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ABSTRACT

We systematically investigate two types of localized states—one is the optical analog of the quantum relativistic Jackiw–Rebbi states and the
other is the trivial localized state—in interfaced binary waveguide arrays in the presence of cubic–quintic nonlinearity. By using the shooting
method, we can exactly calculate the profiles of these nonlinear localized states. Like in the case with Kerr nonlinearity, we demonstrate that
these localized states with cubic–quintic nonlinearity also have an extraordinary property, which completely differs from many well-known
nonlinear localized structures in other media. Specifically, both the peak amplitude and transverse dimension of these nonlinear localized
states can increase at the same time. Apart from that, we show that high values of the saturation nonlinearity parameter can help to generate
and stabilize the intense localized states during propagation, especially in the case with a negative coefficient for the cubic nonlinearity term.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004073

The optical analog of the topological quantum relativistic
Jackiw–Rebbi (JR) state and the trivial localized state has been
found earlier in interfaced binary waveguide arrays (BWAs) both
in the linear regime and in the case of Kerr nonlinearity. Due to
their topological nature, JR states in BWAs have been demon-
strated to be extremely robust under the influence of strong
disturbances. This feature can be useful in the design of all-optical
circuits. In this work, we investigate the JR states and trivial
localized states in the regime of cubic–quintic nonlinearity in
interfaced BWAs. We use the shooting method to calculate the
exact profiles of these localized states and study their properties.
We demonstrate that large values of the saturation nonlinear-
ity parameter in the regime of cubic–quintic nonlinearity can be
exploited to stabilize these intense localized states.

I. INTRODUCTION

Waveguide arrays (WAs) present interesting platforms to
investigate many fundamental photonic phenomena in classical
physics such as discrete diffraction,1,2 discrete solitons,1,3–5 and
diffractive resonant radiation.6 These platforms also can mimic

fundamental effects in nonrelativistic quantum mechanics emerg-
ing from the Schrödinger equation.7,8 Moreover, binary waveguide
arrays (BWAs) can be very useful in studying relativistic quantum
mechanics phenomena rooted in the Dirac equations. Indeed, in the
last decade, many relativistic quantum mechanics phenomena, e.g.,
Zitterbewegung,9 the Klein paradox,10 and Dirac solitons11–16 have
been thoroughly analyzed in BWAs.

In 2017, the exact linear localized solutions for the optical ana-
log of Jackiw–Rebbi (JR) states and trivial states were found in Ref. 17
at the interface of two BWAs. The JR states are quantum relativistic
structures and quite well known in quantum field theory.18 Thanks
to the JR states, the phenomenon of charge fractionalization (which
is crucial in the discovery of the fractional quantum Hall effect19)
has been predicted. The so-called zero-energy solution of JR states
possesses the topological nature, which is fundamental in topologi-
cal insulators.20 Recently, topological photonics has attracted a great
amount of interest in designing robust optical circuits.21–24 In 2019,
the extreme robustness of the JR states in interfaced BWAs under
the influence of strong disturbances was demonstrated.25 Different
scenarios of interactions between JR states and Dirac solitons have
been analyzed in BWAs in Ref. 26.

As mentioned above, JR states and trivial states in BWAs have
been analytically and numerically investigated only in the linear
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regime in Ref. 17. These localized solutions in the regime of Kerr
nonlinearity have been systematically investigated later in Ref. 27
both for self-focusing and self-defocusing nonlinearity by using
the shooting method.28 This model with Kerr nonlinearity is the
simplest one for studying third-order nonlinear effects in optics.
However, if the optical signals are intense enough, one needs to
take into account the fifth and even higher-order terms for non-
linearity. The resulting equation in that case is often called the
cubic–quintic nonlinear Schrödinger equation (NLS) because it con-
tains terms accounting for both the third and fifth powers of the
signal amplitude. In fiber optics, this cubic–quintic NLS for a single
fiber has been well studied.29 In one-dimensional30–33 and higher-
dimensional34 WAs consisting of just one type of waveguide, solitons
and other localized structures rooted in the system of cubic–quintic
NLS have also attracted a great amount of attention.

In this work, we study the JR states and trivial states in inter-
faced BWAs with cubic–quintic nonlinearity. The remainder of this
paper is organized as follows: in Sec. II, as a starting point, we re-
introduce the exact solutions for linear JR states and trivial states,
which have already been obtained in Ref. 17. Then, in Sec. III, we
investigate the profiles of these two types of localized states with
cubic–quintic nonlinearity. In Sec. IV, we focus on the detunings
of these nonlinear localized states. Finally, in Sec. V, we summarize
our results and finish with concluding remarks.

II. GOVERNING EQUATIONS AND LINEAR SOLUTIONS

OF JACKIW–REBBI STATES AND TRIVIAL STATES

As a starting point, in this section, we present the govern-
ing equations in interfaced BWAs with cubic–quintic nonlinearity
and the exact solutions of JR states and trivial states, which have

been found earlier in the linear regime in Ref. 17. This is necessary
because some results of linear JR and trivial solutions, in particu-
lar, their detunings, will be needed later for discussion of nonlinear
localized states with cubic–quintic nonlinearity.

The light beam propagation in BWAs with cubic–quintic non-
linearity can be governed by the following dimensionless discrete
coupled-mode equations (CMEs):

i
dan

dz
+ κ[an+1 + an−1] − (−1)nσan + γ (1 − bs|an|

2)|an|
2an = 0.

(1)

In Eq. (1), an represents the electric field amplitude in the nth
waveguide, z is the longitudinal spatial variable, 2σ is the propaga-
tion mismatch, κ is the coupling coefficient between two adjacent
waveguides of the array, γ is the nonlinear coefficient of the cubic
terms of waveguides, and bs is the saturation parameter governing
the power level at which the nonlinearity saturation effect starts to
take place. For many materials, bs|an|

2 � 1 in most practical situ-
ations. However, this nonlinear term can become noticeable when
the peak intensity of the light signal is around 1 GW/cm2 in the case
of silica.35 Note that the cubic–quintic nonlinearity is also known as
competing nonlinearities, and bs is always positive for most of opti-
cal media, e.g., semiconductor waveguides, organic polymers, and
semiconductor-doped glasses.4 It is also worth mentioning that the
cubic–quintic nonlinearity is a special case of a more general kind of
nonlinearity known as saturable nonlinearity, which exists in many
nonlinear media [see Eq. (7.4.1) in Ref. 4].

In order to generate JR states, one needs to use two BWAs,
which are close to each other as schematically shown in Fig. 1(a).
Note that if n < 0 (for the left-hand side BWA), then σ takes the

FIG. 1. (a) The system of interfaced
BWAs created by two BWAs put close
to each other. (b) The value distribution
of the array (−1)nσ , which can support
the discrete JR states. (c) Propagation
of a linear JR state in interfaced BWAs
where Eq. (3) is used as an input condi-
tion. (d) Curves showing the amplitudes of
the JR state at input (solid blue with round
markers) and output (solid black), which is
hidden behind the dotted red curve repre-
senting the discrete JR state in the form of
Eq. (4). Parameters are −σ1 = σ2 = 1,
κ = 1, and γ = 0. Figures 1(a), 1(c),
and 1(d) are reproduced from Fig. 1 in
Ref. 17.
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constant value σ1; whereas if n ≥ 0 (the right-hand side BWA), then
σ takes the constant value σ2.

As in Refs. 9 and 36, by setting 91(n) = (−1)na2n, 92(n)

= i(−1)na2n−1, and using the continuous transverse coordinate
ξ ↔ n, one can get the following Dirac equation in the regime of
cubic–quintic nonlinearity for the two-component spinor 9(ξ , z)
= (91, 92)

T:

i∂z9 = −iκσ̂x∂ξ9 + σ σ̂z9 − γ G + γ bsF, (2)

where the cubic nonlinearity is taken into account via the term

G ≡ (|91|
291, |92|

292)
T
; the quintic nonlinearity is taken into

account via the term F ≡ (|91|
491, |92|

492)
T
; σ̂x and σ̂z are the

usual Pauli matrices. In the case of just Kerr nonlinearity, the result-
ing equation will be simplified as Eq. (7) in Ref. 11 without the
quintic term.

In the linear regime, if σ1 < 0 and σ2 > 0, then the follow-
ing exact continuous JR solutions of Eq. (2) have been obtained
analytically earlier in Ref. 17:

9(ξ) =

√

|σ1σ2|

κ(|σ1| + |σ2|)

(

1
i

)

e−|σ(ξ)ξ |/κ . (3)

Note that the continuous solution in the form of Eq. (3) is the exact
linear solution to the continuous equation (2) when γ = 0, but it is
only an approximate linear solution to the discrete equation (1). It
is obvious that this approximation gets better when the beam width
increases. Note also that σ(ξ) = σ1 if ξ < 0 and σ(ξ) = σ2 if ξ ≥ 0.

As already pointed out in Ref. 17, when the function σ(ξ)

has the form of the hyperbolic tangent function, Jackiw and
Rebbi have found topological localized JR states for the Dirac
equation (2)—which are also known as the zero-modes, zero-energy
states.18,37,38 In our case, the function σ(ξ) has the form of a step-
like function, which brings us to the localized JR solution (3), and it
corresponds to the limit when the scale kink of the JR model has an
infinite steepness. What is important here is the difference in sign of
the function σ(ξ), but not the smoothness of the transition.

If |σ1| = |σ2| = σ0, as found earlier in Ref. 17, we can obtain
exact localized solutions to Eq. (1) in the linear regime in the two
cases as follows:

If −σ1 = σ2 = σ0 > 0, then we get the discrete JR state,17

an(z) = bneiδ1z, (4)

where the detuning δ1 ≡ κ −
√

σ 2
0 + κ2, bn is real and always inde-

pendent of z, and b2n−1 = b2n. If n ≥ 0, we have b2n/b2n+1 = α ≡

−[σ0/κ +
√

1 + σ 2
0 /κ2]; whereas if n < 0, we have b2n+1/b2n = α.

For hosting these discrete JR states, two adjacent waveguides at the
interface must have positive values for (−1)nσ [see Fig. 1(b) at the
central region for more details]. We want to stress that from this
discrete solution bn, one can easily construct the component 91(n),
which has the same sign for all n (obviously, after dropping the com-
mon factor eiδ1z). This is also true for 92(n). Therefore, the derivative
∂ξ9 in Eq. (2) mathematically makes sense in this case, and the
discrete solution (4) can be claimed as the approximate discrete JR
solution to the continuous Dirac equation (2).

However, if σ1 = −σ2 = σ0 > 0, we get the following trivial
localized state:17

an(z) = bneiδ2z, (5)

where the detuning δ2 ≡ κ +
√

σ 2
0 + κ2, bn is also real and indepen-

dent of z, and b2n−1 = b2n. If n ≥ 0, we get b2n/b2n+1 = −α; whereas
if n < 0, we get b2n+1/b2n = −α. For hosting these trivial states, two
adjacent waveguides at the interface must have negative values for
(−1)nσ . Here, we want to emphasize that from this discrete solu-
tion bn, one can easily construct the component 91(n), which has
opposite signs for neighboring values of n (obviously, after dropping
the common factor eiδ1z); i.e., 91(n) 91(n + 1) ≤ 0 for all n. This is
also true for 92(n). Therefore, the derivative ∂ξ9 in Eq. (2) mathe-
matically does not make sense in this case, and the discrete solution
(5), unlike the solution (4), cannot be claimed as the approximate
JR solution to the continuous Dirac equation (2). That is the rea-
son why we here explicitly call Eq. (5) a trivial localized solution to
Eq. (1).

There is one principal difference between JR (topological)
states and trivial (non-topological) states: JR states are gap states,
whereas trivial states are non-gap states. Indeed, if the system is just
a periodic BWA without any defect, i.e., without the interface, then
in the linear regime, by making the following ansatz for a plane wave

an(Q) ∼ exp[i(Qn − ωz)], (6)

one can get the dispersion relations from Eq. (1) as follows:39

ω±(Q) = ±

√

σ 2
0 + 4κ2cos2Q. (7)

As clearly shown from Eq. (7), two bands ω+ and ω+ are separated
by a gap from −σ0 to σ0. Moreover, the detuning δ1 of the JR states
defined below solution (4) is inside this gap (because the coupling
coefficient κ is always positive), i.e., −σ0 < δ1 < σ0, whereas the
detuning δ2 of the trivial states defined below solution (5) is out-
side this gap, i.e., σ0 < δ2. Note also that the Dirac solitons found in
Ref. 11 in a periodic BWA have also been shown to be gap solitons
(see Ref. 15).

In Fig. 1(b), we show the value distribution of the array (−1)nσ

for the interfaced BWAs, which can support the discrete JR states. In
Fig. 1(c), we show the propagation of a JR state in the linear regime
where the continuous JR solution in the form of Eq. (3) is used as the
initial condition for numerically solving the discrete equation (1).
In Fig. 1(d), we plot the input (the solid blue curve having round
markers), which is constructed by using the continuous JR solution
(3), and output beam amplitudes (the solid black curve) taken from
Fig. 1(c). The dotted red curve in Fig. 1(d) represents the exact dis-
crete JR solution (4) to Eq. (1). However, in Fig. 1(d), one cannot
clearly see the output solid black curve because it is totally hidden
behind the dotted red curve. This fact demonstrates that the con-
tinuous JR solution (3) is an excellent approximate solution for the
discrete Eq. (1). Similarly, the discrete JR solution (4) is also an excel-
lent approximate solution for the continuous Dirac equation (2). In
other words, this fact confirms that the discrete solution (4) can be
claimed as a true JR state solution.

With the aim to provide real physical values for this JR state,
one can get typical parameters in WAs made of AlGaAs,40 where the
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coupling coefficient in physical units is K = 1240 m−1 and the non-
linear coefficient is 0 = 6.5 m−1W−1. In this case, the power scale
will be P0 = K/0 = 190.8 W; therefore, the peak power shown in
Fig. 1(d) will be around 94 W, and the length scale in the propaga-
tion direction will be z0 = 1/K = 0.8 mm. For conversion from the
calculated dimensionless units into the physical units and vice versa
in BWAs, one can refer to Ref. 25 for more details.

III. LOCALIZED JACKIW–REBBI STATES AND TRIVIAL

STATES WITH CUBIC–QUINTIC NONLINEARITY

We are now able to investigate the localized solutions in the
case of cubic–quintic nonlinearity. To be more concrete, we will
solve the discrete equation (1) in the full form. Like in the case of
Kerr nonlinearity investigated in Ref. 27, the nonlinear localized
solutions will be found by using the following form:

an(z) = bneiδz, (8)

where the nonlinear amplitude bn is real, independent of z, and still
unknown for now. For each nonlinear localized state, the detuning
δ is the eigenvalue and needs to be looked into further. Obviously,
in the linear case, the detuning δ acquires the constant value either
δ1 for the discrete JR state or δ2 for the trivial localized state. By
using the ansatz (8) for Eq. (1), we obtain a system of algebraic
cubic–quintic equations as follows:

−δbn = −κ[bn+1 + bn−1] + (−1)nσbn − γ (1 − bs|bn|
2)|bn|

2bn.
(9)

Now, we can use certain numerical methods, such as the shoot-
ing method to numerically solve Eq. (9) for obtaining the nonlinear
localized solutions with cubic–quintic nonlinearity and their detun-
ing values. This shooting method28 has been described in detail
in Ref. 27 to find localized solutions with Kerr nonlinearity. This
method can also be successfully used for any other kind of nonlin-
earity, including the cubic–quintic one as in this work. The essence
of this method is that for each fixed value of the peak amplitude
b0 = b−1, one can find the eigenvalue (if it exists) of the detuning δ

such that the tails of the nonlinear localized states will vanish when
n → ±∞; i.e., bn → 0 when n is big enough.27

In Fig. 2(a), we present the amplitude profile |bn| of a JR state
when γ = 1. In Fig. 2(a), the red curve having round markers is
when the saturation nonlinearity parameter bs = 0.1 and the peak
amplitude b0 = 1 (the eigenvalue of the detuning is found to be
δ ' −0.6682δ1), the dashed blue curve is when bs = 0.4, b0 = 1
(with δ ' −0.1360δ1), and the dotted green curve is when bs = 0.4,
b0 = 0.8 (with δ ' 0.1183δ1). In Fig. 2(b), we show the evolution of
the nonlinear localized JR state in the (n, z)-plane by solving Eq. (1)
where the red curve having round markers in Fig. 2(a) serves as the
initial condition, i.e., when γ = 1, b0 = b−1 = 1.0, and bs = 0.1. It
is clearly shown in Fig. 2(b) that this nonlinear JR state can perfectly
conserve its profile during propagation for a very long distance.

In Fig. 2(c), we plot the amplitude profiles |bn| of JR states
with γ = −1 and peak amplitude b0 = b−1 = 0.8 for two values of
the saturation parameter bs: the red curve having round markers is
when bs = 0.1 (with δ ' 2.095δ1), and the dashed blue curve is when
bs = 0.4 (with δ ' 1.88δ1). The latter curve is served as initial con-
ditions for solving Eq. (1), and the evolution in the (n, z)-plane of

this JR state is illustrated in Fig. 2(d). In Fig. 2(e), we show the evo-
lution of the JR state when γ = −1, b0 = b−1 = 0.5, and bs = 0.1
(with δ ' 1.4428δ1). Meanwhile, in Fig. 2(f), we show the evolu-
tion of the JR state with all parameters as in Fig. 2(e) except for the
input peak amplitude b0 = b−1 = 0.8 (with δ ' 2.095δ1) in Fig. 2(f)
instead of the value b0 = b−1 = 0.5 in Fig. 2(e). In Fig. 2, we use
all other parameters as follows: σ1 = −1, σ2 = 1, and the coupling
coefficient κ = 1.

In Fig. 3, we show the trivial localized states in the regime of
cubic–quintic nonlinearity. In Fig. 3(a), we plot the amplitude pro-
files bn of the trivial state having the peak amplitude b0 = b−1 = 1.0
in the regime when γ = 1 with two values of the saturation param-
eter bs: the red curve with round markers is obtained when bs = 0.1
and δ ' 1.3172δ2, whereas the dashed blue curve is obtained when
bs = 0.4 and δ ' 1.2071δ2. These trivial states are also very robust
and can propagate without any distortion of their shapes for quite
a long distance. Indeed, as an example, in Fig. 3(b), we demon-
strate the evolution in the (n, z)-plane of the trivial state with the
input condition taken from the dashed blue curve in Fig. 3(a). Sim-
ilarly, in Fig. 3(c), we plot the amplitude profiles bn of the trivial
states when γ = −1: the red curve with round markers is obtained
when bs = 0.1, b0 = 0.4 (with δ ' 0.9527δ2); the dashed blue curve
is obtained when bs = 0.4, b0 = 0.4 (with δ ' 0.9548δ2), whereas the
dotted green curve is obtained when bs = 0.4, b0 = 0.3 (with δ '

0.9735δ2). The dashed blue curve in Fig. 3(c) is used as input con-
ditions for investigating the trivial state evolution in the (n, z)-plane
shown in Fig. 3(d).

We can see that there are some common properties between the
profiles of localized states with cubic–quintic nonlinearity shown in
Figs. 2 and 3 of this work and those with Kerr nonlinearity reported
in Ref. 27. First, if γ is positive, then all the profiles of nonlinear
localized states in interfaced BWAs decrease in a monotonic man-
ner from the center to each tail, whereas this is not the case if γ is
negative. Second, if we fix all parameters of nonlinear states except
for the sign of γ (and the eigenvalue δ, of course), then the pro-
files of nonlinear states with positive γ are more localized in the
transverse direction than those with negative γ . Apart from these
common points, the quintic term with the saturation parameter bs

leads to some new interesting features. First and foremost, bs can
help to stabilize nonlinear states and suppress the noise during prop-
agation, especially in the regime of self-defocusing nonlinearity for
the cubic term (i.e., when γ = −1). Indeed, in Figs. 2(d) and 2(f),
as an example, we show the propagation of discrete JR states with
all the same parameters except for the only difference that the satu-
ration parameter bs = 0.4 in Fig. 2(d), but bs = 0.1 in Fig. 2(f). The
discrete JR state with greater bs shown in Fig. 2(d) is perfectly stable
during propagation. Meanwhile, the discrete JR state with smaller
bs shown in Fig. 2(f) is only stable at the beginning up to the dis-
tance z ' 300; after that, the noise grows up and totally destroys the
discrete JR state at the output. Therefore, one can say that discrete
media such as BWAs with a larger saturation parameter bs are more
favorable to support the stable propagation of nonlinear localized
states. Note that, in bulk media, the saturable nonlinearity is also well
known for being able to arrest the pulse collapse and helping to form
stable light bullets (a spatiotemporal soliton).4 Note also that the sat-
uration parameter is more crucial in stabilizing localized states with
the negative γ . In the case of positive γ , our simulations show that
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FIG. 2. Localized discrete JR states in inter-
faced BWAs with cubic–quintic nonlinearity. (a)
Amplitude profile |bn|when γ = 1: the red curve
having round markers is when bs = 0.1 and
b0 = 1, the dashed blue curve is when bs = 0.4
and b0 = 1, whereas the dotted green curve is
when bs = 0.4 and b0 = 0.8. (b) Evolution of
the nonlinear JR state with the input condition
taken from the red curve having round markers
in (a). (c) Amplitude profile |bn| when γ = −1
and b0 = 0.8: the red curve having round mark-
ers is when bs = 0.1, whereas the dashed blue
curve is when bs = 0.4. (d) Evolution of the non-
linear JR state with the input condition taken from
the dashed blue curve in (c). (e) Evolution of the
nonlinear JR state with γ = −1 and b0 = 0.5.
(f) Evolution of the nonlinear JR state with the
input condition taken from the red curve with
round markers in (c). Other parameters: σ1 =
−1, σ2 = 1, and κ = 1.

all nonlinear localized states that we have obtained are quite robust.
This is also in agreement with the results obtained in the case of just
Kerr nonlinearity in Ref. 27 (see Fig. 3 therein), which show that
media with positive γ are able to form stable localized states for a
wide range of peak amplitudes, whereas media with negative γ are
only favorable for localized states with a low peak intensity.

Note also that one can make a localized state with a negative
γ more stable by decreasing its initial peak amplitude as shown in
Fig. 2(e) where all parameters are exactly the same as in Fig. 2(f)
except for a lower initial peak amplitude b0 [b0 = 0.5 in Fig. 2(e),
but b0 = 0.8 in Fig. 2(f)]. Physically, the mechanism for stabilizing
localized states in this case is similar to the one just mentioned above
when bs is increased. Indeed, as pointed out in Ref. 27 where local-
ized states with just Kerr nonlinearity have been analyzed and men-
tioned just above, media with negative γ can only support localized
states with low peak amplitudes. In other words, in self-defocusing
media with Kerr nonlinearity (i.e., when γ < 0), localized states can
be supported only in the case when the nonlinear term is small in

an absolute value. This is understandable because in the case of Kerr
nonlinearity with γ < 0, the nonlinear term leads to the defocusing,
i.e., broadening of the beams. That is why if γ < 0, we need to keep
the nonlinear term small in an absolute value if we want to create
a favorable condition for generating localized states. In the case of
cubic–quintic nonlinearity with γ < 0, because bs is always positive
and 1 − bs|bn|

2 > 0, one can decrease the influence of the nonlin-
ear cubic–quintic term (last term) in Eq. (9) by two ways: either
by decreasing the peak amplitude b0 or by increasing the saturation
parameter bs. That is the reason why both these ways are able to
stabilize localized states in the case of cubic–quintic nonlinearity as
shown in Figs. 2(d) and 2(e).

It is worth emphasizing that profiles of localized states in inter-
faced BWAs with Kerr nonlinearity reported in Ref. 27 have a very
interesting feature: their peak amplitude and transverse dimension
can increase (or decrease) at the same time. Our results in this
work confirm that this distinguishing feature of localized states in
interfaced BWAs exists not only for Kerr nonlinearity, but also for
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FIG. 3. Trivial localized states in
interfaced BWAs with cubic–quintic non-
linearity. (a) Amplitude profile bn when
γ = 1 and b0 = 1: the red curve with
round markers is obtained with bs = 0.1,
whereas the dashed blue curve is obtained
with bs = 0.4. (b) Evolution of the trivial state
with the input condition taken from the dashed
blue curve in (a). (c) Amplitude profiles when
γ = −1: the red curve with round markers
is obtained when bs = 0.1 and b0 = 0.4, the
dashed blue curve is obtained when bs = 0.4
and b0 = 0.4, whereas the dotted green curve
is obtained when bs = 0.4 and b0 = 0.3.
(d) Evolution of the trivial state with the input
condition taken from the dashed blue curve in
(c). Other parameters: σ1 = 1, σ2 = −1, and
κ = 1.

cubic–quintic nonlinearity. Indeed, in Fig. 2(a), the dashed blue
curve and the dotted green curve of discrete JR states are obtained
when all parameters are exactly the same except for the peak ampli-
tude (and the eigenvalue detuning, obviously). We see that the
dotted green curve with a lower peak amplitude is totally enveloped
by the dashed blue curve with a higher peak amplitude. The same
situations happen for the dashed blue curve and the dotted green
curve of trivial states in Fig. 3(c). Meanwhile, for many other well-
known localized structures and optical solitons found in bulk media,
discrete solitons in a conventional WA,4 and even discrete Dirac
solitons in a periodic BWA (i.e., without the interface) found in
Ref. 11, these two characteristic parameters always vary in an oppo-
site manner: the peak increase will lead to the spatial narrowing
of the beam (or the temporal shortening of the pulse) and vice
versa. Note that, quite recently, it has been experimentally shown
in Ref. 24 that in a waveguide array (possessing Kerr nonlinearity)
with periodic variations along the waveguide axis, the degree of spa-
tial localization of Floquet solitons in a topological bandgap first
increases, then decreases after reaching its maximum as the input
power increases (see Fig. 3 therein).

IV. DETUNINGS OF JACKIW–REBBI STATES AND

TRIVIAL STATES WITH CUBIC–QUINTIC NONLINEARITY

Now, we study in detail the dependence of the localized
state detunings on their peak amplitudes and other parameters. In
Fig. 4(a), we present the relative detuning δ/δ1 of discrete JR states
as a function of the peak amplitude b0 in the case of cubic–quintic
nonlinearity with the saturation parameter bs = 0.1. We get the

red curve having diamond markers in Fig. 4(a) when γ = 1,
σ1 = −1, and σ2 = 1. Meanwhile, we get the green curve having
round markers in Fig. 4(a) when γ = −1, σ1 = −1, and σ2 = 1 (i.e.,
when we only change the sign of γ ). These two curves are practi-
cally symmetrical with the black horizontal axis (which shows the
detuning δ1 of the linear discrete JR states) serving as the symmetry
line. Indeed, in Fig. 4(a), the dashed red curve (which is the artificial
image of the red curve having diamond markers) coincides very well
with the green curve having round markers. There is only one sig-
nificant difference between these two curves: the one with positive
γ can be drawn further for higher peak amplitude b0, whereas the
other one with negative γ stops at the maximum value b0 ' 0.85,
and we cannot find localized solutions for JR states with a higher
value b0 in this case. The symmetry of the two curves representing
detunings of localized states in BWAs with just Kerr nonlinearity
while switching the sign of γ and keeping all other parameters fixed
has been explained in detail in Sec. 4 in Ref. 27. This explanation is
also valid for localized states in interfaced BWAs of all other types
of nonlinearity, including the cubic–quintic term as in this work.
Indeed, like in Ref. 27 dealing with Kerr nonlinearity, we now intro-
duce δl as the detuning of linear localized states; i.e., δl = δ1 for linear
JR states and δl = δ2 for trivial states. In the case of γ , we use δ as the
detuning of the nonlinear localized states possessing a peak ampli-
tude b0. Then, we change the sign of the nonlinear coefficient γ so
that γ → −γ . In that way, the new nonlinear localized states will

have the detuning δ
′

instead of δ and the amplitude cn instead of

bn. If the curve representing δ/δl and the curve representing δ
′
/δl

are almost symmetrical with respect to the black horizontal axis in

Fig. 4, the following relationship, δ/δl ' 2 − δ
′
/δl, must take place.
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FIG. 4. Relative detuning of nonlinear local-
ized states as functions of the peak amplitude
b0 in the case of cubic–quintic nonlinearity. (a)
and (b) The curves are obtained for discrete JR
states with the saturation parameter bs = 0.1 in
(a) and bs = 0.4 in (b). (c) and (d) Exactly the
same as in (a) and (b), respectively, but for trivial
states. The dashed red curves in Fig. 4 are the
artificial mirror images of the red curves having
diamond markers with the black horizontal axis
serving as the symmetry line. The coupling coef-
ficient κ = 1, as usual. All other parameters are
indicated for each curve therein.

Therefore, we need to have δ
′
' 2δl − δ. As a result, in the case of

−γ , Eq. (9) will be now rewritten as follows:

−(2δl − δ)cn ' −κ[cn+1 + cn−1] + (−1)nσ cn

+ γ (1 − bs|cn|
2)|cn|

2cn. (10)

By adding Eq. (9) to (10), we obtain a new system of equations:

δ(cn − bn) − 2δlcn ' −κ[(cn+1 + bn+1) + (cn−1 + bn−1)]

+ (−1)nσ(cn + bn) + γ (|cn|
2cn − |bn|

2bn)

+ γ bs(|bn|
4bn − |cn|

4cn). (11)

Now, if we keep the peak amplitudes b0 = c0 at small values and
note that the condition cn ' bn is always held true in this low-
power regime, then all the nonlinear terms in Eq. (11) will practically
vanish. As a result, from Eq. (11), we will have

− δlcn ' −κ[cn+1 + cn−1] + (−1)nσ cn. (12)

The system of Eq. (12) is always satisfied in the low-power regime
because δl therein is the detuning of the linear localized states [see
also Eq. (9) if γ = 0].

Therefore, in interfaced BWAs with cubic–quintic nonlinear-
ity, we have proved that by fixing all parameters except for the
sign of γ , we will also get two curves plotting relative detunings of
nonlinear localized states, which are practically symmetrical with the
axis (which shows the detuning of the corresponding linear local-
ized states) serving as the symmetry line. This symmetry is satisfied
very well when the peak amplitude of nonlinear localized states is

small, but the violation of this symmetry will be more and more
significant if we increase the peak amplitude of nonlinear localized
states.

It is interesting to note that the termination of the upper branch
with γ = −1 in Fig. 4(a) for the JR state happens when its nonlinear
detuning δ approaches the bottom edge of the gap; i.e., δ → −σ0.
Indeed, for parameters used in Fig. 4(a), we have the linear detuning
of the gap JR state δ1 = −0.4142, which obviously lies inside the gap
from −1 to 1. When the peak amplitude of the nonlinear JR states
increases, the detuning of the upper branch approaches the bottom
edge (−1) of the gap and stops at δ ' 2.227 ∗ δ1 ' −0.9224. There-
fore, all the detunings (both linear and nonlinear, both for γ = −1
and γ = 1) of the JR states in Fig. 4(a) lie inside the gap from −σ0 to
σ0. This is also true for the JR states in Fig. 4(b). Moreover, we want
to emphasize that this interesting property is also true for JR states
with Kerr nonlinearity analyzed in Ref. 27 [see Fig. 3(a) therein].

In Fig. 4(b), we plot the same quantities as in Fig. 4(a) with
the only difference that now bs = 0.4. One can see that the larger
value of the saturation parameter bs in Fig. 4(b) helps in devel-
oping the green curve having round markers further for higher
values of the peak amplitude b0. This fact is possible because
if γ < 0, then the quintic term with bs in Eq. (9) acts as the
self-focusing nonlinearity, which helps in balancing the effect
of the self-defocusing nonlinearity of the cubic term for higher
peak amplitudes. Note that, as pointed out in Ref. 27 and men-
tioned above, the self-focusing nonlinearity is always more favor-
able to support high-intensity JR states than the self-defocusing
nonlinearity.
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In Figs. 4(c) and 4(d), we present the dependence of the relative
detuning δ/δ2 for nonlinear trivial states on the peak amplitude b0.
All parameters and curves in Figs. 4(c) and 4(d) are exactly similar
to those in Figs. 4(a) and 4(b), respectively, with the only differ-
ence that Figs. 4(a) and 4(b) represent the case of nonlinear discrete
JR states, whereas Figs. 4(c) and 4(d) represent the case of nonlin-
ear trivial states [as a result, σ1 must be negative in Figs. 4(a) and
4(b) but positive in Figs. 4(c) and 4(d)]. One can see from Figs. 4(c)
and (d) that it is also possible to obtain trivial states with high peak
amplitudes in the regime of cubic–quintic nonlinearity for the case
of positive γ . However, with a negative γ , one can only generate
trivial states with rather low peak amplitudes b0 ≤ 0.5 in Figs. 4(c)
and 4(d). Note that one can get discrete JR states with higher peak
amplitudes b0 for a negative γ in Figs. 4(a) and 4(b). This situa-
tion is quite similar to the case of Kerr nonlinearity reported in Ref.
27. Note also that the larger value of the saturation parameter bs in
Fig. 4(d) does not help to generate trivial states with higher peak
amplitudes [two green curves with round markers stop at b0 = 0.5
in both Fig. 4(c) with bs = 0.1 and Fig. 4(d) with bs = 0.4]. We
conjecture that this is because with a negative γ , nonlinear trivial
states are much less transversally localized than nonlinear JR states.
As a result, it is always more problematic to obtain the nonlinear
localized trivial states with intense peak amplitudes when γ = −1.

V. CONCLUSIONS

In this work, we have systematically studied two types
of localized states—the optical analogs of quantum relativistic
Jackiw–Rebbi states and trivial localized states—in interfaced BWAs
in the regime of cubic–quintic nonlinearity. We have shown that
large values of the saturation nonlinearity parameter can help to
generate and stabilize localized states of both types with high peak
amplitudes, especially in the case of a negative coefficient for the
cubic nonlinearity term. Like the profiles of localized states with just
Kerr nonlinearity, those of localized states with cubic–quintic non-
linearity in interfaced BWAs possess an extraordinary feature that
many other well-known localized nonlinear structures do not have.
Specifically, both the peak amplitude and transverse dimension of
these nonlinear localized states can increase (or decrease) simulta-
neously. We have also revealed that localized states with the positive
sign of the coefficient for the cubic term can be formed with high
peak amplitudes, whereas those with the negative sign can be formed
only with a low peak amplitude. We have also demonstrated that if
we only switch the sign of the coefficient for the cubic nonlinear-
ity term and keep all other parameters unchanged, then we can get
two curves representing the relative detunings of nonlinear localized
states, which are practically symmetrical where the axis plotting the
linear localized state detuning serves as the symmetry line. This gen-
eral rule is applicable for all types of localized states with various
kinds of nonlinearity in binary waveguide arrays.
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