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Coupling and protection effects of Jackiw-Rebbi states and trivial states in interfaced binary
waveguide arrays
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We systematically study different scenarios of interaction between two localized structures which were both
found recently in interfaced binary waveguide arrays with alternating signs of the Dirac mass in the linear and
nonlinear regimes of Kerr type. The first localized structure is the optical analog of the famous Jackiw-Rebbi
state emerging from the Dirac equation in quantum field theory, and the second one is the trivial state. We show
that two localized states of different types practically do not interact at all; thus, they can be protected from each
other in a reliable way. Meanwhile, two localized states of the same type can couple efficiently with each other
and show the nonlinear switching effect like in well-known symmetric fiber couplers.
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I. INTRODUCTION

Many interesting optical effects, e.g., discrete diffraction
[1,2], discrete solitons [1,3,4], diffractive resonant radiation
[5], soliton self-wave-number shift [6], and the supercon-
tinuum generation in both frequency and wave-number do-
mains [7], exist in waveguide arrays (WAs). This platform
has also been used to mimic fundamental phenomena in
nonrelativistic quantum mechanics, for example, Bloch os-
cillations [8] and Zener tunneling [9]. However, in order to
investigate relativistic quantum mechanics phenomena arising
from the Dirac equation one needs to use binary waveguide
arrays (BWAs). Indeed, BWAs have been widely exploited
to mimic Zitterbewegung [10,11], Klein tunneling [12,13],
Dirac solitons in both one-dimensional (1D) [14–16] and two-
dimensional (2D) cases [17]. The Dirac light bullet conserving
its spatiotemporal profile can also exist in BWAs [18]. The
routing of a Dirac soliton with the help of another very weak
beam in BWAs possessing variable propagation mismatch was
reported in Ref. [19]. The latter model can help to simulate
the Dirac equation in curved space-time. In the classical
context, the discrete gap solitons in BWAs were observed
earlier [20–23]. The linear surface states and nonlinear surface
modes existing at the edge of BWAs have also been found in
Ref. [24].

Recently, two localized states—one is the optical analog
of the well-known Jackiw-Rebbi (JR) state emerging from the
Dirac equation in the quantum field theory [25], and the other
is the trivial state—were found at the interface of two BWAs
with opposite propagation mismatches in the linear regime
in Ref. [26]. In the nonlinear regime, the exact profiles and
the detunings of these two localized states can be numerically
found by using the shooting method [27], as reported quite
recently in Ref. [28] for Kerr nonlinearity and in Ref. [29]
for cubic-quintic nonlinearity. The interaction between Dirac
solitons and JR states in BWAs were studied in Ref. [30]. The
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JR state is fundamental in predicting the charge fractionaliza-
tion effect, which has a central role in the fractional quantum
Hall effect [31]. The topological nature of the JR-state zero-
energy solution is fundamental to topological insulators [32].
Topological photonics can potentially play a crucial role in the
design of extremely stable optical circuits [33]. Quite recently,
the JR states in BWAs were numerically demonstrated to be
also very stable with respect to strong disturbances of various
kinds, e.g., the switching on or off of the nonlinearity, the
oblique incidence, and the linear transverse potential [34].
Photonic topological defect modes at the edge of BWAs were
demonstrated in Ref. [35]. Topological defect states existing at
the interface between two periodic dimer chains were reported
in Ref. [36]. Up to now, some models have been used to
investigate JR states, for example, in a periodic photonic
lattice with the use of an atomic Fermi-Dirac gas [37] or
in a fermionic superfluid with so-called heavy solitons [38].
An optical realization of JR states in a polaritonic scheme
possessing the slow-light effect was analyzed in Ref. [39].
Jackiw-Rebbi states occurring on a dislocation in a 2D pho-
tonic crystal were studied in Ref. [40]. The photonic JR states
in the all-dielectric platform with bianisotropy were studied in
Ref. [41], and the plasmonic JR modes in graphene waveguide
arrays were studied in Ref. [42].

In this work we study the interaction between two localized
states—one is the JR state, and the other is the trivial state—
in BWAs made of material with Kerr nonlinearity found in
Ref. [26]. We show that two localized states of the same
type can couple efficiently and exhibit the nonlinear switching
effect like in fiber couplers, whereas two localized states of
different types practically do not interact with each other
at all.

II. THEORETICAL BACKGROUND AND SOLUTIONS OF
JR AND TRIVIAL STATES IN THE LINEAR REGIME

In this section, we briefly reintroduce the principal equa-
tions in interfaced BWAs and the linear exact solutions
of localized states already reported in Ref. [26] in 2017.
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FIG. 1. (a) A system of two BWAs adjacent to each other with
opposite propagation mismatches. (b) Evolution of a linear JR state
in BWAs where continuous equation (3) is exploited to calculate the
input condition. (c) The solid blue curve with round markers shows
the profile of the input beam, whereas the solid black curve plots
the output profile. The latter curve is hidden by the dotted red curve
showing the discrete solution (4). Parameters are −σ1 = σ2 = 1, κ =
1, γ = 0. Reproduced from Fig. 1 in Ref. [26].

Light-beam evolution in BWAs with Kerr nonlinearity can be
studied by dimensionless coupled-mode equations as follows
[20]:

i
dan(z)

dz
+ κ[an+1 + an−1] − (−1)nσan + γ |an|2an = 0,

(1)

where an is the electric amplitude in the waveguide with dis-
crete position n, z is the longitudinal spatial coordinate, κ and
2σ are the coupling coefficient and the propagation mismatch
of two neighboring waveguides in BWAs, respectively, and γ

is the nonlinear coefficient of waveguides. Now let us briefly
reintroduce the localized solutions obtained at the interface
of two BWAs with opposite propagation mismatches which
were found earlier in Ref. [26]. To be specific, for now we set
this interface at two waveguides with n = (−1, 0), as shown
Fig. 1(a). At waveguides with n < 0 one has σ = σ1, whereas
at waveguides with n � 0 one has σ = σ2. After setting
�1(n) = (−1)na2n and �2(n) = i(−1)na2n−1, one can now
introduce the continuous transverse coordinate ξ instead of
n and the two-component spinor �(ξ, z) = (�1, �2)T , which
satisfies the 1D nonlinear Dirac equation [14]:

i∂z� = −iκσ̂x∂ξ� + σ σ̂z� − γ G, (2)

where the last term G ≡ (|�1|2�1, |�2|2�2)T accounts for
the Kerr nonlinearity; σ̂x and σ̂z are the standard Pauli ma-
trices. Parameter σ is the so-called mass of the Dirac field in
quantum field theory. We want to emphasize that the Dirac
equation (2) can be derived only from the discrete equations
(1) under a crucial requirement for discrete solutions an such
that the derivative ∂ξ� in Eq. (2) mathematically makes sense
(see also Sec. V in Ref. [17] for more details).

If σ1 < 0 and σ2 > 0, one obtains the continuous linear JR
solution of Eq. (2) as follows: [26]:

�(ξ ) =
√

|σ1σ2|
κ (|σ1| + |σ2|)

(
1
i

)
e−|σ (ξ )ξ |/κ . (3)
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FIG. 2. Interaction of two localized states of different types in
interfaced BWAs in the linear regime. (a) The array of (−1)nσ

which is used to investigate the interaction of two localized states
of different types in interfaced BWAs. (b) Only the trivial state is
launched into the system at the input. (c) Only the discrete JR state
is launched into the system at the input. (d) Two localized states of
different types with different initial peak amplitudes are launched
into the system. Parameters are −σ1 = σ2 = −σ3 = 1, κ = 1, γ = 0.

If |σ1| = |σ2| = σ0, as reported in Ref. [26], we obtain
exact linear localized solutions for the discrete equations (1)
in two cases as follows:

First, if −σ1 = σ2 = σ0 > 0 [i.e., σ1 < 0 and σ2 > 0 as
required to get the continuous JR solution (3)], we obtain the
discrete linear JR-state solution [26]:

an = bneiδ1z, (4)

where the detuning δ1 ≡ κ −
√

σ 2
0 + κ2 and bn has a real

value and is independent of z, b2n−1 = b2n. For n � 0 we
have the following relationship: b2n/b2n+1 = α ≡ −[σ0/κ +√

1 + σ 2
0 /κ2]. Meanwhile, for n < 0 we have b2n+1/b2n = α.

It is worth emphasizing that to support discrete JR states, two
neighboring waveguides at the interface need to have posi-
tive values for (−1)nσ [see also Fig. 2(a) for more details].
Note also that the linear detuning δ1 is always negative be-
cause κ > 0. It is also worth mentioning that from this discrete
solution bn, the component �1(n) can be straightforwardly
constructed and always possesses the same sign for all values
of n (after removing the common factor eiδ1z). The component
�2(n) also possesses this feature. As a result, the derivative
∂ξ� in Eq. (2) mathematically exists. Therefore, in this case
one can say that the discrete solution in the form of Eqs. (4)
is the approximate JR-state solution to the continuous Dirac
equation (2).

Second, if σ1 = −σ2 = σ0 > 0, we get the trivial localized
state solution as follows [26]:

an = bneiδ2z, (5)

where the detuning δ2 ≡ κ +
√

σ 2
0 + κ2 and bn also has a real

value and is independent of z, b2n−1 = b2n. If n � 0 we have
b2n/b2n+1 = −α. Meanwhile, for n < 0 we have b2n+1/b2n =
−α. It is worth recalling that to support trivial states, two
neighboring waveguides at the interface need to have negative
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values for (−1)nσ [see also Fig. 2(a) for more details]. Note
also that the linear detuning δ2 is always positive because κ >

0. It is important to stress that this discrete solution bn leads
to the construction of the component �1(n) with opposite
signs for adjacent values of n (after removing the common
factor eiδ1z), i.e., �1(n) · �1(n + 1) � 0 for every value of
n. The component �2(n) also possesses this features. As a
result, the derivative ∂ξ� in Eq. (2) does not have a math-
ematical sense. Therefore, one cannot say that the discrete
solution (5) is the approximate JR solution to the continuous
Dirac equation (2). Instead, the discrete solution in the form
of Eqs. (5) is just a trivial localized solution to Eqs. (1).

The scheme of two adjacent BWAs with opposite prop-
agation mismatches is illustrated in Fig. 1(a). Figure 1(b)
shows the evolution of a linear JR state where the continuous
JR solution (3) is used to calculate the initial condition for
integrating Eqs. (1). The solid blue curve with round markers
in Fig. 1(c) is the input JR-state profile, whereas the solid
black curve shows the output JR-state profile. The dotted red
curve showing the exact discrete JR solution (4) to Eq. (1) is
also plotted in Fig. 1(c) for comparison. As seen in Fig. 1(c),
the latter curve coincides perfectly with the output solid black
curve. As a result, one cannot clearly see the output curve.
This feature shows that the discrete solution in the form of
Eqs. (4) is an authentic JR state, indeed.

Because the solutions in the form of Eqs. (3)–(5) are
obtained in the linear case, obviously, we will get other linear
solutions if we multiply them by an arbitrary number. In other
words, the peak amplitudes of linear solutions can be chosen
arbitrarily. In the rest of this work, we numerically solve
Eqs. (1) to investigate the interaction between two localized
states in interfaced BWAs. As initial conditions for this task
we mostly use beams in the form of Eqs. (3), (4), and (5)
multiplied by a certain factor f which will be specified later
in each case. The only exception for initial conditions takes
place in Sec. IV, where we use an exact nonlinear JR-state
solution at the input to study the interaction of two nonlinear
JR states.

III. INTERACTION OF THE JR STATE WITH THE
TRIVIAL STATE IN THE LINEAR REGIME

Now it is time for us to investigate the interaction of two
localized states in interfaced BWAs. First, we analyze the
interaction of two localized states of different types, as shown
in Fig. 2 in the linear regime (γ = 0). Figure 2(a) plots the
array of (−1)nσ , where the interface at two waveguides with
n = (−5,−4) can generate a JR discrete state, whereas the
interface at two waveguides with n = (5, 6) can generate a
trivial state. The system consists of three BWAs: the first
one covers all waveguides with n � −5 and has the prop-
agation mismatch parameter σ1, the second one covers all
waveguides with −4 � n � 5 and has the propagation mis-
match parameter σ2, and the third one covers all waveguides
with n � 6 and has the propagation mismatch parameter σ3.
Figure 2(b) shows the propagation of a trivial state at the
interface with n = (5, 6), and one can clearly see that this
trivial state does not generate any signal at the other interface
with n = (−5,−4), even though these two interfaces are
located quite close to each other. Similarly, Fig. 2(c) shows
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FIG. 3. Protection of a discrete JR state in the nonlinear regime
from being coupled to trivial states. The exact nonlinear discrete JR
state is launched into the system at the interface with n = (−5, −4).
The white lines indicate the position of the interface for the trivial
state with (a) n = (13, 14), (b) (7,8), (c) (5,6), and (d) (1,2). All
parameters are the same as in Fig. 2 except for γ = 1 now.

that if one launches a discrete JR state into the interface
with n = (−5,−4), no signal will be generated at the other
interface with n = (5, 6). Thus, the localized states of one
type cannot generate the localized states of the other type,
even if the interfaces supporting these localized states are
quite close to each other. Now we launch at the same time
two localized states of different types, as shown in Fig. 2(d);
we can see that these two localized states of different types
practically do not interact at all, although they are quite close
to each other. Each localized state in Fig. 2(d) propagates
practically independently of the other and maintains its shape
quite well during propagation.

Physically, the reason two linear localized states of differ-
ent types cannot couple or interact with each other can be
easily explained. Indeed, as shown in Eqs. (4) and mentioned
in Sec. II, the detuning δ1 of the linear discrete JR states
always has a negative value. However, as shown in Eqs. (5)
and mentioned in Sec. II, the detuning δ2 of the linear trivial
state always has a positive value. So these two linear localized
states of different types cannot be phase matched during
propagation. As a result, they cannot couple to each other.

To estimate real physical quantities, let us use common
parameters in WAs made of AlGaAs [43], where in physical
units the nonlinear coefficient is 
 = 6.5 m−1 W−1 and the
coupling coefficient is K = 1240 m−1. So the power scale
is P0 = K/
 = 190.8 W; thus, the JR-state peak power in
Fig. 2 is around 70 W, and the length scale in the longitudinal
direction is z0 = 1/K = 0.8 mm.

IV. INTERACTION OF THE JR STATE WITH THE
TRIVIAL STATE IN THE NONLINEAR REGIME

In Fig. 2 we show that, in the linear regime, localized states
of different types do not interact with each other. It turns out
that this feature also takes place in the nonlinear regime, i.e.,
when γ �= 0, as shown in Fig. 3, where we launch an exact
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nonlinear discrete JR state into the system at the interface with
n = (−5,−4) and check if this discrete JR state can generate
trivial states at other interfaces indicated by the white lines in
Fig. 3. The interface for the trivial states in Figs. 3(a)–3(d)
is located at waveguides with n = (13, 14), (7, 8), (5, 6), and
(1,2), respectively. Note that the array for (−1)nσ is the same
as in Fig. 2(a), with the only exception being that the position
of the interface supporting trivial states is varied. To get initial
conditions, the shooting method is exploited to numerically
obtain the exact nonlinear discrete JR state with the peak
amplitude a−5 = a−4 = 0.7 at the input (see Ref. [28] for
more details). This initial condition is calculated by assuming
that there is just one interface at waveguides n = (−5,−4)
in the whole system. With this value for the discrete JR-
state peak amplitude and with parameters used in Fig. 3, the
eigenvalue for the detuning of this JR state is calculated to be
δ = 0.1105δ1 = −0.0458.

Like in the linear case illustrated in Fig. 2, it is also clearly
shown in Fig. 3 that in the nonlinear regime the nonlinear
discrete JR state at the interface with n = (−5,−4) cannot
generate the trivial states at nearby interfaces. Indeed, in
Fig. 3(a) the two interfaces are far from each other, so as ex-
pected, the discrete JR state can perfectly conserve its profile
during propagation without being disturbed by the presence
of the second interface at n = (13, 14) like what happens to
nonlinear discrete JR states in the ideal condition analyzed in
Ref. [28], where the array consists of only one interface. In
Figs. 3(b) and 3(c) the two interfaces are located closer to one
another, but the influence of the interface supporting trivial
states on the dynamics of the discrete JR state is so negligible
that one can see only some extremely weak fluctuation in its
profile during propagation just by zooming in on Figs. 3(b)
and 3(c). Even when the interface supporting trivial states is
quite close to the site of the discrete JR state as in Fig. 3(d), we
can see only that some weak signal at the interface with n =
(1, 2) is periodically generated during propagation. However,
the amplitude of this signal is also small and just a bit larger
than the amplitude of the signal at the opposite site of the
discrete JR state, i.e., at n = (−11,−10).

So one can say that in the nonlinear regime, the discrete
JR state is also protected quite well from being coupled to the
other nearby interfaces supporting trivial states. This is also
based on the fact that the phase-matching condition for two
nonlinear localized states of different types cannot be satisfied
with all the data that we already showed previously in Fig. 3
in Ref. [28] and that are reproduced here for convenience
in Fig. 4, where we show the relative detuning δ/δ1 for
nonlinear JR states [Fig. 4(a)] and the relative detuning δ/δ2

for nonlinear trivial states [Fig. 4(b)] as a function of the
peak amplitude b0 for several sets of parameters. Indeed,
the detuning for the nonlinear discrete JR state in Fig. 3 is
δ = 0.1105δ1 = −0.0458 (as indicated above), whereas all
the eigenvalues of the detuning for nonlinear trivial states are
positive, as shown in Fig. 4(b). Note that, as mentioned in
Sec. II, δ1 is always negative, whereas δ2 is always positive.
Of course, one can use other parameters to get a discrete JR
state with a positive detuning, as shown in Fig. 4(a). However,
even in that case we are still not able (with all the data we
show in Fig. 4) to find a situation where the localized states of
different types can be phase matched, i.e., when they have the
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FIG. 4. (a) Relative detuning δ/δ1 of nonlinear discrete JR states
as a function of the peak amplitude b0. (b) Relative detuning δ/δ2 of
nonlinear trivial states as a function of b0. Reproduced from Fig. 3 in
Ref. [28].

same value for the detuning δ. Probably, with the behaviors
of all curves for detuning shown in Fig. 4, we guess that
for self-focusing materials this phase-matching condition can
be realized if the discrete JR-state peak amplitude is much
larger than unity and the trivial-state peak amplitude is small,
around zero, at the same time. Note also that, as shown in
Refs. [28,29], both JR states and trivial states in interfaced
BWAs are distinguished from all localized structures in other
systems in the sense that both the transverse dimension and
peak amplitude of localized states in interfaced BWAs can
increase (or decrease) at the same time. So, in any case, the
coupling of two localized states of different types in both the
linear and nonlinear regimes is quite weak. This demonstrates
that if a system of BWAs has two interfaces supporting
localized states of different types, then each localized state
propagating at one interface can be protected from escaping
or coupling to the other interface, even if these interfaces are
located quite close to each other, as shown in Fig. 3. Note
that in Fig. 3 we demonstrate that a nonlinear discrete JR
state cannot be coupled to a nearby interface supporting trivial
states. In the same way, our simulations (not included here)
also show that a nonlinear trivial state cannot be coupled to a
nearby interface supporting JR states.

V. INTERACTION OF TWO LOCALIZED STATES
OF THE SAME TYPE

The situation completely changes if two localized states are
of the same type, as demonstrated in Fig. 5. To be specific,
in Fig. 5 we investigate the interaction of two discrete JR
states. Figure 5(a) plots the array of (−1)nσ , where the
two interfaces—one at waveguides with n = (−5,−4) and
the other at waveguides with n = (4, 5)—can both generate
discrete JR states. So in this case the center-to-center distance
between these two interfaces is D = 9. The system consists
of three BWAs: the first one covers all waveguides with
n � −5 and has the propagation mismatch parameter σ1, the
second one covers all waveguides with −4 � n � 4 and has
the propagation mismatch parameter σ2, and the third one
covers all waveguides with n � 5 and has the propagation
mismatch parameter σ3. In Fig. 5(b) we launch a discrete
JR state with f = 0.1 at the interface with two waveguides
n = (4, 5). Unlike the situation in Figs. 2(b) and 2(c), one now
can clearly see the coupling between two discrete JR states
in Fig. 5(b) with the coupling length L � 106, where all the
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FIG. 5. Coupling of two discrete JR states. (a) The array of
(−1)nσ as a function of the waveguide position n. (b)–(e) Coupling
of two discrete JR states when f = 0.1, 0.4, 0.5, and 1.0, respectively.
(f) The switching character of two discrete JR states when the
longitudinal length of BWAs is equal to the linear coupling length
L � 106. Parameters are −σ1 = σ2 = −σ3 = 1, κ = 1, γ = 1.

energy of the discrete JR state at the interface with n = (4, 5)
is transferred to the discrete JR state at the interface with n =
(−5,−4). At the propagation distance z = 2L all the energy
is again completely transferred back to the initial discrete
JR state at the interface with n = (4, 5). This kind of energy
transfer (or coupling) between the two discrete JR states takes
place periodically. It is worth mentioning that although in
Fig. 5 we use the nonlinear coefficient γ = 1, in Fig. 5(b)
the factor f = 0.1 is very small; therefore, all qualitative and
quantitative features in Fig. 5(b) are also reproduced exactly
in the linear regime (γ = 0). This linear coupling between
two discrete JR states is completely similar to the well-known
coupling between signals in two cores of a symmetric fiber
coupler [4]. The physics behind the coupling between two
discrete JR states can be easily understood because, as clearly
seen in their analytical solutions in the form of Eqs. (4),
in the linear (or low-power) regime these states always
have the same detuning δ1, provided that |σ1| = |σ2| = |σ3|
and the coupling coefficient κ is constant for the whole
system. In this case, the phase-matching condition during
propagation between these discrete JR states in the linear
regime is always fulfilled, which results in efficient coupling
between them.

In Fig. 5(c) the factor f is increased up to the value f =
0.4. One can clearly see that all qualitative features in Fig. 5(b)
also take place in Fig. 5(c), with the only exception being
that the coupling length in Fig. 5(c) is L � 190 instead of
L � 106 in Fig. 5(b). This increase in the nonlinear coupling
length between two discrete JR states in the nonlinear regime
is also similar to what happens in a symmetric fiber coupler

in the nonlinear regime when the input power P0 is smaller
than the so-called critical power Pc (see Ref. [4], p. 63, for
more details). Note that if we set γ = 0 in getting results
for Fig. 5(c), then the coupling length L must also be equal
to L � 106 as in the low-power linear regime illustrated in
Fig. 5(b).

In Fig. 5(d) we increase further the factor f up to the value
f = 0.5. Now the beam dynamics is again periodic during
propagation, but only a small amount of the total energy is
periodically transferred to the interface with n = (−5,−4),
whereas the main part of the total energy is trapped at the
interface with n = (4, 5). This situation is totally different
from the scenarios in Figs. 5(b) and 5(c) where all energy
is periodically transferred between the two interfaces. This
behavior of nonlinear coupling between two discrete JR states
is again completely similar to the nonlinear coupling scenario
in symmetric fiber couplers when the input power P0 is larger
than the critical power Pc (see Ref. [4], p. 63).

In Fig. 5(e) we increase further the factor f up to the
value f = 1. Now the input discrete JR state is trapped at
the interface with n = (4, 5) that it was launched into. This
case is again similar to the trapping effect in symmetric fiber
couplers when P0 � Pc [4]. Therefore, like in fiber couplers,
a discrete JR state can be transferred from one interface to the
other or trapped at one interface, depending on its input power,
provided that these two interfaces are able to generate discrete
JR states.

In Fig. 5(f) we plot the relative output power of the two
discrete JR states (with respect to the total initial input power)
at a propagation distance equal to the linear coupling length
L � 106 as a function of the factor f . The input discrete JR
state is launched at the interface with n = (4, 5). The solid
red curve and the dashed blue one in Fig. 5(f) represent the
relative output power of the JR state at the interface with n =
(−5,−4) and at the interface with n = (4, 5), respectively. As
mentioned above, in the low-power regime (when f < 0.2)
all the energy of the initial JR state at the interface with
n = (4, 5) is completely transferred to the JR state at the
interface with n = (−5,−4). As a result, the solid red curve
is close to unity, whereas the dashed blue curve is close to
zero. However, in the high-power regime (when f > 1) the
situation radically changes, and all the energy just remains in
the input JR state, and almost nothing is coupled to the other
JR state. So like in fiber couplers, we can switch an optical
beam from interface to interface at the output of the system,
depending on its input power. So in general, the features
of the linear coupling and nonlinear switching between two
discrete JR states are quite similar to the ones between optical
signals in symmetric fiber couplers (see Fig. 2.3 in [4]).
The only significant difference between them is that in fiber
couplers the coupling and switching happen just between
two cores, whereas for JR states they happen between two
interfaces.

The physical reason behind the nonlinear switching be-
tween two discrete JR states is similar to that for the one
with symmetric fiber couplers [4]. The difference in the mode-
propagation constants due to nonlinearity-based self-phase
modulation (SPM) creates a relative phase shift between the
two discrete JR states which results in incomplete power
transfer between them. When the input power is high enough,
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FIG. 6. (a) Coupling of two trivial states in the linear regime.

(b) The linear coupling length L as a function of the center-to-center
distance between two interfaces. The solid blue curve and the dashed
red curve represent the cases with discrete JR states and with trivial
states, respectively. Parameters are |σ1| = |σ2| = |σ3| = 1, κ = 1,
γ = 0.

the phase difference due to SPM is large enough, so the input
discrete JR state is completely trapped during propagation
in the same interface into which it was initially launched.
Meanwhile, in the low-power linear regime the beams can
be easily transferred between two interfaces. Therefore, as
shown in Fig. 5(f), by adjusting the input power so that the
factor f jumps from 0.25 to 0.48, at the output of the system
with the length equal to the linear coupling length L one can
switch almost all the input power to either the interface at
n = (−5,−4) or the interface at n = (4, 5).

In Fig. 5 we demonstrate the coupling of two discrete
JR states. These qualitative features are also true for two
trivial states. As an example, in Fig. 6(a) we illustrate the
coupling in the linear regime between two trivial states where
the first and second interfaces are located at waveguides with
n = (−2,−1) and n = (5, 6), respectively. So in this case the
center-to-center distance between these two interfaces is D =
7. As seen in Fig. 6(a), the linear coupling length L � 105
in this case. Surprisingly, this value L is almost the same as
the one between two discrete JR states shown in Fig. 5(b)
(where L � 106), with the only exception being that the
center-to-center distance between two interfaces in Figs. 5(b)
and 6(a) is D = 9 and 7, respectively.

Naturally, one can expect that the linear coupling length L
varies exponentially as a function of the distance D between
two interfaces. This is exactly the case, as illustrated in
Fig. 6(b), where we plot the linear coupling length L as
a function of the center-to-center distance D between two
interfaces. The solid blue curve and the dashed red curve in

Fig. 6(b) represent the cases with the discrete JR states and
trivial states, respectively. Because the two interfaces support
localized states of the same type, the center-to-center distance
D between them must be an odd number. It is also clearly
shown in Fig. 6(b) that in the same conditions the coupling
length between two discrete JR states is shorter than the one
between two trivial states. So one can say that the coupling
strength between two discrete JR states is stronger than that
between two trivial states. As mentioned above, the coupling
length L is almost the same if the interface distance D = 9 and
7 for discrete JR states and trivial states, respectively. This
tendency is also true if D = 7 and 5 (the first and second
values correspond to the discrete JR states and trivial states,
respectively), D = 9 and 7, D = 11 and 9, D = 13 and 11,
D = 15 and 13, and so on. The physical reasons behind this
tendency are still not clear to us.

VI. CONCLUSIONS

In conclusion, we demonstrated numerically that two local-
ized states of different types in interfaced binary waveguide
arrays practically do not interact with each other, even though
they are located quite close to each other. This feature can be
used to protect one localized state from coupling to the other
localized state of a different type and can present an efficient
way to robustly guide optical signals in a network where
various channels are tightly distributed. On the contrary, two
localized states of the same type can strongly couple to each
other in the linear regime and show a switching effect like
in well-known symmetric fiber couplers by changing the
input power. Our findings show that a system created by
some BWAs where adjacent BWAs have opposite propagation
mismatches can serve as a classical simulator to study the in-
teraction between quantum relativistic JR states and between
trivial states as well. This interaction can potentially be used
for optical switching, coupling, and robust guiding in photonic
integrated circuits.
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