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Abstract
This article presents a new control method based on fuzzy controller, time delay estimation, deep learning, and non-

dominated sorting genetic algorithm-III for the nonlinear active mount systems. The proposed method, intelligent adapter

fractions proportional–integral–derivative controller, is a smart combination of the time delay estimation control and

intelligent fractions proportional–integral–derivative with adaptive control parameters following the speed range of engine

rotation via the deep neural network with the optimal non-dominated sorting genetic algorithm-III deep learning algorithm.

Besides, we proposed optimal fuzzy logic controller with optimal parameters via particle swarm optimization algorithm to

control reciprocal compensation to eliminate errors for intelligent adapter fractions proportional–integral–derivative
controller. The control objective is to deal with the classical conflict between minimizing engine vibration impacts on the

chassis to increase the ride comfort and keeping the dynamic wheel load small to ensure the ride safety. The results of this

control method are compared with that of traditional proportional–integral–derivative controller systems, optimal

proportional–integral–derivative controller parameter adjustment using genetic algorithms, linear–quadratic regulator

control algorithms, and passive drive system mounts. The results are tested in both time and frequency domains to verify

the success of the proposed optimal fuzzy logic controller–intelligent adapter fractions proportional–integral–derivative
control system. The results show that the proposed optimal fuzzy logic controller–intelligent adapter fractions

proportional–integral–derivative control system of the active engine mount system gives very good results in comfort and

softness when riding compared with other controllers.

Keywords
Active mount system, fuzzy control, deep learning, non-dominated sorting genetic algorithm-III, time delay estimation,

fractions proportional–integral–derivative controller

1. Introduction

In the automotive industry, researchers are always con-
cerned about passenger comfort, volume, and performance.
So, to reduce vehicle vibration or motor while maintaining
efficient engine power to ensure the passengers are most
comfortable and ensuring a powerful, lightweight, and fuel-
efficient engine is the topic that is widely studied today.
Some researchers have shown that vibrations in vehicles are
caused by disturbances resulting from the unevenness of the
road surface with a frequency range below 20 Hz and due to
the disturbances arising from the engine during its opera-
tion. It is usually in the high range of 20–50 Hz. The engine
vibration itself causes vibrations and noise in the passenger
cabin (Darsivan et al., 2008; Yang et al., 2001). Thus, the

costs and processing efficiency of the process are also
greatly influenced by these vibrations (Nandi et al., 2005).
Seidel (1993) has shown that when the human body is
subjected to long-term vibrations, it will significantly affect
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the health, cause a number of diseases such as insomnia,
back pain, and muscle/nerve and spinal disease as shown in
Figure 1. So, to reduce the vibration of the engine on the
chassis, we need to use active engine mount.

The proportional–integral–derivative (PID) controller
with simple structure and easy-to-implement control al-
gorithms has been used in various technical and industrial
sectors worldwide (Barbosa et al., 2010; Biswas et al., 2009;
Jiang et al., 2006). Currently, there are many researchers
offering solutions to improve the PID controller to improve
control performance. Podlubny (1999) published the frac-
tions proportional–integral–derivative (FOPID) or PInDm

controller, where they added two control parameters n and
m (integral order and derivative) as fractions. With five
control parameters, proportional, integral, derivative gains,
the integral, and derivative orders have increased the effi-
ciency and control power compared with the classical PID
controller. The biggest advantage of this controller is that it
has the ability to eliminate steady-state errors, robustness
toward plant uncertainties, and also eliminates good noise.
Subsequently, there were a number of researchers offering
methods to improve the FOPID controller to improve
quality and control accuracy (Copot et al., 2017; De Keyser
et al., 2015, 2018; Muresan et al., 2015). Similarly, Aldair
and Wang (2010) have published how to apply the optimal
algorithm to correct control parameters. This result was
verified in the full nonlinear active suspension of the car
system. Zhihuan et al. (2014) have also used genetic al-
gorithms (GAs) that are not dominated by II to optimize the

FOPID controller. However, the problem of synchronous
control of controllers in the control system is still a problem
to be studied.

Recently with the strong development of deep learning
techniques, artificial neural networks (ANNs) are used in
various fields such as economy, engineering, society, for-
eign exchange, stock market, etc. (Chan et al., 2013; Hansen
et al., 2015; Huang et al., 2014; Leelavathi and Sahana
Devi, 2016; Lesinski and Corns, 2018; Montavon, 2012;
Shakouri and Banihashemi, 2012; Sreekanth and Datta,
2010; Wang et al., 2016). ANNs with many hidden lay-
ers and trained with deep learning algorithms have been
used for accurate predictive models. It is very accurate to
predict the fixed behavior on the basis of using neural
networks in the optimal predictive model of many ob-
jectives. Meanwhile, with other methods such as mathe-
matical modeling methods, methods that use statistical
model are completely inconsistent with abnormal data
patterns that cannot be written clearly in the form of
functions or deduced from formulas. But the algorithm
using ANNs can be highly effective with chaotic compo-
nents. Recently, some researchers like Shen et al. (2018),
Smith et al. (2014), Kakaee et al. (2015), and Vieira and
Tome (2005) used ANNs to predict optimal targets in
different areas.

In this article, this is a combination of GA, deep neural
network (DNN), and non-dominated sorting genetic algo-
rithm (NSGA)-III to find the best of the pareto-optimal
front of the parameter of intelligent adapter fractions
proportional–integral–derivative (IAFOPID) controllers
according to the engine’s rotation speed. This combination
gave a faster computing time than when using NSGA-III.
On the other hand, this combination also significantly re-
duced the number of samples needed for the training of
DNN. Therefore, it has facilitated the quick application to
find the optimal set of parameters of the IAFOPID con-
troller. Besides, we have proposed optimal fuzzy logic
controller (OptFLC). Here, control parameters are opti-
mized via particle swarm optimization (PSO) algorithm.
These two controllers operate complementary controls.
When the IAFOPID controller is operating in error, OptFLC
will operate to eliminate this error. OptFLC has the function
of tuning to improve the accuracy of the entire system.

2. Structure

2.1. Nonlinear half-car active mount system

Using Newton’s law, the mathematical model of Figure 2
can be written as below

M€xi þK _xi þ Cxi ¼ QðtÞ (1)

Here, xi: vector-column of displacements and angular os-
cillations of masses;M: matrix of inertial coefficients of car
parts C: matrix of coefficients of stiffnesses and torsionalFigure 1. Limits of the body to vibration.
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rigidity; K: matrix of damping coefficients; Q(t): column
vector of the perturbing forces and moments. q2ðtÞ ¼
q1ðt þ τÞ with τ: time interval, via vehicle speed

QðtÞ¼

2
66664
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2.2. Road features

To be general, we use random functions as a function of the
pavement as shown in Figure 3 and simulation parameters
as shown in Tables 1–3.

2.3. Control system design

In this section, we have described the fundamental prin-
ciples of OptFLC–IAFOPID control system. It is the
smooth coordination between OptFLC and IAFOPID

controller. Inside, IAFOPID controller is the smart com-
bination of the time delay estimation control (TDEC) and
IAFOPID with adaptive control parameters following the
speed range of engine rotation via the DNNwith the optimal

Figure 2. Half-car dynamic and road surface model.

Table 2. General settings information.

Mass of the equipped automobile, m0 (kg) 1210

Payload (kg) 400

The weight of the front wheels, m1 (kg) 37

The weight of the rear wheels, m2 (kg) 37

The weight of the power unit, mca (kg) 152.2

Transfer case weight, mpk (kg) 27.8

Radius crank, r (m) 0.04

The ratio of the crank radius to the length of the

connecting rod, λ
0.308

Wheel radius in slave mode, rk (m) 0.325

Figure 3. Fractions proportional–integral–derivative controller.

Table 1. Geometric parameters of engine (m).

l1 l2 l3 l4 l5

1.225 1.175 1.330 0.520 0.190

l6 l7 l8 l9 l10

0.187 0.623 0.760 0.210 0.030
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NSGA-III deep learning algorithm. The OptFLC is the
optimal fuzzy logic control in which the parameters of
OptFLC are optimized via PSO algorithm. This controller
does a lot of fine tuning, eliminating errors in the control
process of IAFOPID controller. Therefore, the accuracy of
the control system is enhanced, with better performance and
higher reliability.

2.3.1. TDE controller. Dong-Ji et al. (2007) show the non-
linear dynamics change over time

_xðtÞ ¼ f ðxðtÞÞ þ hðxðtÞ; t;wðtÞÞ þ uðtÞ (4)

Here, x(t) the state variables; u(t) control vector; f(x(t))
known dynamics; w(t) disturbance input; h(x(t), t, w(t))
unknown dynamics.

TDE controller provides a simple and effective solution
(Hsia et al., 1991).

In equation (4), equation (5) can be substituted as

_xðtÞ þ Ψðx; tÞ ¼ uðtÞ (5)

Here

Ψðx; tÞ ¼ ð� f ðxðtÞÞ � hðxðtÞ; t;wðtÞÞ (6)

Control request is to achieve the output according to the
reference input orbit x∗ref .

Here, we define e ¼ x∗ref ðtÞ þ yðtÞ, _e ¼ _x∗ref ðtÞ þ _yðtÞ,
and €e ¼ €xref

∗ ðtÞ þ €yðtÞ.
Here, dynamic error is defined as

€eþ Λd _eþ Λpe ¼ 0 (7)

with Λd and Λp as constant gains, the control input can be
selected as

uðtÞ ¼ u0 þ Ψ̂ðx; tÞ (8)

u0 ¼ €xref
∗ þ Λd _eþ Λpe (9)

Here, Ψ̂ðx; tÞ is an estimated value by using TDE (Fliess and
Join, 2009) as

Ψ̂ðx; tÞ ¼ Ψðx; t � LÞ (10)

where L is the estimated time delay. From equation (8),
we can obtain

Ψ̂ðx; tÞ ¼ uðt � LÞ � _xðt � LÞ (11)

Therefore, from equations (8)–(11), the TDEC law is
expressed as

uðtÞ ¼ uðt � LÞ � _xðt � LÞ þ
�
€xref
∗ þ Λd _eþ Λpe

�
(12)

2.3.2. IAFOPID controller. FOPID controller consists of five
parameters (n, m, Kp, Ki, and Kd) that need to be optimized
according to the control requirements as in Figure 3 so that
more details can be referenced (Das et al., 2011)

UðtÞ ¼ KpeðtÞ þ KiD
�neðtÞ þ KdD

meðtÞ (13)

Equation (13) is rewritten as follows

UðsÞ ¼ KpeðsÞ þ KiD
�neðsÞ þ KdD

meðsÞ (14)

2.3.2.1. Combination of two FOPID controllers with

TDE controller. It has been shown as an unknown non-
linear model (Fliess and Join, 2009; Gédouin et al., 2011).
It is defined as follows

yðvÞðtÞ ¼ ΨðtÞ þ ΓuðtÞ (15)

where y(t) is the powertrain acceleration as output signal, v is
the order derivative, which is usually selected as 1 or 2, and
Ψ(t) is an unknown term which estimated via the control input
uv(t) and output y(t). In addition, Ψ(t) not only denotes the
structure of the unknown system but also the noise, when the Γ
is the constant and u(t) are input signals. Figure 4 illustrates the
model of IAFOPID controller. It consists of three controllers
that are parallel to each other. They are acceleration FOPID,
displacement FOPID, and TDE controllers.

The control input of IAFOPID is defined as

GAD ¼
�
KpAeðtÞ þ KdAD

�nA _eðtÞ þ KiAD
mA

Z
eðtÞ

	

þ
�
KpDeðtÞ þ KdDD

�nD _eðtÞ þ KiDD
mD

Z
eðtÞ

	

(16)

where KpA, KiA, KdA, nA, and mA are the equivalent clas-
sical proportional integral derivative (acceleration FOPID)
coefficients, and KpA, KiD, KdD, nD, and mD are the equivalent
classical PID (displacement FOPID) coefficients.

Table 3. Model parameters of non-dominated sorting genetic algorithm and deep neural network.

Maximum number of

iterations

Iter_max = 1000 Mutation rate 0.02

Population size 100 Number of parents

(offsprings)

2 × round(pCrossover × nPop/2)

Crossover percentage 0.5 Number of mutants round(pMutation × nPop)

Mutation percentage 0.5 Mutation step size 0.1(VarMax � VarMin)

Deep neural network

parameters

nn = [100 200 200 200

200 100]

Generating reference

points

nDivision =10; Zr = GenerateReferencePoints

(nObj, nDivision)
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Equation (16) can be written in the following equivalent
form

GAD ¼ KpeðtÞ þ KdD
�n _eðtÞ þ KiD

m

Z
eðtÞ (17)

uvðtÞ ¼ 1

Γ

��
KpeðtÞ þ KdD

�n _eðtÞ þ KiD
m

Z
eðtÞ

	

þ _y∗ref ðtÞ � Ψ̂ðtÞ
� (18)

_y∗ref described the output reference trajectory, Ψ̂ðtÞ described
estimated value of Ψ(t), and eðtÞ ¼ _y∗ref ðtÞ � yðtÞ described

the output error. Substituting equation (9) into equation (8),
we get the following result

_eðtÞþKpeðtÞþKdD
�n _eðtÞþKiD

m

Z
eðtÞþΨðtÞ� Ψ̂ðtÞ¼ 0

(19)

2.3.2.2. DNN with the NSGA-III optimal deep-learning

algorithm. We have selected the optimal parameters for
IAFOPID controller so that the error in the nonlinear control
is minimal. We have researched, analyzed, and decided to
create the optimal parameter set according to the speed
range of the engine. We use neural networks with linear
transmission structure (multilayer perceptron neural
network (MLP)). This is the deep neuron network with

Figure 4. Diagram of the control system.

Figure 5. Deep neural network.
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four hidden layers to learn the optimal algorithm NSGA-
III. A specific model of MLP network is set up with: nn =
[M = 100; Nh1 = 200; Nh2 = 200; Nh3 = 200; Nh4 =200;
K = 100]. Here, M is the input neuron and i = 4 is the
number of hidden classes with each hidden layer having
neuron Nhi and output layer having K the neuron is
described in Figure 5.

The problem of training ANNs is an important issue. To
optimize the weights and deviations of neural networks, it is
often used as a GA (Filho and Filho, 2010). In the process of
training the network, the weights and bias of the DNN
adjust through GA. Thus, the exchange interaction be-
tween the GA and DNN is the process of exchanging
weights and bias. The weight and biases [W, b] of the DNN

Figure 6. Training structure for hybrid method.

Figure 7. Create hierarchical deep neural network and non-dominated sorting genetic algorithm.
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are started with a random value as shown in Figure 6.
Similarly, in the GA, the initial population is also started
randomly. Next, the population of the next generation is
algorithm GA creating melon on the current population.
An exercise function is used to evaluate the difference
between the predicted output values and the actual output
value. The result is obtained when the average square of
GA is less than 0.005. Weight and biases are expressed
through

Nw ¼ ðIn þ 1ÞNh þ ðNh þ 1ÞOp (20)

Here, number of weights and biases is Nw, number of
neurons in the input layer is In, number hidden layer is Nh,
and number of neurons in the output layer is Op. Optimal
GA value has been achieved through the training process.
Simulation parameters of the GA are as follows:

Deep learning method to create optimal hierarchical
deep neural network (HDNN) and NSGA-III. Because the
NSGA-III is a sequential computation process and is re-
peated many times through loops, the calculation time will
be very slow. Meanwhile with ANN, the calculation
process is conducted in parallel and dispersed over many
nerve cells almost simultaneously. This calculation is
a learning process, not according to the previous plan. So
the calculation speed is very fast and the DNN can learn
the characteristics of the NSGA-III. We have proposed
HDNN algorithm and NSGA-III. This is the DNN that has
received optimal deep learning training according to the
NSGA-III, as shown in Figures 6 and 7. Thus, this neural
network has the same function as the NSGA-III gene
algorithm, but with many times higher accuracy and faster
calculation time.

Method of turning the IAFOPID controller. To increase
the accuracy and fast response time, we need to find the data
set (n, m, Kp, Ki, Kd, and KAloop) of acceleration controllers
and data set (n, m, Kp, Ki, Kd, and KDloop) of displacements
controllers, which are optimal with engine rotation speed
range. To match the vehicle’s performance characteristics
such as sudden acceleration and deceleration and the
controller’s processing time, we have divided the engine
rotation speed range (700 r/min–6000 r/min) into 500
revolutions in each level. Each level will be used to find the
optimal set of parameters for the control system. Algorithm
diagram calculates the optimal coefficients varying ac-
cording to the speed range to be included in the IAFOPID
controller as shown in Figures 8 and 9.

2.3.3. OptFLC. Because the IAFOPID controller simulta-
neously controls both acceleration and displacement, it isFigure 8. Flow chart of optimal parameter of cascade fractions

proportional–integral–derivative controller.

Figure 9. Membership functions.

Population size: 20 Mutation rate: 0.15

Crossover rate: 0.65 Number of generations: 250

Guo and Dao 7



easy to generate errors. Although this controller has a TDE
controller, it only reduces the error. Therefore, it is nec-
essary to add OptFLC to eliminate the remaining errors in
the system. The OptFLC is proposed as shown in Figure 4
and can be defined as follows

uvðtÞ ¼ 1

Γ

��
KpeðtÞ þ KdD

�n _eðtÞ þ KiD
m

Z
eðtÞ

	

þ _y∗ref ðtÞ � Ψ̂ðtÞ
�
þ ueðtÞ

(21)

Here, the extra input of the OptFLC is ue(t). After
substituting equation (21) into equation (14), the new
closed-loop error can be obtained as below

_eðtÞ þ KpeðtÞ þ KdD
�n _eðtÞ þ KiD

m

Z
eðtÞ þ Γue þ Ψm ¼ 0

(22)

Here, the estimation error is Ψm ¼ ΨðtÞ � Ψ̂ðtÞ. OptFLC
has an easy to implement, highly generalized advantage.
This controller has the role of overcoming errors that can be
generated by the controller IAFOPID. Controller output
OptFLC can be described as follows

ueðtÞ ¼ λfff ðλce; λceceÞ (23)

where λf is the output, λc is the error, and λce is the change of
error gains, and the optimal of the OptFLC is dependent on
these gains (Ha, 1998), where a fuzzy nonlinear function is
ff. To generalize the control law, we use five language
variables NB, NS, Z, PS, and PB (i.e., NB, NS, PB, PS, and
Z labels denote “big vibration,” “small vibration,” “extreme
vibration,” “extremely small vibration,” and “no,” respec-
tively); corresponding triangular member functions selected
to represent linguistic variables are shown in Figure 10.

Based on the literature (Hasanien and Matar, 2015;
Mustafa et al., 2013), we have shown the method of de-
duction and opacity. Equation (23) can be substituted for
equation (21) as follows

uvðtÞ ¼ 1

Γ

��
KpeðtÞ þ KdD

�n _eðtÞ þ KiD
m

Z
eðtÞ

	

þ _y∗ref ðtÞ � Ψ̂ðtÞ
�
þ λfff ðλce; λceceÞ

(24)

This algorithm is controlled according to control rules as
in Table 4.

2.3.3.1. OptFLC optimal parameter with PSO

algorithm. PSO algorithm (Babu et al., 2018) is to deter-
mine the optimal parameters of the logic fuzzy controller.
This is to determine how to select the optimal values λf, λc,
and λce. The PSO stages are summarized in Figure 10.

3. Simulation results and discussion

3.1. Results

Simulation results from MATLAB software and optimal
data set of IAFOPID controller are shown in Table 5.
Simulation analysis is performed in this section to evaluate
the ride comfort.

Figure 11 shows the results in the form of four-
dimensional space via the isosurfaces function in MAT-
LAB. This is the result of a case of a rotation speed range at
1700–2200 r/min as shown in Table 5. In the figure, pareto-
optimization front is set according to the parameters of two
accelerator and displacement controllers. Based on the need
to rejuvenate comfort and softness, we have selected the
values that correspond to the mean square acceleration, and
mean square displacement of the powertrain mount system
is the smallest in this pareto front set (these are the gray
circles with the bold net).

Figure 12 shows the result of a case of a rotation speed
range at 1700–2200 r/min. The black points in the figure
show the results of calculating the acceleration and
displacement values of magnetorheological (MR) engine
mount corresponding to the stiffness values of the mount
to be controlled. This value is given by the OptFLC–
IAFOPID control system to control actual MR damper
force.

Figure 10. Particle swarm optimization algorithm.

Table 4. The rule of fuzzy control.

e/ce NS NS Z PL PS

NS NS NL NL PS PL

NL Z NS Z PL Z

PL PS PL PS PS NS

Z Z PS Z NS NL

PS PL PS NL NS NL

8 Journal of Vibration and Control 0(0)



The result of method OptFLC–IAFOPID is compared
with the results using the LQR algorithm in Shen et al.
(2018). In Figure 13, we see that the effect of the direction is
very good, and the displacement and rotation angle ac-
cording to the engine speed range are lower than those of the
LQR method.

In Figure 14, with the OptFLC–IAFOPID control sys-
tem, we see that the transmitted force active mount and
acceleration response of the chassis are the smallest
compared with other controllers. Thus, the OptFLC–
IAFOPID control system has superior advantages over
other controllers. It has eliminated high-frequency noise,

Figure 11. Optimal parameter intelligent adapter fractions proportional–integral–derivative controller at a speed range of 1700–

2200 r/min.

Figure 12. Global pareto front of mean square displacement and mean square acceleration front engine mount.

Table 5. Intelligent adapter fractions proportional–integral–derivative controller optimal parameter set.

Revolutions level (r/min)

Acceleration FOPID controller Displacement FOPID controller

nA mA KpA KiA KdA KDloop nD mD KpD KiD KdD KAloop

700–1200 0.53 0.24 56,422.8 25,655.2 7522.1 2.60 0.38 0.36 67,553.7 12,450.6 4526.0 3.78

1200–1700 0.59 0.65 61,332.3 30,765.8 3349.5 1.85 1.74 0.53 62,424.1 67,358.1 5472.8 2.03

1700–2200 0.55 0.29 51,664.6 41,536.4 4155.7 1.39 2.36 0.68 31,352.3 35,063.8 4459.5 3.67

2200–2700 0.74 0.46 45,462.3 54,350.3 4362.2 6.32 2.45 0.35 57,562.6 44,385.4 4355.7 3.33

2700–3200 0.76 0.56 56,522.5 32,405.3 4503.4 5.68 5.76 0.65 79,562.8 24,695.2 4352.1 5.68

3200–3700 0.45 0.43 77,642.9 45,710.7 4432.7 2.50 4.65 0.42 61,644.8 45,150.8 5239.3 5.80

3700–4200 0.57 0.24 62,424.1 56,928.1 4562.8 5.78 0.45 0.43 53,570.2 56,582.9 5342.3 3.64

4200–4700 0.83 0.65 58,433.2 43,732.9 4262.3 6.46 0.65 2.35 45,672.5 35,475.3 6473.4 5.44

4700–5200 0.76 0.255 76,655.7 23,450.6 4520.0 5.67 0.38 4.36 73,512.9 57,699.7 5532.7 2.64

5700–6000 0.55 0.24 81,454.8 45,153.8 7539.3 3.85 2.54 2.54 52,362.3 31,380.3 3862.2 4.84

FOPID: fractions proportional–integral–derivative.

Guo and Dao 9



preventing the sudden acceleration and deceleration of
the vehicle.

In Figure 15, the passive drive system mounts is curve A,
traditional PID systems is B, optimal PID parameter adjustment
using GAs is C, and OptFLC–IAFOPID control system is D.

In the frequency domain, there are two resonant points,
and the OptFLC–IAFOPID control system has a lower
oscillation transmission than the other three systems. This

proves that the OptFLC–IAFOPID controller is the best. In
the time domain itself, the minimum oscillation amplitude is
achieved at the OptFLC–IAFOPID controller, and the
fastest time to turn off oscillation is also achieved due to
OptFLC–IAFOPID controller. Through two frequency and
time zones, we can conclude that the OptFLC–IAFOPID
controller has the best control, and it controls the sudden
nonlinear vibrations.

Figure 14. Transmitted force to chassis and vehicle frame acceleration response.

Figure 15. Response by frequency and time.

Figure 13. Frequency response at CG.
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4. Conclusion

This article has published OptFLC–IAFOPID control
system and control algorithms. This control system has an
optimal set of control parameters that adapt to the changing
speed range of the engine rotation. OptFLC–IAFOPID
control system has been designed successfully. It has
demonstrated superior advantages over previous con-
trollers. On the other hand, it has met the requirements set
out to prevent vibrations during sudden increase or decrease
when the engine changes different rotation speeds, thus
creating a comfortable and soft feeling and roof for people
when riding. This is completely proven in the simulation
results.

Besides, this article has published a new combination
method between NSGA-III, DNN, and GA. So DNNs with
many hidden layers are trained with intelligent deep
learning algorithms, and it has created a deep learning
network to realize the optimal problem simultaneously of
many objects in the technology. This method is extremely
effective and highly practical because first, it offers a way of
deep learning of the network with a much smaller number of
standard samples than previous deep-learning networking
methods announced. For test cases, optimal parameter
IAFOPID controller, we only need a standard set of 10
samples to train DNNs. It is this combination of training that
the actual number of samples generated for the training
process is 10 × (Iter_max) = 10,000 samples. However,
training with the old method is extremely difficult to collect
a large number of samples. Second, for test cases, optimal
parameter IAFOPID controller, the time for multi-objective
optimal analysis of this hybrid method at one revolutions
level (r/min) is only 1.2 h, whereas using NSGA-III takes 32
h. So, the total time for calculating the entire process for the
optimal controller will be (32 � 1.2) × 10 = 308 h.
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