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We systematically investigate the optical analog of the relativistic quantum Klein tunneling effect in binary wave-
guide arrays (BWAs) in the presence of Kerr nonlinearity where the Dirac solitons are used to construct the initial
beams. The transmission coefficient of Dirac solitons obtained by direct beam propagation simulations in the
low-power regime as a function of the potential step height and incidence angle is numerically shown for the first
time, to the best of our knowledge, to be in excellent agreement with earlier predicted theoretical results in all
ranges of parameters. The conditions for observing Klein tunneling are analytically derived and are also in excel-
lent agreement with simulation-based results. We show that the nonlinearity in BWAs can severely influence the
Klein tunneling effect. Our simulations show that initial beams based on Dirac solitons are much better candidates
than Gaussian beams to quantitatively study the Klein tunneling effect in detail, especially in the regime where the
incidence angle is very close to the Bragg angle. ©2020Optical Society of America

https://doi.org/10.1364/JOSAB.392263

1. INTRODUCTION

The waveguide array (WA) is an excellent platform to study
many peculiar and interesting discrete classic photonic phe-
nomena, such as discrete diffraction [1,2], discrete solitons
[1,3,4], the generation of so-called diffractive resonant radiation
from discrete solitons [5], self-wavenumber shift of discrete soli-
tons [6], and supercontinuum generation in both the frequency
and wave number [7]. In applications, logic functions such as
AND and NOT, and time gating function can be realized in
waveguide arrays [8].

Moreover, some basic nonrelativistic quantum mechan-
ics effects emerging from the Schrödinger equation, such as
Zener tunneling [9] and Bloch oscillations [1,10,11], have
been actively investigated through their photonic analogs in
WAs. On the other hand, binary WAs (BWAs) are a wonderful
system to simulate basic relativistic quantum mechanics effects
originated from the Dirac equation, such as Zitterbewegung
[12], Dirac solitons (DSs) in the nonlinear regime [13–18], and
the topological Jackiw–Rebbi (JR) states [19,20]. The inter-
action between JR states and DSs in BWAs has been studied in
Ref. [21]. The JR state [22] has paved the way for the prediction
of the charge fractionalization effect, which is of primary impor-
tance in the fractional quantum Hall effect [23]. As expected,
the topological JR states in BWAs are extremely robust under
the influence of very strong disturbance [24]. Two JR states of
different types in BWAs practically do not interact with each
other at all, even though they are located quite close to each

other [25]. This feature presents an efficient way to robustly
guide optical signals in a network where various channels are
tightly distributed. On the contrary, two JR states of the same
type in BWAs can strongly couple to each other in the linear
regime, and show the switching effect in the nonlinear regime as
in fiber couplers [25].

Another extraordinary fundamental relativistic quantum
mechanics effect called Klein tunneling (KT) has also been
investigated in BWAs both theoretically [26] and experimen-
tally [27]. KT refers to the prediction by Klein in 1929 [28] that
relativistic fermions can tunnel through a repulsive potential
step, whose height is greater than the particle energy, without the
exponential damping governed by the Schrödinger equation.
However, due to the extremely high field requirement, KT for
relativistic electrons has not been observed experimentally yet.
Moreover, to observe KT, the potential step must be very steep,
i.e., the step must be realized at short distances comparable to
the Compton wavelength [29].

Because KT is rooted in the Dirac equation, one can observe
the analogs of KT in spinor-like systems possessing dispersion
relations similar to those of relativistic electrons governed by
a Dirac equation. For instance, in graphene the energy dis-
persion relation possesses a linear slope; as a result, charge
carriers can undergo KT [30–33]. Due to that, demonstration
of KT has been experimentally shown in graphene [34,35],
in carbon nanotubes [36], and in optical traps for cold ions
[37]. Remarkably, it has been shown in Ref. [37] that KT is
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a wave effect, so it can be mimicked in a simple classical sys-
tem. Therefore, several optical schemes have been proposed
to directly observe KT by analyzing the light evolution in lat-
tices of coupled waveguides, for instance, in 2D honeycomb
photonic lattices [38], in planar BWAs [26,27], at the inter-
face between positive-index and negative-index metamaterial
media [39], and in an atomic ensemble with electromagneti-
cally induced transparency [40]. It is interesting to note that
KT in honeycomb lattices can be strongly suppressed by the
electron–electron interaction [41], but only slightly by the
nonlinearity [42]. These classical systems enable researchers to
directly visualize KT.

In Refs. [26,27] KT has been investigated by launching a
Gaussian beam into planar BWAs under incidence angles close
to the so-called Bragg angles. However, it is well known that
a Gaussian beam can propagate diffractionless, i.e., without
distortion of its shape, only when it is launched into a uniform
WA under the Bragg angle [43] in the linear regime. In other
cases, the diffraction always happens to a Gaussian beam in
the linear regime. Moreover, if a Gaussian beam is launched
into planar BWAs under incidence angles quite close to the
Bragg angles (which are necessary for converting the coupled-
mode equations in BWAs into the Dirac equation), then the
Zitterbewegung effect will immediately take place [12], and
the Gaussian beam will be divided into two beams that both
get broadened during propagation [see Fig. 5(e)]. The broad-
ening of beams in this case can be suppressed by increasing
the Gaussian beam incidence angle, as shown in Fig. 5(f ). The
broadening will be even more severe if the difference between
the incidence angle and Bragg angle becomes smaller. In this
case, in order to stop the broadening of the beam hitting the
potential step, one needs to take an extremely large spatial width
for the Gaussian beam at the input, which is not practical for
experimental purposes. All this is not favorable for investigating
KT. All these shortcomings of Gaussian beams can be overcome
easily by using DSs at the input.

In this work, inspired by the earlier achievements in investi-
gating KT in BWAs in Refs. [26,27] and also by the attractive
properties of DSs in BWAs, we aim to study KT in BWAs in
more detail with the use of DSs at the input. The paper is organ-
ized as follows. In Section 2, we summarize the theoretical
results obtained earlier in Ref. [26], which will be verified for
the first time, to the best of our knowledge, by direct simulation
results later. In Section 3, we investigate thoroughly the influ-
ence of the potential step height on KT. In Section 4, we study
the influence of the incidence wave number of DSs on KT. The
influence of nonlinearity on KT is analyzed in more detail in
Section 5. Finally, in Section 6, we summarize our results and
finish with concluding remarks.

2. GOVERNING EQUATIONS AND
TRANSMISSION OF LINEAR PLANE WAVES
THROUGH A POTENTIAL STEP

Light evolution in a BWA with Kerr nonlinearity can be
described in the continuous-wave regime by the following
dimensionless coupled-mode equation (CME) [3,4,27,44]:

i
dan

dz
=−βnan − κ[an+1 + an−1] + (−1)nσan − γ |an|

2an,

(1)
where an represents the electric field amplitude in the waveguide
with position n, z is the longitudinal spatial coordinate, κ and
2σ are the coupling coefficient and propagation mismatch
between two adjacent waveguides in the BWA, respectively, and
γ is the nonlinear coefficient of the waveguides. This model is
reasonable when a wide beam in the continuous-wave regime is
launched into the BWA where each waveguide supports a single
mode. If pulses are used for excitation, one needs to take into
account the waveguide dispersion as with the model in Ref. [17].
As in Ref. [27], the quantity βn is introduced to represent an
offset in propagation constants, which is necessary for including
the potential step required for KT and is defined asβn = 0 for all
waveguides with n < 0 (region I) andβn = β0 for all waveguides
with n ≥ 0 (region II) [see Fig. 1(b)]. So, as seen from Eq. (1),
the quantity [βn − (−1)nσ ] characterizes the propagation
constant of the nth waveguide of the BWA whose transverse
refractive index profile is schematically illustrated in Fig. 1(c).
In the case of focusing nonlinearity, i.e., γ > 0, one can always
normalize variables in the above dimensionless equation, such
that both γ and κ are equal to unity. When a beam is launched
into BWAs around the so-called Bragg angles, which correspond
to the central spatial wave number of the beam QB =±π/2
[12], one can set91(n)= (−1)na2n and92(n)= i(−1)na2n−1

[12,45], then introduce the continuous transverse coordinate
ξ↔ n and the two-component spinor 9(ξ, z)= (91, 92)

T ,
which satisfies the 1D nonlinear Dirac equation [13]

i∂z9 = V (ξ)9 − iκσ̂x∂ξ9 + σ σ̂z9 − γG, (2)

where the nonlinear terms G ≡ (|91|
291, |92|

292)
T ; σ̂x and

σ̂z are the standard Pauli matrices. The potential step V (ξ)= 0
for ξ < 0 and V (ξ)=80 =−β0 > 0 for ξ ≥ 0 [see Fig. 1(a)].
In quantum field theory, the parameter σ in the Dirac equa-
tion is often called the mass of the Dirac field (or Dirac mass).
Without the nonlinear term, Eq. (2) is identical to Eq. (4) in
Ref. [26], which is the well-known 1D Dirac equation for the

(a) (b)

(c)

Fig. 1. (a) Scheme for investigating KT of a particle with energy
E through a potential step V (ξ) with potential step height 80 > E .
(b) Propagation constant offset βn introduced to a BWA to mimic the
potential step V (ξ). (c) Transverse refractive index profile of the BWA.
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two-component spinor9 of a relativistic particle in the poten-
tial V , where z and ξ in Eq. (2) should be interpreted as the
temporal t and spatial variables x , respectively {see Eq. (1) in
Ref. [27]}. We also want to emphasize that in order to mimic
the positive potential step V (ξ) in the Dirac Eq. (2), the array
βn in Eq. (1) must have the profile as shown in Fig. 1(b), i.e., the
parameterβ0 must be negative.

In Ref. [26], the transmission T of a plane wave through the
potential step was derived based on Eq. (1) in the linear regime.
In the rest of this section, we will re-introduce the main results
regarding the transmission derivation in Ref. [26]. Suppose that
the array βn is independent of n and βn = β =−8; then, by
making the Ansatz of a plane wave traveling in the plane (n, z)
under some inclination,

an(Q)∼ exp[i(Qn −ωz)], (3)

T =
(ω0 − σ)(ω0 − σ −80)sin(2Q0)sin(2Q1)

[80cosQ0cosQ1]
2
+ [(ω0 − σ)sinQ0cosQ1 + (ω0 − σ −80)sinQ1cosQ0]

2 . (7)

one can show that discrete coupled-mode Eq. (1) supports two
minibands whose dispersion curves obey the following relations
[44]:

ω±(Q, 8)=8±
√
σ 2 + 4κ2cos2 Q, (4)

where Q is the normalized wave number of the plane wave,
which is equivalent to the quantity qa in Eq. (3) in Ref. [26]
with a being the center-to-center distance between two adjacent
waveguides in BWAs, and q is the wave number of the plane
wave. For the sake of brevity, we will refer to Q just as wave
number later. Obviously, the wave number Q is proportional to
the angle of the beam propagation in BWAs, and represents the
phase difference between two adjacent waveguides at a certain
propagation distance z. Parameter ω can be interpreted as the
energy (or frequency) of the plane wave if we recall the following
transformations: n→ ξ→ x , z→ t .

Note that the dispersion relations in the form of Eq. (4)
are obtained based on the discrete coupled-mode Eq. (1).
Analogously, by making the Ansatz 9 ∼ exp[i(kξ − εz)] for
the continuous linear Eq. (2) (i.e., when γ = 0) with uniform
potential 8, one can obtain two branches for positive- and
negative-energy states of the free relativistic electron {see Eq. (6)
in Ref. [26]}:

ε±(k, 8)=8±
√
σ 2 + κ2k2. (5)

Obviously, if the phase difference is written as Q =
±π/2+ k/2 when k is small enough, then one can easily
see that Eq. (4) can be approximately reduced to Eq. (5). So, now
it is clearly seen that if the beam travels in the BWA around the
Bragg angles of inclination, then Eq. (1) can be converted to the
Dirac Eq. (2). Note again that the Bragg angle θB corresponds to
the phase difference QB =±π/2 (see Ref. [12]).

Supposing that an incident plane wave belonging to the upper
minibandω+ of the BWA travels in region I and has the incident
wave number Q0 = π/2+ k0/2 with 0< k0 <π , then this
plane wave hits the potential step with the height 80 =−β0.
If this potential height is low enough, then we will observe the

conventional damping of the transmitted wave as predicted by
the nonrelativistic quantum Schrödinger equation. However,
if the potential step is high enough, one can observe the optical
analog of the relativistic quantum Klein tunneling based on
Eq. (1). In this case, the transmitted wave will be another plane
wave belonging to the lower minibandω− of the BWA traveling
in region II [see also Figs. 4(a) and 4(c)] with a certain constant
amplitude (instead of being damped), and with the transmit-
ted wave number Q1 obtained from the energy conservation
condition

ω−(Q1, 80)=ω+(Q0, 0)≡ω0 (6)

under condition 0< Q1 <π/2, to make sure that the trans-
mitted wave also has a positive group velocity. The power
transmission coefficient T through the potential step is calcu-
lated as follows {see Eq. (7) in Ref. [26]}:

The transmission coefficient T in the form of Eq. (7) is based
on Eq. (1) for the discrete model in BWAs in the linear regime.
The transmission coefficient TD based on the Dirac Eq. (2)
for the continuous model in the linear regime was calculated
much earlier as follows (see, for instance, [46] and Eq. (A18) in
Ref. [26]):

TD = 1−

∣∣∣∣−k1(ε0 − σ)+ k0(ε0 − σ −80)

k1(ε0 − σ)+ k0(ε0 − σ −80)

∣∣∣∣2, (8)

where k0 and k1 are the wave numbers of the incident and
transmitted plane waves, respectively, which obey the following
energy conservation relation:

ε0 ≡ ε+(k0, 0)= ε−(k1, 80), (9)

with k0 being positive and k1 being negative to make sure that
both incident and transmitted plane waves have positive group
velocities.

3. RESULTS AND DISCUSSION

A. Klein Tunneling of Dirac Solitons through a
Potential Step in BWAs: Influence of the Potential
Step Height

In this section, we systematically investigate the influence of the
potential step height80 on the transmission of an initial Dirac
soliton under certain inclinations in BWAs. In a BWA made of
materials with Kerr nonlinearity and without the potential step
80, the analytical solution for DSs to the discrete coupled-mode
Eq. (1) has been derived in Ref. [13] as follows:[

a2n(z)
a2n−1(z)

]

=

 i2n 2κ
w0
√
σγ

sech
(

2n
w0

)
e

i z
(

2κ2

w2
0σ
−σ

)

i2n 2κ2

w2
0σ
√
σγ

sech
(

2n−1
w0

)
tanh

(
2n−1
w0

)
e

i z
(

2κ2

w2
0σ
−σ

)
 ,
(10)
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Fig. 2. (a) Theoretical transmission coefficients of a plane wave in
the linear regime as a function of the potential step height 80. The
solid green curve in (a) is based on Eq. (8) for the continuous model,
whereas the dashed blue curve in (a) is based on Eq. (7) for the discrete
model. (b) Transmission coefficient of DSs in BWAs as a function of
the potential step height: the solid red curve is obtained for an initial
DS withw0 = 18 and γ = 1; the solid black curve whenw0 = 18 and
γ = 0; the solid green curve whenw0 = 14 and γ = 0; and the dotted
brown curve whenw0 = 14 and γ = 1. The dashed blue curve in (b) is
exactly the same theoretical curve as in (a). (c) Propagation of a DS
in the nonlinear regime with w0 = 18, γ = 1, and 80 = 2.8. (d) The
same as (c), but now w0 = 14. Other parameters: k0 = 0.3π ; σ = 1;
κ = 1.

wherew0 characterizes the DS width. Note that the scheme for
efficiently generating a DS in BWAs is proposed in Ref. [13].
The discrete gap solitons in BWAs have already been realized
experimentally in Ref. [47]. Even though the DS in the form of
Eq. (10) propagates along the longitudinal axis of the BWAs,
it already has two central wave numbers QB =±π/2 [see
Figs. 2(a) and 2(b) in Ref. [13]] corresponding to the Bragg
angles ±θB of the beam inclination. That is the reason that
the DS in the form of Eq. (10) can help to convert the discrete
coupled-mode Eq. (1) into the Dirac Eq. (2) even though this
DS propagates parallel to the longitudinal axis. This is totally
different from the conventional case where a plane wave in
BWAs, or more practically a Gaussian beam, is used to mimic
optical analogs of relativistic quantum effects emerging from the
Dirac equation, for instance, the Zitterbewegung [12] and KT
[26,27]. In the latter case, a Gaussian beam must be launched
into the BWAs under angles close to the Bragg angle. This means
that an initial Gaussian beam in the form

an ∼ exp

(
−

n2

w2
0

)
exp

[
i
(
π

2
+

k0

2

)
n
]

(11)

must be used to launch into the BWAs, where k0 has a small pos-
itive value around zero, and w0 also characterizes the Gaussian
beam width.

On the contrary, in order to investigate the KT effect with the
help of a DS at the input, one needs to use the following initial
condition for the DS:

a ini
n = an(0)exp(ink0/2), (12)

where an(0) in Eq. (12) is the DS solution taken at the dis-
tance z= 0 from Eq. (10), and k0 also has a small positive value
around zero. This initial condition in the form of Eq. (12) will be
used in the rest of this work to investigate KT of DSs. Note also
that the initial center of DSs in the form of Eq. (12) or Gaussian
beams in the form of Eq. (11) is at the center of the array with
n = 0, but it is quite easy to transversally shift this initial beam
center.

In Fig. 2(a), we show the theoretical transmission coeffi-
cients T of a plane wave in the linear regime as a function of the
potential step height 80 when k0 = 0.3π , and thus, the wave
number Q0 = 1.3π/2. The solid green curve in Fig. 2(a) is
based on Eq. (8) for the continuous model, whereas the dashed
blue curve in Fig. 2(a) is based on Eq. (7) for the discrete model.
The other parameters used for obtaining the results shown in
Fig. 2 are the following: the Dirac mass σ = 1, the coupling
coefficient κ = 1, and the array consists of 1201 waveguides.
As shown in Fig. 2(a), when the potential height 80 < 2.35,
the transmission coefficient T obtained from both continuous
and discrete models is equal to zero, which actually shows the
damping regime of plane waves through potential steps that
are not high enough, as predicted by the Schrödinger equation.
However, if one slightly increases further the potential height
80, then T sharply increases in both models due to KT. If80 is
increased further, then one can observe the deviation between
two curves shown in Fig. 2(a). Indeed, the dashed blue curve
based on the discrete model of BWAs reaches the saturation
for T, then decreases, and finally vanishes at the potential step
height80 = 3.59 and further. Meanwhile, the solid green curve
based on the continuous model monotonically goes up (which,
of course, cannot exceed unity if 80 is increased further). The
behavior of these two curves is explained in more detail in Fig. 4.

In Fig. 2(b), we plot the transmission coefficient T of DSs
in BWAs as a function of the potential step height by using the
direct beam propagation simulation as illustrated in Figs. 2(c)
and 2(d). In Fig. 2(b), the solid red curve is obtained for an
initial DS with the width parameterw0 = 18 and the nonlinear
coefficient γ = 1; the solid black curve is obtained for an initial
DS with w0 = 18 and γ = 0; the solid green curve is obtained
for an initial DS withw0 = 14 and γ = 0; and the dotted brown
curve is obtained for an initial DS with w0 = 14 and γ = 1.
For comparison, we also add the theoretical dashed blue curve
in Fig. 2(b), which is based on the discrete model in BWAs and
is exactly the same as the curve of the same type in Fig. 2(a).
We want to emphasize that this kind of comparison shown in
Fig. 2(b) between the theoretical curve for T in BWAs and the
numerical curves for T based on the beam simulation method
is done for the first time. It is important to note that in order to
obtain all numerical curves in Fig. 2(b), inclined DSs in the form
of Eq. (12) with nonlinear coefficient γ = 1 are launched into
BWAs, then this initial condition is used to integrate Eq. (1) to
see the beam evolution where the nonlinear coefficient γ can
be set equal to zero only during this integration process, as for
the cases with the solid green curve and the solid black curve
in Fig. 2(b). We have to mention this because we cannot use
γ = 0 to calculate the initial DS in the form of Eq. (12), which is
based on the nonlinear DS solution (10). As seen in Fig. 2(b), all
numerical curves (except for the dotted brown curve) are in good
agreement with the theoretical dashed blue curve with some
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noticeable deviation only around the lower limit80 = 2.35 and
upper limit 80 = 3.59 for KT. Note that the theoretical result
for T in Eq. (7) in BWAs is calculated for plane waves and in the
linear regime, so in order to get closer to this theoretical curve, all
numerical curves must be obtained in conditions similar to the
two above-mentioned requirements. Thus, one needs to choose
DSs with the beam width parameterw0 being large to better sat-
isfy the plane wave requirement, and set γ = 0 (i.e., in the linear
regime) in integrating Eq. (1), as with the solid black curve and
the solid green one in Fig. 2(b). Note also that although the solid
red curve in Fig. 2(b) is obtained when γ = 1 in the integration
process, but because this curve is obtained when an initial DS
with a great beam width parameterw0 = 18 is used, as shown in
Eq. (10), the amplitudes of this DS are also small, and we oper-
ate in the quasi-linear regime. That is the reason that the solid
red curve is also in good agreement with the theoretical dashed
blue curve. On the contrary, although the dotted brown curve
is also obtained with nonlinear coefficient γ = 1 being used for
integrating Eq. (1), the beam width parameter w0 = 14 of the
DS is used in this case, which increases DS amplitudes, and thus
enhances the nonlinear effect. That is the main reason that the
deviation between this numerical curve and the theoretical one
in Fig. 2(b) is the most significant. The influence of nonlinearity
on KT will be investigated further in more detail in Section 5.

In Figs. 2(c) and 2(d), we show the evolution process when
a DS in the form of Eq. (12) is launched into the BWAs in the
nonlinear regime [i.e., γ = 1 for integrating Eq. (1)] with the
incident wave number parameter k0 = 0.3π , the potential step
height80 = 2.8, and the beam width parameters w0 = 18 and
14, respectively. After launching the DS into BWAs, it is split
into two beams labeled 1 and 4 in Figs. 2(c) and 2(d). Beam 1
later hits the potential step (whose position at the waveguide
with n = 0 is illustrated by the red line) and is divided into the
reflected beam with label 2 and the transmitted beam with label
3. The existence of beam 3 in Figs. 2(c) and 2(d) demonstrates
KT. The ratio between the power of the transmitted beam 3 and
the incident beam 1 is the transmission coefficient T, which is
equal to 0.365 and 0.342 in Figs. 2(c) and 2(d), respectively.
Note that the theoretical value for T in BWAs in the linear
regime is T = 0.37.

In Figs. 3(a) and 3(b), we show the evolution process when
a DS in the form of Eq. (12) is launched into the BWAs in the
nonlinear regime with the incident wave number k0 = 0.3π ,
beam width parameter w0 = 18, and potential step heights
80 = 2.0 and 4.0, respectively. As shown in Fig. 2(b), the solid
red curve representing these cases has T = 0. This is confirmed
in Fig. 3, which shows that the incident beam 1 is completely
reflected, and the transmitted beam through the potential step is
not generated.

Now we want to answer one important question as to why
there are both lower and upper limits of the potential step
height 80 for KT in BWAs, as shown by the dashed blue
curve in Fig. 2(a). In Figs. 4(a) and 4(c), we plot the disper-
sion relation curves ω± as functions of the wave number Q
based on Eq. (4) in BWAs. The two solid curves in each of
Figs. 4(a) and 4(c) show the two dispersion curves in region
I when 80 = 0, whereas the two dashed curves show the two
dispersion curves in region II when 80 = 2.35 [Fig. 4(a)] and
80 = 3.59 [Fig. 4(c)]. Note that all red curves in Figs. 4(a) and
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4(c) represent the upper miniband ω+, which is also called the
positive-energy (or electron) branch, whereas all green curves
therein represent the lower miniband ω−, which is also called
the negative-energy (or positron) branch [see Eq. (4)]. Let the
incident plane wave hit the potential step with the incident
wave number Q0 = 1.3π/2 denoted by the vertical solid black
line in Figs. 4(a) and 4(c), which crosses the upper miniband
ω+ at point A in region I with the potential V = 0. If region II
has the potential V =80 = 2.35, then point B on top of the
lower miniband ω− in region II now is on the same energetic
level as point A; as a result, the energy conservation condition
in the form of Eq. (6) is held true. In this case, the transmit-
ted wave will have the wave number Q1 = π/2 at point B,
which obviously makes T = 0 as followed by Eq. (7) [because
sin(2Q1)= sin(π)= 0 now]. Thus, the potential step height
80 ' 2.35 is the lower limit of KT for this specific incident
plane wave in the linear regime. As seen in Fig. 4(a), two points
A and B must be on the same energetic level. From this condi-
tion, one can easily find the minimum analytical value of the
potential step height for observing KT in BWAs in the linear
regime 8min

0 = σ +
√
σ 2 + 4κ2cos2 Q0, which gives the value

8min
0 ' 2.35 if Q0 = 1.3π/2, as exactly depicted in Fig. 4(a).
If the potential step height80 <8

min
0 , then one cannot find

any point belonging to the lower miniband ω− in region II,
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which is on the same energetic level as point A. Therefore, in this
case, KT cannot occur, as predicted by the Schrödinger equation
in nonrelativistic quantum mechanics.

Now we increase the potential step height further
(80 >8

min
0 ' 2.35) while fixing the incident wave number

Q0 = 1.3π/2 and all other parameters. As shown in Fig. 4(a),
one can easily find another point on the left of point B on the
lower miniband ω− in region II, such that this point is on the
same energetic level as point A. This new point corresponds
to the transmitted plane wave with 0< Q1 <π/2, which
must be satisfied to make sure that the transmitted wave has
a positive group velocity. In this case, KT will take place with
T > 0. If we increase further the potential step height to the
value 80 ' 3.59 as shown in Fig. 4(c), then point C on the
lower miniband ω− in region II will be on the same energetic
level as point A. In this case, the transmitted wave will have
the wave number Q1 = 0 at point C, which obviously makes
T = 0 as followed by Eq. (7). This is the upper limit of 80 for
KT (with parameters used) because for higher values of 80,
obviously one again cannot find any point belonging to the
lower miniband ω− in region II, which is on the same ener-
getic level as point A. As seen in Fig. 4(c), two points A and C
must be on the same energetic level. From this condition, one
can easily find the maximum analytical value of the potential
step height for observing KT in BWAs in the linear regime
8max

0 =
√
σ 2 + 4κ2 +

√
σ 2 + 4κ2cos2 Q0, which gives the

value 8max
0 ' 3.59 if Q0 = 1.3π/2, as exactly depicted in

Fig. 4(c).
So, if an incident plane wave hits the potential step with the

incident wave number π/2< Q0 <π , then the following
condition for the potential step height 80 must be held true if
one wants to observe KT in BWAs in the linear regime:

σ +
√
σ 2 + 4κ2cos2 Q0 <80 <

√
σ 2 + 4κ2

+

√
σ 2 + 4κ2cos2 Q0. (13)

Note that this condition for80 is explicitly provided here for the
first time.

In Figs. 4(b) and 4(d), we show the propagation of beams
when a DS is launched into BWAs in the nonlinear regime with
the potential step heights 80 = 2.35 and 3.59, respectively.
Other parameters for getting results in Figs. 4(b), 4(d) are as
follows: w0 = 18, k0 = 0.3π (thus Q0 = 1.3π/2), and γ = 1.
With DSs used at the input in Figs. 4(b) and 4(d) in the nonlin-
ear regime, the transmission coefficients are calculated (based
on the direct beam propagation simulation) to be T = 0.0875
and 0.0499, respectively, which correspond to some weak trans-
mitted waves labeled 3 therein. These values of T are slightly
different from zero (theoretical value) due to the fact that the
plane wave and linear regime conditions are not held true. These
conditions will be better satisfied if one uses DSs with a larger
beam width parameterw0, which will result in the decrease of T
towards zero.

It is also easy to explain the behavior of the solid green curve
in Fig. 2(a) governed by Eq. (8) for the continuous model. As
mentioned above, when k is around zero, i.e., when the value
of Q is around π/2, the dispersion curves governed by Eq. (4)
are quite close to the two branches of the hyperbola governed

by Eq. (5). With the incident wave number Q0 = 1.3π/2, the
potential step height80 ' 2.35 is also the threshold for observ-
ing KT as shown for the case of the discrete model presented in
Fig. 4(a). To be more accurate, by using Eq. (9), one can easily
find the minimum analytical value of the potential step height
for observing KT in the continuous model in the linear regime
8min

0 = σ +
√
σ 2 + κ2k2

0 , which gives the value8min
0 ' 2.37 if

k0 = 0.3π (or Q0 = 1.3π/2, equivalently), as exactly depicted
in Fig. 4(a). However, unlike the periodic curves with their
finite maxima in the case of Eq. (4) where one period is shown
in Fig. 4(a), two branches of the hyperbola governed by Eq. (5)
go to ±∞ when the absolute value of k increases. That is the
reason that, unlike the situation illustrated in Fig. 4(c) with the
discrete model in BWAs, there is not an upper limit of 80 for
observing KT with the continuous model. In other words, for
any arbitrary large value of 80 that exceeds the threshold for
observing KT, one can always find the transmitted wave number
k1 that satisfies the energy conservation condition in the form of
Eq. (9); thus, there is just one threshold for the solid green curve
in Fig. 4(a).

So, if an incident plane wave hits the potential step with the
incident wave number parameter 0< k0 <π , then the follow-
ing condition for the potential step height80 must be held true
if one wants to observe KT in the continuous model in the linear
regime:

80 >σ +

√
σ 2 + κ2k2

0 . (14)

Note that for any value of Q0 (and k0), we must have8min
0 >

2σ to observe KT both in the discrete and continuous models.

B. Klein Tunneling of Dirac Solitons through a
Potential Step in BWAs: Influence of the Incident
Wave Number

In this section, we analyze the influence of the incident wave
number Q0 on KT. In Fig. 5(a), we plot the transmission coef-
ficient as a function of Q0, where the dotted green and dashed
blue curves represent the theoretical values of T in the linear case
for the continuous and discrete models, respectively. These two
theoretical curves as functions of the incidence angle (which is
proportional to the incident wave number) are shown in Fig. 3
in Ref. [26]) for other sets of parameters. To check the accu-
racy of the dashed blue curve, we also plot the solid red curve
in Fig. 5(a), which is obtained by the direct beam simulation
method when a large DS is launched into BWAs in the nonlinear
regime with γ = 1. As shown in Fig. 5(a), the numerical solid
red curve is in good agreement with the theoretical dashed
blue curve, the same as in Fig. 2(b), although the theoretical
curve is obtained for plane waves in the linear regime in BWAs,
whereas the numerical curve is based on a DS at the input in
the nonlinear regime in BWAs. This is again possible because
we use a large beam width parameter w0 = 18 for the DS.
Note that the comparison between the theoretical curve for T
in BWAs as a function of the incident wave number and the
simulations-based curve is also obtained for the first time in this
work.

The limits of Q0 for KT shown in Fig. 5(a) for two theo-
retical curves can be easily calculated. Let us first analyze the
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Fig. 5. (a) Transmission coefficient as a function of the incident
wave number Q0: the dotted green curve is based on Eq. (8) for the
continuous model, the dashed blue curve is based on Eq. (7) for the
discrete model, and the solid red curve is obtained by the direct beam
simulation when a large DS is launched into BWAs with γ = 1.
(b) Propagation of beams when a Dirac soliton is launched into BWAs
in the nonlinear regime with γ = 1 and k0 = 0.3. (c) Evolution
of the spectrum in the (Q, z) plane. (d) The same as (c), but now
the upper part of the beam above the white line in (b) is cut off. (e),
(f ) Propagation of a Gaussian beam in BWAs in the linear regime with
k0 = 0.3 and 0.3π , respectively. Other parameters: σ = 1; κ = 1;
w0 = 18;80 = 2.8.

dashed blue curve in Fig. 5(a) representing KT in BWAs. As
seen from Eq. (13), if the potential step height satisfies the
condition 2σ <80 < 2

√
σ 2 + 4κ2, then one can always

observe KT with a certain value of Q0 in the interval (π/2, π),
and Q1 in the interval (0, π/2), which satisfy Eq. (6). As
clearly seen in Fig. 4(a), in this case, the lower limit of Q0 for
observing KT is Qmin

0 = π/2, because one always can find a
corresponding value for the transmitted wave number Q1.
We need to find just the upper limit Qmax

0 , which is obviously
the abscissa of point A in Fig. 4(a), because point A is on the
same energetic level with the highest point of the green dashed
curve therein [of course, in Fig. 4(a), if 80 6= 2.35, then at
point A, we have Q0 6= 1.3π/2]. As in Section 3, Eq. (6)
will now have the following form for two points A and B:√
σ 2 + 4κ2cos2 Qmax

0 =80 − σ . From this, one can easily get
the upper limit Qmax

0 = acos[−
√
82

0 − 280σ/(2κ)], which
gives the value Qmax

0 ' 1.54π/2 with parameters used for
obtaining Fig. 5(a). This theoretical value of Qmax

0 is in perfect
agreement with the blue dashed curve in Fig. 5(a).

So, if the potential step height satisfies the condition
2σ <80 < 2

√
σ 2 + 4κ2, then we will always observe KT

in BWAs in the linear regime if the incident wave number
satisfies the following condition:

π

2
< Q0 < acos

−
√
82

0 − 280σ

2κ
. (15)

Note that this condition for Q0 is also explicitly provided here
for the first time.

Analogously, by using Eq. (5) [or simply by using Eq. (14)],
it is easy to show that if the potential step height satisfies the
condition80 > 2σ , then one will always observe KT in the con-
tinuous model in the linear regime if the incident wave number
satisfies the following condition:

0< k0 <

√
82

0 − 280σ

κ
, (16)

or, equivalently:

π

2
< Q0 <

π

2
+

√
82

0 − 280σ

2κ
. (17)

If we take parameters used in Fig. 5(a), then we will find the
condition π/2< Q0 < 1.48π/2, which is again in perfect
agreement with the green dotted curve therein.

As an example, in Fig. 5(b), we show the evolution of |an(z)|
when a Dirac soliton is launched into BWAs in the nonlin-
ear regime with γ = 1 and k0 = 0.3, where the red line again
indicates the position of the potential step at n = 0, and the
white line indicates the waveguide with n =−300. The
evolution of the Fourier transform of an along z is shown
in Fig. 5(c). Each beam in Fig. 5(b) generates two spec-
trum bands with the distance between them equal to π .
For instance, beam 1 in Fig. 5(b) generates two spectrum
bands around Q0 = π/2+ 0.3= 1.0955π/2 with label 1,
and Q0 =−0.9045π/2 with label 1′ in Fig. 5(c) {see also
Figs. 2(a) and 2(b) in Ref. [13] where a DS with k0 = 0 is
launched into BWAs}. The transmitted beam 3 in Fig. 5(b)
generates two spectrum bands with labels 3 and 3’ in Fig. 5(c),
which are in perfect agreement with the theoretical value
Q1 = π/2+ k1/2= 0.4884π/2 as predicted by Eq. (6) and
represented by the thin white line in Fig. 5(c). Analogously,
beam 4 in Fig. 5(b) generates two spectrum bands with labels 4
and 4′ in Fig. 5(c). Note that the spectrum bands 1 and 4 are in
the same position. This is also true for the spectrum bands 1′ and
4′. This can be easily checked as demonstrated in Fig. 5(d) where
we show the evolution of the Fourier transform of an along z,
but all the components an are now set to be zero above the white
line at n =−300 in Fig. 5(b), i.e., the upper part of beam 4 is
cut off. As clearly seen in Fig. 5(d), now we do not observe two
spectrum bands with labels 4 and 4′ anymore.

We want to emphasize that with a DS at the input, one
can easily investigate KT for all ranges of the incident wave
number Q0, including the values Q0 around π/2 where it is
quite problematic with a Gaussian beam at the input. Indeed,
as illustrated in Fig. 5(e), a Gaussian beam with k0 = 0.3 (so
Q0 = 1.0955π/2) and beam width parameter w0 = 18 is
launched into BWAs in the linear regime. Four beams with
labels 1–4 are generated in Fig. 5(e), but all of them quickly
spread out, which makes it impossible to verify Eq. (7) obtained
for plane waves. In this case, one needs to take a very large value
for the beam width parameter w0 to obtain collimated beams
during propagation. However, the same Gaussian beam, but
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with k0 = 0.3π (or Q0 = 1.3π/2), can help to verify Eq. (7)
quite easily, as shown in Fig. 5(f ). Note that because the peak
amplitudes for the Gaussian beams in Figs. 5(e) and 5(f ) are
quite small, if we use γ = 0 (linear regime) or γ = 1 (nonlinear
regime), the beams’ evolution therein will only slightly change.

C. Klein Tunneling of Dirac Solitons through a
Potential Step in BWAs: Influence of Nonlinearity

In the rest of this work, we investigate the influence of nonlin-
earity on KT. So far, this problem has been touched on in just a
few works. Unlike the situation with KT in honeycomb lattices,
which is only slightly affected by nonlinearity [42], we show that
the nonlinearity can have a significant impact on KT in BWAs.

First, we want to note that if we replace the nonlinear coeffi-
cient γ →mγ for any value of the non-zero factor m > 0 while
fixing all other parameters in Eq. (1), then as easily seen from
Eq. (1), the field components will be simply scaled as follows:
an(z)→ an(z)/

√
m. That is why the DS solution in the form

of Eq. (10) must be inversely proportional to
√
γ . In other

words, the beam dynamics must be the same if we multiply γ
in Eq. (1) by a positive factor m, and at the same time take the
initial conditions in the form of Eq. (10) with the new value
of γ . This is confirmed by comparing Fig. 2(c) with Fig. 6(a)
where all parameters are the same except that the nonlinearity
coefficient γ = 1 in Fig. 2(c), but γ = 100 in Fig. 6(a) is used
for integrating Eq. (1) with the initial conditions taken in the
form of Eq. (10), which are now also scaled down with the
corresponding value of γ = 100 at the same time. As expected,
all details in Figs. 2(c) and 6(a) are exactly the same, with the
only difference in scales for color bars [the scale of the color
bar in Fig. 6(a) is 10 times smaller than the one in Fig. 2(c), as
predicted]. As a result, the transmission coefficient T in Fig. 6(a)
must be equal to 0.365, i.e., the same as in Fig. 2(c).
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Fig. 6. (a) Propagation of a DS with w0 = 18 when γ = 100.
(b) Transmission coefficient T as a function of the nonlinearity coef-
ficient γ : the solid green curve and dotted blue curve are obtained
with w0 = 18, and the initial DS center at n =−150 and −220,
respectively; the dashed black curve and dashed-dotted red curve are
obtained with w0 = 14, and the initial DS center at n =−150 and
−220, respectively. (c), (d) Propagation of a Dirac soliton with the
initial center at n =−220 and −150, respectively, in the case where
w0 = 18 and γ = 2. Other parameters: k0 = 0.3π ; 80 = 2.8;σ = 1;
κ = 1.

Now we want to analyze a different situation where the non-
linear coefficient γ = 1 is fixed for getting the initial conditions
in the form of Eq. (10), but the value of γ can be changed while
integrating Eq. (1). This situation can be interpreted as the case
where the same input signal is used for different BWAs with vari-
ous γ . In Fig. 6(b), we plot the transmission coefficient T as a
function of γ , where the solid green curve and dotted blue curve
are obtained with the beam width parameter w0 = 18, and the
initial DS centers at n =−150 and −220, respectively; the
dashed black curve and dashed-dotted red curve are obtained
with w0 = 14, and the initial DS centers at n =−150 and
−220, respectively. All curves in Fig. 6(b) have some common
features:

(i) they first slightly increase as γ increases, then they begin to
decrease ifγ increases further;

(ii) the influence of γ will be less pronounced if the beam width
parameter w0 is large (this is also expected because when
w0 is large, the DS peak amplitude is low, which makes the
nonlinearity less important);

(iii) the transmission T in the nonlinear regime also depends
on the distance traveled by a DS before it hits the potential
step, especially whenγ is larger than unity.

To illustrate the influence of the distance traveled by a DS
before it hits the potential step, we show the beam dynamics
in Figs. 6(c) and 6(d) where two DSs are launched into BWAs
under exactly the same conditions except for the fact that the
initial DS center is located at n =−220 and−150, respectively.
The value of T is calculated to be 0.3252 and 0.3629 through
direct simulation data in Figs. 6(c) and 6(d), respectively. Note
that the theoretical value T = 0.3699 is obtained for the discrete
model based on Eq. (7) in the linear regime for parameters used
in Figs. 6(c) and 6(d). The influence of the initial DS center
on KT is understandable, even for DSs with a large value of
w0 = 18, as in Figs. 6(c) and 6(d). Indeed, as the initial con-
dition for the input DS is taken with fixed γ = 1, as long as
we increase from unity for the value of γ in Eq. (1) for beam
evolution simulation, the fixed input condition will be more and
more different from the ideal condition to get collimated beams
during propagation. At the first stage, beam 1 in Fig. 6(d) can
still be considered as a parallel beam. However, at the later stage
before hitting the potential step, beam 1 in Fig. 6(c) is not paral-
lel anymore, but propagates in an unpredictable manner when
the central part of the beam undergoes the self-focusing effect
due to nonlinearity. On the contrary, when γ is close to zero, as
clearly seen in Fig. 6(b), the influence of γ on the transmission
T is less noticeable, because in this quasi-linear case, the beams
undergo just a slight broadening if the initial DS beam width is
large enough.

4. CONCLUSION

We have systematically investigated the optical analog of the
relativistic quantum KT effect of DSs through a potential step
in BWAs with Kerr nonlinearity. The transmission coefficient
of DSs through the potential step is calculated via the beam
propagation simulation and is demonstrated for the first time
to be in excellent agreement with the theoretical results in the
linear regime for the same model if the beam width of DSs is
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large enough. The influence of the potential step height and the
incident wave number of DSs on KT has been investigated sys-
tematically, which helps to confirm the validity of the theoretical
results of the transmission coefficient in BWAs. The limits of the
potential step height and the incident wave number for observ-
ing KT in the linear regime for both discrete and continuous
models have been exactly derived in the analytical forms for the
first time. The nonlinearity of the system can have significant
impact on the KT effect and can dramatically decrease the trans-
mission coefficient as compared to its theoretical values in the
linear regime. Our results show that DSs are a great candidate for
studying the optical analog of the KT effect and other relativistic
quantum effects in BWAs in wide ranges of parameters.
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