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Abstract
In this study, suspensions of core–shell particles dispersed in a silicone oil were fab-
ricated and their rheological properties were evaluated at different external electric 
field strengths. The core–shell-structured composite materials were synthesized by 
coating poly(o-toluidine) (PoT) shells on the surfaces of silica particles. The silica 
particles were extracted from rice husk through acid and thermal treatments. The 
silica particles were then modified with (3-trimethoxysilyl)propyl methacrylate prior 
to the coating with the PoT shells. The chemical structures, morphologies, particle 
sizes, and elemental distributions of both silica and core–shell particles were investi-
gated using scanning electron microscopy, Fourier-transform infrared spectroscopy, 
and energy-dispersive X-ray spectroscopy. Additionally, the rheological properties, 
chain formations, and dielectric properties of the suspensions were analyzed using 
rotational rheometry, optical microscopy, and an inductance–capacitance–resist-
ance meter. The shear stress increased with the electric field strength along with the 
electro-rheological efficiency. The plot of the yield stress against the applied electric 
field strength exhibited a slope of 1.5. The fabricated core–shell particles are envi-
ronment-friendly and are promising materials for applications in next-generation 
electro-rheological fluids.

Keywords Rice husk · Silanized silica · Electro-rheological fluid · Rheological 
properties · Silicone oil · Core–shell particle

 * Cuong Manh Vu 
 vumanhcuong@duytan.edu.vn; vumanhcuong309@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0001-8986-1015
http://crossmark.crossref.org/dialog/?doi=10.1007/s00289-019-02933-6&domain=pdf


 Polymer Bulletin

1 3

Introduction

Several smart materials with diverse rheological and mechanical properties have 
been fabricated with external stimuli such as electric and magnetic fields. These 
materials can be employed in various technological applications such as damp-
ening, drug delivery, microfluidics, and robotics [1–3]. Among smart materials, 
electro-rheological (ER) fluids are notable owing to their phase changes between 
liquid- and solid-like states upon the application of an external electric field 
[4–9].

Generally, an ER fluid is a suspension of dielectric particles (dispersed phase) 
in a non-conducting liquid. Synthesized inorganic [10, 11], core–shell-structured 
composite [12], and hollow conductive polymer [13, 14] particles can be used as 
the dispersed phase. These phases polarize under an external electric field owing 
to the difference in dielectric constants between the particles and the medium. 
Consequently, chains are formed owing to the dipole–dipole interactions, which 
rapidly alter their rheological properties from liquid- to solid-like state. This 
behavior can be reversed in a very short time of only a few milliseconds [15]. 
This phenomenon was discovered by Winslow in 1949 and was characterized by 
the increase in viscosity of a colloidal suspension under an applied electric field 
[16]. Since the first report, this phenomenon has been extensively studied [17–19] 
owing to not only the various potential engineering applications but also scientific 
interest for these materials as one of the most exciting and complex soft materials 
[20–22]. Many types of electro-responsive material have been successfully used 
for the fabrication of ER fluids. However, core–shell particles have become the 
most promising materials for the fabrication of ER fluids, compared with pure 
polymer and pure inorganic materials, owing to the ease of controlling the parti-
cle shape, density, size, and electrical conductivity [23]. Polyaniline [24–32] and 
its derivatives [33–35] are also commonly used conductive polymers for the fab-
rication of ER fluids.

In recent years, biomaterials have been replacing synthesized materials as they 
offer several environmental advantages. Rice husk-based silica is considered val-
uable for the fabrication of composite materials. Rice husk is a relatively low-
value agricultural by-product. Large quantities of rice husk are produced annually 
in agricultural countries and are generally burned or discarded, leading to nega-
tive environmental effects.

In this study, rice husk was utilized as a sustainable resource for the fabri-
cation of bio-silica. The fabricated particles were employed as cores to produce 
core–shell particles coated with poly(o-toluidine) (PoT) shells. The methacryloxy 
group was also grafted onto the silica surface to increase the chemical affinity 
between the core and shell through π–π* interactions. Furthermore, the rheologi-
cal properties of the ER fluid were analyzed in detail. The results suggest that 
fabricated core–shell particles could be used in automotive brakes. To the best of 
our knowledge, the use of PoT-coated silica in the fabrication of ER fluids has not 
been reported earlier, and we believe that this study will contribute to improving 
agricultural waste management and protecting the environment.
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Experimental methods

Materials

Rice husks were collected from Huu Duc Food Commerce (Vietnam).  H2SO4, sili-
cone oil, and HCl (37%) were purchased from Xilong Scientific Co., Ltd. (China). 
(3-Trimethoxysilyl)propyl methacrylate, potassium persulfate (PPS) (≥ 99%), and 
o-toluidine (≥ 99%) were supplied by Sigma-Aldrich (Vietnam).

Preparation of the rice husk‑based silica

The silica particles were prepared using a customized solution method followed by 
thermal evaporation. Initially, the collected rice husks were washed with distilled 
water to remove the dust and impurities. The washed rice husk was then dried in a 
laboratory oven until receiving the constant weight. Subsequently, 90 g of rice husks 
was blended in a 450-g solution of 4-wt%  H2SO4 in distilled water and then stirred 
at 90  °C for 3  h to remove metal oxides and, thus, avoid the formation of black 
particles. The pretreated rice husk was then washed several times with deionized 
(DI) water to achieve a pH value of 7. The husks were then dried at 100 °C for 1 h 
before being calcinated in a muffle furnace at 800 °C for 7 h. The yield of silica was 
approximately 12 wt% of the rice husk.

Core–shell particle fabrication

First, 12 g of silica particles was immersed in a 150-mL solution of 1 M of HCl and 
stirred for 24 h, followed by washing with DI water and drying in a vacuum oven at 
60 °C. The acid-pretreated silica particles were then stirred in a solution containing 
toluene (150  mL) and (3-trimethoxysilyl)propyl methacrylate (10  mL) for 2  days. 
The modified bio-silica particles were collected and washed with a solvent of tolu-
ene and ethanol (1:1 v/v) prior to being dried in the laboratory oven at 60 °C.

Second, the silanized silica particles (5 g) were thoroughly mixed in 280 mL of 
DI water, followed by the addition of 120 mL of a 1-M HCl solution. Subsequently, 
1.26  g of o-toluidine and 3.75  g of PPS were simultaneously added to the above 
mixture. The solution was continuously stirred using a magnetic stirrer for 1 day. 
The core–shell particles were washed several times with ethanol and dried in a vac-
uum oven at 60 °C for 3 h. The procedure is illustrated in Fig. 1.

Preparation of the ER fluid

To prepare the ER fluid, the core–shell-structured particles were vigorously shaken 
in a silicone oil (approximately 20 vol.  %). Sonication was used to obtain a fine 
suspension.
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Characterization

The surface morphologies, thermal properties, elemental distributions, and chemical 
structures of both  SiO2 and core–shell particles were analyzed using scanning elec-
tron microscopy (SEM, S-4300, Hitachi, Japan), thermogravimetric analysis (TGA, 
4000 PerkinElmer) in air, energy-dispersive X-ray spectroscopy (EDS), and Fourier-
transform infrared (FTIR) spectroscopy (Spectrum Two PerkinElmer), respectively. 
Transmission electron microscopy (TEM) was performed using a JEOL TEM 5410 
NV system (Japan). The chain formation in the ER system under the applied elec-
tric field was observed by optical microscopy (Olympus BX51, USA). The electri-
cal conductivity of the core–shell particle was 5.68 × 10−12 S cm−1, measured using 
a resistivity meter (MCP-T610, Mitsubishi, Japan). A rotational rheometer (MCR 
300, Physica, Stuttgart, Germany) equipped with a high-voltage supply was used to 
determine the rheological properties of the ER fluids. The dielectric properties of 
the ER fluids were investigated using an inductance–capacitance–resistance (LCR) 
meter (Agilent HP 4284A).

Results and discussion

Characterization of the core–shell particles

The morphologies of the silica and core–shell particles are presented in Fig. 2. 

Fig. 1  PoT coating on the silica surface
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Figure 2 shows that both silica (Fig. 2b) and core–shell (Fig. 2c, d) particles have 
sizes in the range of 40–60 nm. The shell of the core–shell particle is shown in the 
TEM image in Fig. 2d.

The chemical structures and elemental distributions of the silica and core–shell 
particles were evaluated using FTIR spectroscopy and EDS, as shown in Figs. 3, 4, 
and 5.

Both silica (Fig. 3a) and silanized silica (Fig. 3b) exhibited three peaks at 1056, 
800, and 443 cm−1 corresponding to the Si–O–Si bond. Compared with the FTIR 
spectrum of silica, that of the silanized silica (Fig. 3b) contains new peaks at 1640, 
1720, 2950, and 2930 cm−1 corresponding to C=C, C=O,  CH3, and  CH2, respec-
tively. This shows that the methacryloxy groups were successfully grafted onto the 
silica surface.

In the next step, the silanized silica particles were coated with PoT shells, as 
shown in Fig.  1. In this step, the PPS acted as an initiator, while the HCl helped 
convert the o-toluidine into an o-methyl phenyl ammonium ion. The o-methyl phe-
nyl ammonium ions were then polymerized into PoT by an oxidation reaction of the 
PPS.

The FTIR spectrum of the core–shell particle (Fig. 4b) shows new peaks at 1560, 
1481, 3422, 2963, and 1292  cm−1 assigned to C=N, C=C, N–H, C–H, and C–N 
stretching vibrations, respectively, compared with the FTIR spectrum of the silica 

Fig. 2  a Image of the rice husk-based silica, SEM images of the b silica and c silica/PoT core–shell parti-
cles, and d TEM image of the silica/PoT core–shell particle
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particle. The peaks at 800 and 443 cm−1 are the major peaks of the silica Si–O–Si 
stretching vibrations. The Si–O–Si antisymmetric stretching and Si–OH bending 
exhibited a peak at 1056 cm−1.

The ED spectra confirmed the successful silanization processing and forma-
tion of core–shell particles, in agreement with the FTIR spectra. The ED spectrum 
of silica (Fig.  5a) shows only two peaks of Si and O, while that of the silanized 

Fig. 3  FTIR spectra of the a rice 
husk-based silica and b silica 
treated with 3-(trimethoxysilyl)
propyl methacrylate
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silica (Fig. 5b) shows a new peak of C. The ED spectrum of the core–shell particle 
(Fig. 5c) shows new peaks of C and N atoms. In addition, the peak intensities of Si 
and O of the silanized silica and core–shell particles are increased compared with 
those of pristine silica.

TGA was used to determine the thermal stabilities of the silica and core–shell 
particles, as shown in Fig. 6.

Weight loss of silica (Fig.  6a) was observed around 300  °C, which occurred 
owing to the decomposition of oxygen functional groups on the silica surface. 
Notably, no weight loss was observed below 300 °C, which suggests the presence 
of moisture on the silica surface. The first weight loss of the core–shell particle 
(Fig. 6b) was observed around 150 °C, owing to the removal of the moisture. The 
fraction of PoT shell was 8 wt%, obtained by the different weight losses of the silica 
and core–shell particles at 800 °C.

The fabricated core–shell particles were used as the dispersed phase in the prepa-
ration of the ER fluid. One of the most important characteristics of the ER fluid, the 
formation of a chain under the electric field, was observed using optical microscopy. 
The ER fluid based on the silica/PoT core–shell particles was placed between two 
electrodes.

Figure  7 shows that the particles were freely dispersed in the absence of an 
electric field (Fig. 7a). In contrast, chains were formed when an electric field was 
applied (Fig. 7b).

The changes in shear stress of the ER fluid as a function of the shear rate at dif-
ferent external electric field strengths were evaluated, as shown in Fig. 8a. The ER 
fluid exhibited the Newtonian behavior in the absence of the external electric field. 
In the presence of the electric field, the ER fluid exhibited a non-Newtonian behav-
ior owing to the polarization and formed a chain structure. The yield stress increased 
with the electric field strength. At all applied electric field strengths, the ER fluid 
plateaued with a constant shear stress at low shear rates because of the balance 
between the hydrodynamic breaking force and electrostatic interaction induced by 
the changing electric field. The Bingham fluid model was employed to fit the flow 
curves in Fig. 8a:

Fig. 6  TGA of the a bio-silica 
and b bio-silica/PoT core–shell 
particles
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The Bingham’s equation contains two basic parameters, Newtonian viscosity η and 
yield stress �y . The values of these parameters are presented in Table 1.

Figure 8b presents the relations between the shear viscosity and shear rate of the 
silica/PoT-based ER fluid at different external electric field strengths. In the absence 
of electric field, the ER fluid exhibited a slight deviation from the Newtonian behav-
ior in the low shear rate region, while in the high shear rate region, it exhibited the 
Newtonian fluid characteristic with a constant shear viscosity. In the presence of the 
external electric field, the shear thinning phenomenon with the decrease in shear 
viscosity could be observed with the increase in shear rate. The zero-shear viscos-
ity also increased with the electric field strength. The shear thinning phenomenon 
indicates that the bio-silica/PoT particles in the ER fluid were initially linked with 
the chain under the external electric field and then broke down by the shear flow. 
The same trend was also reported by Wang et al. [14]. However, the shear stress and 
shear viscosity in this study seem to be higher at the same electric field strength.

The ER efficiency is considered one of the important characteristics of the ER 
fluid. The ER efficiency can be used to evaluate the change in ER system in the pres-
ence of an electric field. The ER efficiency was calculated by

where �E and �0 are the viscosities in the presence and absence of the external elec-
tric field, respectively. The change in ER efficiency as a function of the shear rate is 
presented in Fig. 8c. The ER efficiency increased with the electric field strength.

The viscoelastic properties of the ER fluid were investigated by an oscilla-
tion test to evaluate the linear viscoelastic region in the strain amplitude sweep 
at a fixed angular frequency of 6.28 rad s−1. Figure 9 shows the relations between 
the storage and loss moduli and strain at different electric field strengths for the 
bio-silica/PoT-based ER fluid. The storage modulus (G′) is related to the elastic 
properties, while the loss modulus is an indicator of the viscous properties. As 
shown in Fig. 9, all storage moduli were higher than the loss moduli. This implies 

(1)𝜏 = 𝜏y + 𝜂ẏ, 𝜏 ≥ 𝜏y

�̇� = 0, 𝜏 < 𝜏y.

(2)e =
(�E − �0)

�0
,

Random distribution Chain phenomenon

Electric field off Electric field on

(A) (B)

Fig. 7  Optical microscopy image of the bio-silica/PoT core–shell microsphere: a 0 and b 300 V
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that the elastic rather than the viscous properties are predominant owing to the 
chain formation in the ER fluid under the applied electric field, leading to the 
transfer from the liquid- to the solid-like state. The critical strain in the plateau 

Fig. 8  a Shear stress, b viscos-
ity, and c ER efficiency of the 
20-vol% silica/PoT ER fluid as 
functions of the shear rate at dif-
ferent electric field strengths
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region was 0.0033 for the frequency sweep. The relationship between the elastic 
stress and strain is shown in Fig. 9. The maxima of the elastic stress provide a 
quantitative approach to localize the shear yield points. In the absence of electric 
field, the elastic strength was zero, while elastic strength emerged at all electric 
field strengths owing to the chain formation in the ER fluid. The elastic strength 

Table 1  Bingham model parameters of the silica/PoT-based ER fluid

ER fluid Parameter 0.5 kV/mm 1 kV/mm 1.5 kV/mm 2 kV/mm

Silica/PoT �0 16.8 29.34 61 102
�0 0.102 0.132 0.18 0.245

Fig. 9  a Storage modulus, loss modulus, and b elastic stress as functions of the strain
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increased with the electric field strength, which implies that the force between the 
particles in the chain was larger at a higher electric field strength.

Figure  10 shows the dynamic and elastic yield stresses as functions of the 
electric field strength. The dynamic yield stress was obtained by controlled shear 
rate tests using a shear stress extrapolation at the extremely low shear rate limit 
(Fig. 8a). On the other hand, the elastic yield stress was deduced from dynamic 
oscillation measurements with a strain amplitude sweep test (Fig. 9b). The elastic 
yield stress was higher than the dynamic yield stress. These results are in agree-
ment with those in other reports [34, 35].

The dielectric properties are also considered important characteristics of the 
ER fluid and are related to the speed of interfacial polarization. In this study, 
the dielectric properties were evaluated using an LCR meter. Figure 11a, b pre-
sents the dielectric constant and dielectric loss as functions of the frequency (ω) 
and Cole–Cole plot of the bio-silica/PoT-based ER fluid, respectively. The dielec-
tric constant decreased with the increase in frequency, while the dielectric loss 
had the maximum value at a specific frequency. The Cole–Cole equation can be 
expressed as

where ε0 is ε′ at ω → 0, ε∞ is ε′ at ω → ∞, λ is the relaxation time of the interfacial 
polarization, and Δε = ε0 − ε∞ indicates the achievable polarizability of the particles 
in the ER fluid. The exponent (1 − α), indicates the broadness of the relaxation time 
distribution.

Table 2 shows the fitting parameters of the Cole–Cole equation. The core–shell 
particles were quickly polarized under the applied electric field.

(3)�∗ = �� − i��� = �∞ +
�0 − �∞

1 + (i��)(1−�)
, 0 ≤ � ≤ 1,

Fig. 10  Yield stress as a func-
tion of the electric field
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Conclusions

Silica nanoparticles were extracted from rice husks using a simple method that com-
bined acid and thermal treatments. The surface of the bio-silica was modified with 
3-(trimethoxysilyl)propyl methacrylate to activate the methacryloxy group. The bio-
silica/PoT core–shell particles were synthesized by chemical oxidative polymerization 
and characterized using TEM, FTIR spectroscopy, EDS, and TGA. The rheological 
test indicated that the shear stress fitted the Bingham model. In addition, the storage 
modulus was higher than the loss modulus, while the ER efficiency increased with 
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Table 2  Dielectric 
characteristics [Eq. (3)]

Parameter ε0 ε∞ Δε = ε0 − ε∞ λ 1 − α

Value 6.68 2.6 4.08 0.016 0.62
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the electric field strength. The dielectric properties of the ER fluid were correlated 
with the Cole–Cole equation. The dielectric constant decreased with the increase in 
frequency, while the dielectric loss had the maximum value at the specific frequency.

Funding This research was funded by the Vietnam National Foundation for Science and Technology 
Development (NAFOSTED) under grant number 104.02-2017.15.
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