
A VARIATIONAL BAYESIAN APPROACH FOR MULTICHANNEL THROUGH-WALL
RADAR IMAGING WITH LOW-RANK AND SPARSE PRIORS

Van Ha Tang‡ Abdesselam Bouzerdoum†⋆ Son Lam Phung⋆

‡Faculty of Information Technology, Le Quy Don Technical University, Hanoi, Vietnam
†Division of Information and Computing Technology, College of Science and Engineering,

Hamad Bin Khalifa University, Doha, Qatar
⋆School of Electrical, Computer and Telecommunications Engineering,

University of Wollongong, Australia

ABSTRACT

This paper considers the problem of multichannel through-wall radar

(TWR) imaging from a probabilistic Bayesian perspective. Given

the observed radar signals, a joint distribution of the observed data

and latent variables is formulated by incorporating two important be-

liefs: low-dimensional structure of wall reflections and joint sparsity

among channel images. These priors are modeled through proba-

bilistic distributions whose hyperparameters are treated with a full

Bayesian formulation. Furthermore, the paper presents a variational

Bayesian inference algorithm that captures wall clutter and provides

channel images as full posterior distributions. Experimental results

on real data show that the proposed model is very effective at remov-

ing wall clutter and enhancing target localization.

Index Terms— Through-the-wall radar imaging, wall clutter

mitigation, sparse Bayesian learning, variational inference.

1. INTRODUCTION

Over the past two decades, through-wall radar imaging (TWRI) and

urban sensing technology have become a very active area of research

and development due to its numerous desirable applications for law

enforcement, emergency services, and military operations [1]. In

such operations, the need for providing high-quality radar imagery

of indoor targets is challenged by the presence of strong wall returns

and weak target responses. This issue can be alleviated using mul-

tichannel imaging that combines useful electromagnetic (EM) data

obtained from different polarizations.

Several imaging methods using multipolarization EM waves for

enhancing TWR target localization have been proposed [2–5]. In [2],

multichannel images were used for statistical-based motion indica-

tion. Adaptive target detection was performed using multipolariza-

tion imaging in [3]. The diversity of polarimetric signatures was

exploited for target classification in [4]. In [5], multichannel im-

ages were fused to enhance target localization. These approaches,

however, are applicable only for full multichannel sensing requiring

complete data measurements.

For fast data collection and efficient storage, single and mul-

tichannel TWRI techniques were investigated using a compressive

sensing (CS) framework [6, 7]. It has been shown in [8–12] that tar-

get image formation can be performed from reduced measurements

by exploiting image sparsity through ℓ1 constraint. The ℓ1 constraint

is extended to ℓ2,1 to account for the joint sparsity prior knowledge

among channel images [13–16]. The target reconstruction is im-

proved, but such algorithms provide a point estimate of the target

image, thereby not quantifying the uncertainty associated with the

recovery given the observed measurements. More importantly, such

methods do not consider wall clutter in their imaging models and

require a reference scene for wall clutter mitigation, which may be

impractical in many operations. In TWRI, strong front-wall EM re-

turns overwhelm target echoes, masking targets in the formed im-

age [17–19]. To overcome this problem, multistage CS-based ap-

proaches have been considered that comprise signal estimation, wall

clutter mitigation, and target image reconstruction [20–23]. How-

ever, such methods face the issue of multistage uncertainty because

the signal estimation, wall clutter mitigation, and image formation

tasks are performed separately. The issue of multistage processing

has been addressed recently in [24,25], but these techniques are still

deterministic and require intensive hyperparameter tuning.

This paper introduces a probabilistic Bayesian learning ap-

proach for multichannel indoor radar imaging. We formulate a

joint probability distribution of the observed measurements and the

latent variables of the wall clutter matrix and target images that pro-

vides a complete summary of the uncertainty associated with those

variables. Such variables and hyperparameters are considered as

stochastic quantities, and treated with full Bayesian modeling. We

propose an efficient variational inference that estimates wall clutter,

channel images, and hyperparameters, and provides the uncertainty

in the form of posterior distributions.

The remainder of the paper is organized as follows. Section 2

introduces the multichannel TWR signal model. Section 3 describes

the proposed Bayesian approach for modeling the wall clutter and

multichannel images. Section 4 presents the experimental evalua-

tions. Finally, Section 5 gives concluding remarks.

2. MULTICHANNEL TWR SIGNAL MODEL

Consider a monostatic stepped-frequency TWR using L channels,

N antennas, and M narrowband signals to image P targets behind-

the-wall. Let xl(m,n) be the mth frequency radar signal received

by the nth antenna for the lth channel. The signal xl(m,n) can be

modeled as a superposition of the wall reflections xw
l (m,n), target

returns xt
l(m,n), and noise υl(m,n):

xl(m,n) = xw
l (m,n) + xt

l(m,n) + υl(m,n). (1)

The wall component xw
l (m,n) can be expressed as [20]

xw
l (m,n) =

R
∑

r=1

σware
−j2πfmτr

n,w , (2)

2523978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020



where σw is the reflectivity of the wall, R is the number of wall rever-

berations, ar is the path loss factor of the rth wall return, and τr
n,w is

the propagation delay of the rth wall reverberation. The target return

is modeled as a superposition of echoes from P scatterers [22]:

xt
l(m,n) =

P
∑

p=1

σl
pe

−j2πfmτn,p , (3)

where σl
p is the reflectivity of the pth scatterer or target for the lth

channel, and τn,p is the round-trip travel time of the signal from the

nth antenna to the pth target. The signals received by the nth antenna

for M frequencies are arranged into an M × 1 vector xl,n,

xl,n = [xl(1, n), . . . , xl(M,n)]T = x
w
l,n + x

t
l,n + υl,n. (4)

For image formation, the target space is partitioned into a rect-

angular grid consisting of Q pixels along the crossrange and down-

range. Let sl(q) denote a weighted indicator function representing

the pth target reflectivity at the lth channel:

sl(q) =

{

σl
p, τn,q = τn,p,

0, τn,q 6= τn,p.
(5)

Eq. (5) indicates that the value of the qth pixel is nonzero if it in-

cludes the pth target. Here, τn,q is the focusing delay between the

nth antenna and the qth pixel. From (3), we can relate the target

component xt
l,n to the lth channel image sl = [sl(1), . . . , sl(Q)]T ,

x
t
l,n = Dn sl, (6)

where Dn is an M × Q matrix whose (m, q)th entry is given by

Dn(m, q) = exp(−j2πfmτn,q). From Eqs. (4) and (6), we have

xl,n = x
w
l,n +Dn sl + υl,n. (7)

Due to the presence of strong wall component xw
l,n, applying

imaging methods to the raw radar signal xl,n yields an image sl in

which wall clutter dominates targets. Thus, before image forma-

tion, the wall interference needs to be removed. Wall clutter mit-

igation techniques, such as subspace projection [17], can be used,

but they are less effective in CS TWR because only a subset of fre-

quency samples is available. To address this issue, multistage CS-

based imaging techniques were proposed, where the missing mea-

surements are first recovered, followed by wall clutter mitigation

applied to the estimated measurements. This approach, however,

cannot cope with the multistage uncertainty.

3. BAYESIAN MULTICHANNEL TWRI MODEL

To cope with multistage uncertainty, a full Bayesian formulation is

proposed for multipolarization TWRI. The proposed probabilistic

modeling is described in the next subsection, followed by a varia-

tional Bayesian inference in Subsection 3.2.

3.1. Probabilistic modeling

Consider the signal model in (7). The wall clutter term x
w
l,n in the

signal space can be represented in the wall subspace as

x
w
l,n = Wzl,n, (8)

where the matrix W of size M × J has columns representing the

basis vectors of the wall subspace, and zl,n ∈ C
J×1 is the represen-

tation of the wall signal xw
l,n in the wall subspace. As we will see

later in Subsection 3.2, the latent variables W and zl,n are inferred

adaptively from the observed variable xl,n. It follows from Eqs. (7)

and (8) that xl,n can be written as

xl,n = Wzl,n +Dn sl + υl,n. (9)

Note that Eq. (9) represents the signal model in the full sensing

case where all the measurements from the N antennas are avail-

able. It is also applicable to CS scenarios where only reduced sets

of antennas and frequencies are used. However, in this case n de-

notes the index of a selected position belonging to the antenna subset

Ωn ⊆ {1, . . . , Na}, where Na is the total number of antennas and

N is the number of selected antennas, N = |Ωn|. Likewise, if all M
frequencies are used, then the vector xl,n is complete; otherwise, it

contains only a subset of frequency measurements. In other words,

the mth entry xl,n(m) is observed if the mth frequency belongs to

the selected frequency subset Ωm ⊆ {1, . . . ,M}.

The Bayesian treatment for (9) models the noise component υl,n

as a complex Gaussian distribution with zero-mean and covariance

β−1
I, p(υl,n) = CN (υl,n|0, β

−1
I). This implies that the likeli-

hood function can be expressed as

p(xl,n|W, zl,n, sl, β) = CN (xl,n|Wzl,n+Dnsl, β
−1

I)

= (
β

π
)M exp

{

−β‖xl,n − (Wzl,n +Dnsl)‖
2
2

}

. (10)

The conditional distribution of all the observed radar signals X =
[xl,n] ∈ C

M×LN given the latent variables Z = [zl,n] ∈ C
J×LN

and S = [sl] ∈ C
Q×L can be expressed as

p(X|W,Z,S, β) =
L
∏

l=1

N
∏

n=1

p(xl,n|W, zl,n, sl, β). (11)

Now prior beliefs over the latent variables W, Z, and S are in-

corporated through their probabilistic distributions. The prior knowl-

edge of W is that the effective dimension J of the wall-component

subspace is much smaller than the dimension M of radar signal

(J ≪ M ). This can be modeled by introducing sparse Gaussian

priors over the columns of W, wj , for j = 1, . . . , J ,

p(W|α) =

J
∏

j=1

CN (wj |0, α
−1
j I), (12)

where α = [α1, . . . , αJ ]
T . During inference, most entries of α

approach very large values, thereby driving the corresponding col-

umn vectors wj to zero. The supporting (nonzero) columns of W

are regarded as relevant basis vectors modeling the wall-clutter sub-

space and determining the rank of the wall clutter matrix. This auto-

matic determination for the wall clutter subspace and its dimension

is similar to the mechanism of relevant vector machine in the sparse

Bayesian learning (SBL) framework [26–28]. Note that the effective

columns of W are associated with the rows of the matrix Z due to

the factorization, Xw = [xw
l,n] = WZ, see (8). We therefore use α

to control the rows zj,: of Z:

p(Z|α) =
J
∏

j=1

CN (zj,:|0, α
−1
j I). (13)

The prior of the target image S incorporates the knowledge that

its columns represent sparse images of the same targets (joint spar-

sity support). We use a hyperparameter vector γ = [γ1, . . . , γQ]
T to

control the sparsity of each image sl modeled as a sparse Gaussian,

p(sl(q)|γq) = CN (sl(q)|0, γ
−1
q ). (14)
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During SBL, many values of γ tend to be large, promoting the spar-

sity of the target image. Because γ is used to model the sparsity for

all the channel images, it promotes the joint sparsity among columns

of S. The overall prior over S is given by

p(S|γ)=
L
∏

l=1

Q
∏

q=1

p(sl(q)|γq). (15)

For a full Bayesian model, the gamma conjugate distributions

are introduced over the hyperparameters α, γ, and β as follows

p(α)=
J
∏

j=1

Gam(αj |aα, bα) ∝
J
∏

j=1

αaα−1
j exp(−bααj), (16)

p(γ) =

Q
∏

q=1

Gam(γq|aγ , bγ) ∝

Q
∏

q=1

γ
aγ−1
q exp(−bγγq), (17)

p(β) = Gam(β|aβ , bβ) ∝ βaβ−1 exp(−bββ). (18)

Here, the parameters a(.), b(.) are treated as deterministic and set to

very small values (e.g. 10−8) to obtain corresponding broad hyper-

priors. We now have the joint distribution of all the observed variable

X and latent variables Θ = {W,Z,S,α,γ, β} given by

p(X,Θ) = p(X|W,Z,S, β) p(W|α) p(Z|α)

p(S|γ) p(α) p(γ) p(β). (19)

3.2. Variational Bayesian inference

Given the joint distribution in (19), an exact Bayesian inference re-

quires the computation of the posterior distribution, p(Θ|X), which

is analytically intractable. Therefore, approximation methods must

be used. Here, we seek a complete Bayesian treatment using the

variational technique that approximates the posterior p(Θ|X) by a

distribution q(Θ) satisfying the following decomposition of the log

marginal probability p(X) [29, 30],

ln p(X) = L(q) + KL(q||p), (20)

where KL(q||p) is the Kullback-Leibler (KL) divergence between

q(Θ) and p(Θ|X), and L(q) is the lower bound of the log of the

model evidence ln p(X). The distribution q(Θ) is approximated by

exploiting the factorization q(Θ) =
∏

q(θk); the posterior q(θk) of

each latent variable θk ∈ Θ is computed as

ln q(θk) = EΘ\θk [ln p(X,Θ)] + const, (21)

where Θ \ θk denotes the set Θ removing θk. Eq. (21) means that

the posterior distribution of each hidden variable θk is obtained by

considering the log of the joint distribution in (19) over all observed

and latent variables and then taking the expectation E[·] with respect

to all other variables except for θk. The update rules for the latent

variables are presented in the following.

A. Estimation of wall subspace W

Using (21), the posterior distribution of W is given by

ln q(W)=EZ,S,β [ln p(X|W,Z,S, β)] + Eα[ln p(W|α)]. (22)

Substituting (11) and (12) into (22) and keeping only terms related

to W yields

q(W) =
M
∏

m=1

CN (wm,:|mw,Cw), (23)

where A = diag(E[α]), wm,: is the mth row of matrix W, and

mw=E[β]Cw

L
∑

l=1

N
∑

n=1

E[zl,n](xl,n(m)−D
m,:
n E[sl]), (24)

Cw = (A+ E[β]
L
∑

l=1

N
∑

n=1

E[zl,nz
H
l,n])

−1. (25)

B. Estimation of matrix Z

The posterior distribution of Z is estimated using (21):

ln q(Z)=EW,S,β [ln p(X|W,Z,S, β)]+Eα[ln p(Z|α)]. (26)

Using (11), (13), and (26) and keeping the terms related to Z yields

q(Z) =
L
∏

l=1

N
∏

n=1

CN (zl,n|mz,Cz), (27)

mz = E[β]CzE[W]H(xl,n −DnE[sl]), (28)

Cz = (A+ E[β]E[WH
W])−1. (29)

C. Estimation of channel image S

Using (21), the posterior distribution of S is expressed as

ln q(S)=EW,Z,β [ln p(X|W,Z,S, β)]+Eγ [ln p(S|γ)]. (30)

Substituting (11) and (15) into (30), keeping the terms associated

with S, and defining Γ = diag(E[γ]), we obtain

q(S) =
L
∏

l=1

CN (sl|ms,Cs), (31)

ms=Cs[E[β]
N
∑

n=1

D
H
n (xl,n−E[W]E[zl,n])], (32)

Cs = (Γ+ E[β]
N
∑

n=1

D
H
n Dn)

−1. (33)

D. Estimation of hyperparameters α, γ, and β

Similarly, by (21), the posterior distributions of the hyperparame-

ters are approximated as q(α) =
∏J

j=1 Gam(αj |âα, b̂α), q(γ) =
∏Q

q=1 Gam(γq|âγ , b̂γ), and q(β) = Gam(β|âβ , b̂β). Since such

posteriors follow gamma distributions, the expectations are given by

E[αj ] =
âα

b̂α
=

aα +M + LN

bα + E[wH
j wj ] + E[zj,:zHj,:]

, (34)

E[γq] =
âγ

b̂γ
=

aγ + 1

bγ +
∑L

l=1 E[sl(q)]
2
, (35)

E[β]=
aβ +MLN

bβ+
∑L

l=1

∑N
n=1‖xl,n−E[W]E[zl,n]−DnE[sl]‖

2
2

. (36)

In summary, the proposed inference algorithm starts by estimat-

ing the wall subspace W and the wall signal coefficient Z using their

expectations (24) and (28), followed by learning the multichannel

image S using (32), and finally updating the hyperparameters using

(34) for α, (35) for γ, and (36) for β. Note that these update rules

depend on the moments of the latent variables only and therefore we

just need to store such variables. As the inference scheme maximizes

the variational lower bound L(q), its convergence can be ascertained

by tracking L(q).
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4. EXPERIMENTAL RESULTS

A stepped-frequency TWR system was used for data collection. Four

polarization datasets (L = 4) were collected by placing the radar

system in front of a 0.16 m thick wooden wall, at a standoff distance

of 1 m. A transceiver is moved along the wall to synthesize a 61-

element antenna array with an inter-element spacing of 0.01 m. At

each antenna, a set of 401 monochromatic signals, covering a fre-

quency range of [2–4] GHz with a step of 5 MHz, is transmitted to

illuminate a scene containing one triangular plate trihedral centered

at (−0.5 m, 1.0 m), and a 0.2 m square plate dihedral centered at

(1.0 m, 1.0 m), as shown in Fig. 1.
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Fig. 1. Layout of the TWRI scene used for data collection.

Wall clutter mitigation and image reconstruction are performed

using reduced datasets generated by randomly selecting half of the

total frequencies at all the antennas. Using input data matrix X, the

Bayesian learning starts by initializing the latent variables, which

can be set randomly and yield satisfactory results. However, we can

achieve fast convergence with more suitable initial values. Here, the

wall subspace factors W and Z are initialized using dominant singu-

lar components (SC) obtained from the singular value decomposition

(SVD) of the input radar signal matrix, X = U Λ V
H . We select

J = ⌊min(M,LN)/2⌋ dominant SCs and set W = U Λ
1/2 and

Z = Λ
1/2

V
H .

Figs. 2(a) and (b) show the co-polarization (HH) and cross-

polarization (HV) images, respectively, formed after convergence

by the proposed inference algorithm. The targets are well localized

and clutter is significantly suppressed. For comparison, Figs. 2(c)

and (d) present the multichannel images reconstructed by the mul-

tistage CS-based method [20–23] using the same reduced datasets.

Here, the signal estimate was performed first, followed by subspace

projection [17] for wall clutter mitigation, and ℓ1 minimization for

image formation. Strong wall clutter is removed, but target pixels

are not recovered fully, and the formed images are affected by other

artifacts. To quantify the improvement in target recovery and clut-

ter mitigation, the target-to-clutter ratio (TCR) is used as the per-

formance measure. Let At and Ac be, respectively, the target and

clutter regions of the formed image I , and let Nt and Nc denote, re-

spectively, the number of target and clutter pixels. The TCR (in dB)

is defined as

TCR = 10 log10(

1
Nt

∑

q∈At
|Iq|

2

1
Nc

∑

q∈Ac
|Iq|2

). (37)

The average TCRs of the images formed by the proposed Bayesian

and multistage CS-based methods are both computed using (37).

The Bayesian method has a TCR of 35.59 dB, much higher than

the 24.81 dB obtained by the multistage CS-based method. Fig. 3(a)

shows the automatic relevant determination of the rank of the wall

clutter subspace W by the Bayesian inference. The rank starts at

122 (J = ⌊min(401, 4 × 61)/2⌋), decreases during inference, and

reaches 2 at convergence. Fig. 3(b) illustrates the learning conver-

gence, which maximizes the lower bound L(q); L(q) increases dur-

ing the inference, and reaches a steady state after 10 iterations.

 !"  #"

 $"  %"

Fig. 2. Multichannel images reconstructed by different methods with

50% data measurements: (a) co-polarization (HH) and (b) cross-

polarization (HV) obtained by the proposed Bayesian method, (c)

co-polarization (HH) and (d) cross-polarization (HV) obtained by

the multistage CS-based method.

 !"  #"

Fig. 3. Relevant determination of the effective rank of wall subspace

and convergence of the inference algorithm: (a) the rank value of the

wall clutter subspace W as the function of iterations, (b) the lower

bound L(q) of the log of the marginal probability ln p(X) as the

function of iterations.

5. CONCLUSION

This paper presented a variational Bayesian model for multichannel

TWRI. Through experimental validation, it was demonstrated that

the proposed model captures wall clutter well and enhances multi-

channel imaging, even with reduced measurements. Furthermore,

by providing latent variables as posterior distributions and learning

the wall subspace and target images adaptively from the observed

radar measurements, the proposed model is capable of capturing un-

certainty and alleviating the issue of hyperparameter tuning.
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