,
xkþ1 ¼ akxk þ bkz

k þ ckt
k:

Set q ¼ f ðxk, zkÞ�f ðyk, zkÞ�f ðxk, ykÞ and set

qkþ1 ¼ minf d
2q

ðjjxk�ykjj2 þ jjzk�ykjj2Þ, qkg, if q>0

qk, otherwise,

8<
:

and go to Iteration k with k replaced by kþ 1:
The following corollary can be deduced immediately from Theorem 1.

Corollary 1. Suppose that the solution set SolðC, f Þ of EP(C, f ) is nonempty
and fkkg � ð0, 1Þ is a sequence such that

P1
k¼0 kk ¼ 1 and limk!1 kk ¼

0: Then under assumptions (A1), (A2), ðA3Þ, and ðA4Þ, the sequences
fxkg, fykg, and fzkg generated by Algorithm 3.2 converge strongly to the
solution x� ¼ PSolðC, f ÞðxgÞ:
When f ðx, yÞ ¼ hFðxÞ, y�xi for every x, y 2 C, where F : C ! H is a

mapping, the equilibrium problem ð1:1Þ reduces to the following vari-
ational inequality problem (VIP):

find x� 2 C such that hFðxÞ, y�xi � 08y 2 C:

In this case, we get the following algorithm for finding a common element
of the set of solutions of (VIP) and the set of fixed points of a quasi-nonex-
pansive mapping in a real Hilbert space.

Algorithm 3.3
Initialization. Pick x0 ¼ xg 2 C, q0>0, d 2 ð0, 1Þ, and choose sequences
flkg, fakg, fbkg, fckg such that flkg � ½0, 1	, limk!1 lk ¼ 1, fakg � ½a, �a	 �
ð0, 1Þ, fbkg � ½b, �b	 � ð0, 1Þ, fckg � ½c,�c	 � ð0, 1Þ and ak þ bk þ ck ¼ 1, 8k:
Iteration k (k¼ 0, 1, 2,… ). Having xk do the following steps:
Step 1. Compute

yk ¼ PCðxk�qkFðxkÞÞ:
Step 2. Take wk ¼ xk,

Hk ¼ fx 2 H : hxk�qkw
k�yk, x�yki � 0g:

Compute

zk ¼ PHkðxk�qkFðykÞÞ:
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Step 3. Compute

tk ¼ kkxg þ ð1�kkÞzk,
uk ¼ lkx

k þ ð1�lkÞTxk,
xkþ1 ¼ akuk þ bkz

k þ ckTt
k:

Set q ¼ hFðxkÞ, zk�xki�hFðykÞ, zk�yki�hFðxkÞ, yk�xki and set

qkþ1 ¼
minf d

2q
ðjjxk�ykjj2 þ jjzk�ykjj2Þ, qkg, if q>0

qk, otherwise,

8<
:

and go to Iteration k with k replaced by kþ 1:
From Theorem 1, we get the following corollary.

Corollary 2. Suppose that X ¼ SolðC, FÞ \ FixðTÞ is nonempty, and the
sequence fkkg � ð0, 1Þ, satisfies

P1
k¼0 kk ¼ 1, limk!1 kk ¼ 0: Then

under Assumptions A the sequences fxkg, fykg, fzkg generated by
Algorithm 3.3 converge strongly to the solution x� ¼ PXðxgÞ:

4. Examples and numerical results

In this section, we consider four examples to illustrate the convergence of
Algorithm 3.1 with the aim to compare its numerical behavior with an
existing strongly convergent algorithm, namely the Halpern subgradient
extragradient method (HSEM) introduced in [30] as follows.

Algorithm 4.4 (see [30, Algorithm 4.4]).
Initialization. Choose x0 2 H and parameters k, fakg, fbkg satisfy the

following conditions:
i.0<k<minf 1

2L1
, 1
2L2
g:

ii. ak 2 ð0, 1Þ, limk!1 ak ¼ 0,
P1

k¼1 ak ¼ þ1:

ii. 0<a<bk<
1�j
2 :

Iteration k (k ¼ 0, 1, :::). Having xk do the following steps:
Step 1. Solve two strongly convex optimization problems

yk ¼ argminfkf ðxk, yÞ þ 1
2
jjxk�yjj2 : y 2 Cg

zk ¼ argminfkf ðyk, yÞ þ 1
2
jjxk�yjj2 : y 2 Hkg,

8><
>:

where Hk ¼ fv 2 H : hxk�kxk�yk, v�yki � 0g,xk 2 @2f ðxk, ykÞ:
Step 2. Compute xkþ1 ¼ ð1�bkÞtk þ bkTðtkÞ, where tk ¼ akx0 þ

ð1�akÞzk: Set k :¼ kþ 1 and go back Step 1.
All the programs are written in Mathlab R2014 and performed on a

Laptop with Intel(R) Core(TM) i3-4005U CPU @ 1.70GHz, 1700Mhz, 2
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Core(s), 4 Logical Processor(s), Ram 4.00GB. To terminate the Algorithms,
we use the stopping criteria Err ¼

���xkþ1 � xk
��� � e for some e>0:

Example 1. In this test, we consider our problem in the space H ¼ R
5 and

the bifunction f : H�H ! R which comes from the Nash-Cournot equi-
librium model [36, 40] defined as follows.

f ðx, yÞ ¼ hPxþ Qyþ q, y� xi:
where, P,Q 2 R

5�5 are two matrices of order 5 such that Q is symmetric,
positive semidefinite and Q�P is negative semidefinite. From the results in
[36], the bifunction f satisfies conditions (A1) - (A4) with the Lipschitz-
type constants L1 ¼ L2 ¼ jjP�Qjj

2 : We take the data in [36], in detail,

P ¼

3:1 2 0 0 0
2 3:6 0 0 0
0 0 3:5 2 0
0 0 2 3:3 0
0 0 0 0 3

2
66664

3
77775, Q ¼

1:6 1 0 0 0
1 1:6 0 0 0
0 0 1:5 1 0
0 0 1 1:5 0
0 0 0 0 2

2
66664

3
77775

and r ¼ ð1,�2,�1, 2,�1ÞT , C ¼ fx 2 R
5 :

P5
i¼1 xi � �1,�5 � xi � 5,

i ¼ 1; 5g:
We consider the mapping T : R5 ! R

5 is given by the following formula:

TðxÞ ¼ 1
5

X5
i¼1

TiðxÞ,

where

TiðxÞ ¼ f ðx1, :::, xi, :::, x5Þ
T if xi � ai

ðx1, :::, ai, :::, x5ÞT if xi>ai,

with i ¼ 1, 5 and a ¼ ð1, 1, 1, 1, 1ÞT: From [28] we can see that T is a quasi-
nonexpansive mapping and FixðTÞ ¼ \5

i¼1FixðTiÞ: We illustrate the conver-
gence of Algorithm 3.1 and compare it with Algorithm 4.4 in [30]. In
Algorithm 4.4, we take k ¼ jjP�Qjj

4 , ak ¼ 1
kþ1 , bk ¼ 1

2 : While, in Algorithm
3.1, we choose q0 ¼ 1000, d ¼ 0:9, kk ¼ 1

kþ1 , lk ¼ 1� 1
kþ1 , ak ¼ 0:2, bk ¼

0:4, ck ¼ 0:4: The starting point is x0 ¼ ð1, 3, 1, 1, 2ÞT: The stopping criteria
is Err ¼ jjxkþ1�xkjj � e with e ¼ 10�6: In this case, the approximate solu-
tion computed by Algorithm 3.1 is

ð�0:724815, 0:803666, 0:720101,�0:866164, 0:200635ÞT

Table 1. The number of Iterations and CPU times (in second) computed by Algorithm 3.1 and
4.4 in Example 1.

Alg 3.1 Alg 4.4

Iter. 1139 1888
Cpu(s) 45.74 74.02
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while the approximate solution computed by Algorithm 4.4 is

ð�0:724586, 0:80402, 0:719916,�0:865651, 0:201025ÞT:
The detailed result is reported in Table 1 and in Figure 1. Moreover, the
number of changes of parameter qk is also reported in Figure 2.

Example 2. In this example, two matrices P,Q 2 R
n�n are generated ran-

domly and vector q is chosen randomly with its elements in ½�n, n	: The
feasible set C is a polyhedral convex set and is defined as follows

C ¼ fx 2 R
n : Ax � b, lb � x � ubg

where A is a matrix of order m� n (n ¼ 5, 10, 15, 20 and m ¼ 50, 100)
with its entries generated randomly in ½�2, 2	 and b 2 R

n is a vector with
its elements generated randomly in ½1, 3	, lb is the zero vector, ub is a vector

Figure 1. The number of iterations in Algorithms 3.1 and 4.4 - Example 1.

Figure 2. The change of qk in Example 1.
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with its elements generated randomly in ½0, n	: The mapping T is
defined by

TðxÞ ¼
x if jjxjj � 2
2x
jjxjj if jjxjj>2:

8<
:

The parameters in both algorithms are chosen as in Example 1. The stopping
criteria is Err ¼ jjxkþ1�xkjj � e ¼ 10�5: The results computed by Algorithm
3.1 and 4.4 are showed in Table 2 and in Figure 3 (with m ¼ 100, n ¼ 20).

Example 3. In the next example, two matrices P,Q 2 R
n�n, the feasible set

C, and the parameters in Algorithms 3.1 and 4.4 are chosen as in Example
2, q is the zero vector. While, the mapping T is given by

TðxÞ ¼ 1
3

X3
i¼1

TiðxÞ,

where

Table 2. Experiment for Example 2.
m¼ 50 m¼ 100

Alg 3.1 Alg 4.4 Alg 3.1 Alg 4.4

n e CPUðsÞ Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

5 10– 5 20.82 430 23.99 594 23.96 440 26.09 622
10 – 41.15 805 49.89 1136 40.60 800 56.22 1134
15 – 43.91 1139 67.91 1888 53.83 923 71.93 1306
20 – 137.37 1133 172.51 1602 160.82 1160 215.40 1640

Figure 3. Number of iterations in Algorithm 3.1 and 4.4 - Example 2.
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TiðxÞ ¼
x if jjx�aijj � 2
2ðx�aiÞ
jjx� aijj if jjx�aijj>2,

8<
:

with i ¼ 1, 2 and

T3ðxÞ ¼
( x if hc, xi � 1

x�hc, xic
jjcjj2 if hc, xi>1,

a1 ¼ ð�2, 0, :::, 0ÞT , a2 ¼ ð2, 0, :::, 0ÞT , c ¼ ð1, 1, :::, 1ÞT:
As before, we choose the stopping criteria is Err ¼ jjxkþ1�xkjj � e ¼ 10�5:
The results are showed in Table 3. From these results, we can see that,
under the same tolerance, Algorithm 3.1 has a competitive advantage over
Algorithm 4.4, especially in the number of iterative steps (Iter.) and the
time of execution in second (CPU(s)).

Example 4. In the last example, we suppose that H ¼ L2ð½0, 1	Þ with the
inner product

hx, yi :¼
ð1
0

xðtÞyðtÞdt

and the induced norm

jjxjj :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0

jxðtÞj2dt

vuuut , 8x 2 H:

We consider the feasible set C ¼ fx 2 H : jjxjj � 2g and the following
bifunction f : H�H ! R given by (see [41]).

f ðx, yÞ ¼ 3
2
�jjxjj

� �
x, y�x


 �
:

From the results of [41], the bifunction f satisfies Condition (A4) with the
Lipschitz-type constants L1 ¼ L2 ¼ 7

4 : The mapping T is given by

Table 3. Experiment for Example 3.
m¼ 50 m¼ 100

Algorithm 3.1 Algorithm 4.4 Algorithm 3.1 Algorithm 4.4

n e CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

5 10– 5 20.14 429 20.14 429 18.65 382 24.18 540
10 – 42.49 747 54.49 1056 43.22 688 50.10 1134
15 – 47.65 848 50.63 1047 60.10 941 67.26 1333
20 – 146.50 1192 191.64 1685 149.02 1111 190.30 1479
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TðxÞ ¼
x if jjxjj � 1
x

jjxjj if jjxjj>1:

(

We choose q0 ¼ 6, d ¼ 0:9, kk ¼ 1
kþ1 , lk ¼ 1� 1

kþ1 , ak ¼ 0:2,bk ¼ 0:4, ck ¼
0:4: The starting point is x0 ¼ 1

200 ð sin ð�3tÞ þ cos ð�10tÞÞ: We choose the
stopping criteria is Err ¼ jjxkþ1�xkjj � e ¼ 10�6: The results are showed in
Table 4 and in Figure 4.

5. Conclusion

This paper has proposed a novel algorithm for finding a common point of
the solution set of a pseudomonotone equilibrium problem and the set of
fixed points of a quasi-nonexpansive mapping in a real Hilbert space. We
have described how to incorporate the subgradient extragradient method
with the Ishikawa iteration. The strong convergence of the presented algo-
rithm is obtained when the Lipschitz-type constants of the bifunction is
unknown. We have also considered some numerical examples to illustrate
the convergence and also the advantage of the new algorithm over some
existing methods in this field.
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