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Abstract
In this article, we conducted a new hybrid method between Non-dominated Sorting Genetic Algorithm II (NSGA-III)
and SPEA/R (HNSGA-III&SPEA/R). This method is implemented to find the optimal values of the powertrain mount sys-
tem stiffness parameters. This is the task of finding multi-objective optimization involving six simultaneous optimization
goals: mean square acceleration and mean square displacement of the powertrain mount system. A hybrid HNSGA-
III&SPEA/R has proposed with the integration of Strength Pareto evolutionary algorithm-based reference direction for
Multi-objective (SPEA/R) and Many-objective optimization genetic algorithm (NSGA-III). Several benchmark functions
are tested, and results reveal that the HNSGA-III&SPEA/R is more efficient than the typical SPEA/R and NSGA-III.
Powertrain mount system stiffness parameters optimization with HNSGA-III&SPEA/R is simulated. It proved the poten-
tial of the HNSGA-III&SPEA/R for powertrain mount system stiffness parameter optimization problem.
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Introduction

The vehicle power system includes engine, transmission,
and clutch. This is not only the power supply for the
car, but it is also the part that causes the main vibration
in the car. Therefore, the engine mount is usually
installed between the power source system and the car
body to limit vibration from the power system to the
chassis.1 The system consists of mounts, and power
source system is a vehicle power system. Figure 1 is the
principle diagram of the half-car dynamic model; in this
model, the mounts play an important role. Good power
source system mounts will improve the performance of
noise, vibration, and harshness (NVH) of the vehicle
while extending the life of the engine and related
parts.2,3 Engine mounts can be categorized according
to the characteristics of the ability to control mounts. It
includes passive mounts, active mounts, and semi-active
mounts. Rubber mounts are the most widely used
engine mounts for their low cost and simple structure.
The mounts need to be designed with the parameters of
the mounts to match their stiffnesses. In order to reduce
the vibration of the engine to the elastic substrate and
to reduce the unwanted effects of stimuli from the road,

the wheel acts on the body of the vehicle, the mounts
should have the appropriate stiffness. Therefore, an
important task in designing the power source system
mounting system is to calculate the optimal stiffness
parameters for the power source system mounting sys-
tem. This is a multi-object optimization issue.

In recent years, some researchers have researched in
this area. They have given different ways and tech-
niques, among them, presented in an overview and
guidelines.4 Deb et al.5 published the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) algorithm and
so far, several variants and applications for NSGA-II
have been developed by Chang and Chang.6–8

Kalyanmoy and Jain9 applied MONGA-II to a number
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of many-objective test problems. Deb and Jain10 pub-
lished the NSGA-III algorithm based on the NSGA-II
algorithm, by changing some of the selection mechan-
isms. NSGA-III algorithm has been tested in multi-
objective optimization.

In addition, SPEA2 algorithm is an extension of
SPEA’s (Strength Pareto evolutionary algorithm) multi-
objective evolution optimization algorithm. This algo-
rithm uses a mechanism such as k-Recent Neighbor
(kNN) and a specialized ranking system to sort individ-
uals of a population and choose individuals of the pop-
ulation in the next cycle. This is a combination of the
current population and the population created by
genetic operators (mutations and cross-exchanges).
SPEA2 is a widely used and applied algorithm for han-
dling real-world scientific and technical applications.
There are also some researchers on this algorithm: Kim
et al.11 improved the SPEA2 algorithm to improve its
searchability. E Zitzler et al.12 published a SPEA2 algo-
rithm: this used the increase in the power of multi-
objective optimization. Borisevic and Bartlett13 have
applied this algorithm to get an optimal safety system
design. Hiroyuki Mori and Hiroki Kakuta14 proposed a
new method to assess probability reliability with multi-
target super therapy (MOMH) in the smart grid. De
Tommasi et al.15 studied RF circuit blocks from alter-
native models and normal boundary intersection (NBI)
method, SPEA2 algorithm for multi-objective optimiza-
tion. Sokratis Sofianopoulos16 proposed SPEA2 algo-
rithm for optimization in a machine translation system.
F Zhao et al.17 proposed a method to optimize adaptive
selection evolutionary operators (AOSPEA) with
SPEA2 algorithm. Hamida et al.18 proposed the Pareto
Strength (SPEA2) Evolution Algorithm for the
Economic/Environmental Power Distribution. Jiang
and Yang19 published a SPEA/R algorithm, it is a sig-
nificant extension of the early SPEA algorithm to opti-
mize multiple goals. It applies the advantages of
SPEA2’s physical assignment in quantifying solutions—
diversity and convergence—in one method. It is appro-
priate to replace the most time-consuming density esti-
mator with an algorithm based on the reference
direction. Their proposed exercise duties also take into
account the convergence of both local and global.

Recently, new optimization algorithms are pro-
posed.20–27 However, each algorithm has advantages

and disadvantages, precisely because no algorithm can
solve all optimization problems correctly. Therefore,
new hybrid algorithms should be proposed to be able to
solve new problems that have not been resolved before
and/or have better accuracy than existing techniques.

Some methods of hybridization of optimal algorithms
have been developed recently: Jeong et al.28 published the
Hybrid Algorithm between genetic algorithm (GA) and
particle swarm optimization (PSO) for Optimizing real-
world design. Premalatha et al.21 published a hybrid algo-
rithm between PSO and GA for Global Maximization.
Hong-bin Bai29 proposed a way to optimize multi-target
particles based on extreme optimization with variable and
inertial inertia mutations (HM-TVWF-MOEPSO) to
enhance the effectiveness of the algorithm while perform-
ing some problems in multi-target particle optimization.
A hybrid method is proposed to combine the simple
method of Nelder-Mead with the non-dominance sequen-
cing method of NSGA-II algorithm. Pourtakdoust and
Zandavi30 have published a method to evaluate the per-
formance of new hybrid methods. Multi-variable technical
optimization issues can be handled by Pareto solutions
and optimized multiple times until satisfactory results are
obtained and these have been published in Guang Yang
et al.31 E Rashidi et al.32 published an independent paral-
lel genetic hybridization method. Thus, most published
hybrid algorithms have more advantages. This hybridiza-
tion has overcome the limitations of each optimization
algorithm. This proves that this is one of the techniques
that need to be studied in optimizing many goals.

In this paper, a new hybrid method has been pro-
posed to find the Pareto optimization front for multi-
purpose problems. This is a combination of SPEA/R
algorithm and NSGA-III algorithm to find out the best
Pareto-optimal front of powertrain mount system stiff-
ness parameter. The effectiveness of the new algorithm
is expressed through a number of complex benchmark-
ing functions and for powertrain mount system stiffness
parameter optimization problem with four-objective
optimization in two-dimensional model.

This article is presented as follows: the ‘‘Structure’’
section presents hybrid HNSGA-III&SPEA/R method
and computational experimentation with several bench-
mark functions. The section ‘‘Vibration characteristic
of the half-car dynamic model’’ describes the system
vibration characteristics of the dynamic cluster on the
vehicle and simulation results of application HNSGA-
III&SPEA/R method to stiffness parameter optimiza-
tion of mounts system. The final section is a conclusion.

Structure

Genetic algorithm NSGA-III

Deb and Jain10 improved the NSGA-II gene algorithm
into algorithm NSGA-III. The NSGA-III algorithm is
described in the flowchart of NSGA-III shown in
Figure 2.

Figure 1. The half-car dynamic model.
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SPEA/R algorithm

The SPEA/R algorithm has been published by
Shouyong et al. (2017). The SPEA/R algorithm is
shown in the diagram of SPEA/R as shown in Figure 3.

Hybrid NSGA-III and SPEA/R (HNSGA-III&SPEA/R)

Evolutionary algorithms have different strengths and
weaknesses. So to handle complex problems, we often
think of integrating different algorithms. In the field of
research, consolidate different methods of evolution or
optimization algorithms into a single algorithm. More
efficient hybrid algorithms can exchange each other’s
strengths, all shown in the results indicating that. It can
be processed in parallel to enhance exploration and
exploitation. Therefore, it can have higher results than
single algorithms. Use-based approaches to population
use different techniques to explore the search space and
when they are combined, it will advance the trade-off
between exploration and exploitation tasks to converge
solutions. This hybrid method has acquired the
strengths of both algorithms, which are fast conver-
gence capabilities in NSGA-III and SPEA/R diverse
search capabilities, thus reducing computation time
and a result of Pareto front set is more accurate than
the above two methods.

HNSGA-III&SPEA/R hybrid approach. HNSGA-III&SPEA/
R are implemented in parallel hybridization. That is,
the original population will be both NSGA-III and
SPEA/R simultaneously generated. After that, two sep-
arate populations will be mixed together. The new pop-
ulation after the mix will be both algorithms used as
their own population to perform evaluation fitness
function calculations for the evolution of each algo-
rithm. To the next generation, the new population that
is created by the two algorithms is mixed together to
form a common population. The process repeats until
the evolutionary termination condition is complete.

A flowchart of HNSGA-III&SPEA/R is shown in
Figure 4.

Computational experimentation with several
benchmark functions

For accurate and intuitive evaluation, we have selected
five typical standard functions to evaluate and compare
between algorithms. The three standard functions UF2,
UF4, and UF5 are functions to evaluate two optimal
objects simultaneously; UF8 and UF10 are functions
for evaluating three optimal objects simultaneously.
These are very famous standard functions and have

Figure 2. Flowchart of NSGA-III.
Figure 3. Flowchart of SPEA/R.
SPEA/R: Strength Pareto evolutionary algorithm.
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been widely used in the evaluation of optimal target
optimization.

Result number: Performance of HNSGA-
III&SPEA/R is proved by the five standard functions
announced in CEC 2009,33 as in Table 1. Results are
evaluated with methods of NSGA-III and Multi-objec-
tive SPEA/R, for Inverted Generational Distance
(IGD) of Schott.34 Standards are used to measure the
convergence, number, and corresponding coverage.
IGD is calculated as follows

IGD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1

di
2

s

N
ð1Þ

Here, N is the number of real Pareto-optimal front
set and di shows the Euclidean distance between the
correct ith Pareto-optimal front set and the cabinet to
obtain Pareto-optimal front set. IGD=0 proved that
all members of the non-dominant set are in the real
Pareto Front. In addition to using performance data,
the best Pareto optimization solution set by HNSGA-
III&SPEA/R on both parameter space and search
space is shown in Figure 5 (UF1, UF4, UF5). These
figures clearly show the performance of HNSGA-
III&SPEA/R compared to the true Pareto front. For
comparison and evaluation, these methods were run 20
times for test problems. The statistical results of 20
runs and the parameters of the methods are shown in
Tables 2–4. The statistical results of the method for

IGD are presented in Table 5. Hybrid methods
(HNSGA-III&SPEA/R) have been demonstrated on
all statistics for two-goal test problems, that is,
expressed through the IGD parameter. The perfor-
mance of the accuracy and convergence of the method
is reflected in the IGD index. Therefore, it has been
shown that the proposed HNSGA-III&SPEA/R
method can provide outstanding convergence on the
two target benchmarks. Pareto-optimal solution of
HNSGA-III&SPEA/R on the three target benchmarks
is also described in Figure 5 (UF8, UF10).

The Pareto front result is presented in Figure 5.
Numerical results have shown that the HNSGA-
III&SPEA/R method has higher accuracy for bench-
marking functions with two objectives related to
convergence and coverage. However, for some tri-
objective functions, the three targets are standard;
although the proposed method shows higher conver-
gence, it has higher coverage compared to NSGA-III
and SPEA/R methods. Therefore, we can confirm that
the HNSGA-III & SPEA/R method has advantages
over the NSGA-III and SPEA/R methods, which are
the higher convergence and coverage characteristics. In
addition, in most cases, the results of HNSGA-III &
SPEA/R are better than that of NSGA-III and SPEA/
R. Therefore, the HNSGA-III&SPEA/R method has
better results and is more accurate than the other two

Figure 4. Flowchart of HNSGA-III&SPEA/R.
SPEA/R: Strength Pareto evolutionary algorithm.

The pseudo code of the proposed algorithm:
Initialize parameters for NSGA-III and SPEA/R.
SPEA/R: Swarm population initialization.
NSGA-III: GA population initialization.

While travel not completed.
Mix the two populations.
SPEA/R algorithm.

While conditions stop not responding do
Use genetic elements on P to produce the female population P
Q = P[P
Assigning members’ goals in Q:
Q = Objective_ Assigning (Q)

For each reference direction, i2W do
Assign personal of Q close to i:
E(i) = Associate(Q, W, i)
Determine the physical value of personal in E(i):
Fitness_ Production (E(i))

End for
P = choose the environment (Q, W)

End while.
NSGA-III algorithm.

While evolution not completed.
Assign two parents P1 and P2 using the tournament method.
Assign the crossover between P1 and P2 with a probability Pc.
Recognize the unclassified population classification.
Normalization of population individuals.
Linking individuals population with reference points.
Specify appropriate storage (access).
Keep the appropriate solutions obtained for the next

generation.
End while.

End while.
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Table 2. NSGA-III algorithm parameters.

Maximum number
of iterations

MaxIt = 10,000 Number of parents (offsprings) nCrossover = 2 3 round(pCrossover 3 nPop / 2)

Population size nPop = 100 Number of mutants nMutation = round(pMutation 3 nPop)
Crossover percentage pCrossover = 0.5 Mutation step size sigma = 0.1 3 (VarMax – VarMin)
Mutation percentage pMutation = 0.5 Generating reference points nDivision = 10

Zr = GenerateReferencePoints(nObj, nDivision);
Mutation rate = 0.02 mu = 0.02 Number of parents (offsprings) nCrossover = 2 3 round(pCrossover 3 nPop / 2)

Table 3. SPEA/R algorithm parameters.

Maximum number of iterations 10,000 pMutation 1 – pCrossover
Population size 100 nMutation nPop – nCrossover
Archive size 50 mutation_params.h 0.2
KNN parameter round(sqrt(nPop + nArchive)) crossover_params.gamma 0.1

pCrossover 0.7 crossover_params.VarMin VarMin
nCrossover round(pCrossover 3 nPop/2) 3 2 mutation_params.VarMin VarMin

mutation_params. VarMax VarMax crossover_params.VarMax VarMax

SPEA/R: Strength Pareto evolutionary algorithm; KNN: k-Recent Neighbor.

Table 4. HNSGA-III& SPEA/R algorithm parameters.

Maximum number of iterations 10,000 pMutation 1 – pCrossover
Population size 100 nMutation nPop – nCrossover
Archive size 50 mutation_params.h 0.2
KNN Parameter round(sqrt(nPop + nArchive)) crossover_params.gamma 0.1

pCrossover 0.7 crossover_params.VarMin VarMin
nCrossover round(pCrossover 3 nPop / 2) 3 2 mutation_params.VarMin VarMin

mutation_params.VarMax VarMax crossover_params.VarMax VarMax
Mutation rate 0.02 Mutation step size 0.1 3 (VarMax – VarMin)
Number of parents (offsprings) 2 3 round(pCrossover 3 nPop / 2) Mutation step size 0.1 3 (VarMax – VarMin)
Number of mutants round(pMutation 3 nPop)

KNN: k-Recent Neighbor; SPEA/R: Strength Pareto evolutionary algorithm.

Table 5. Results for IGD.

IGD Average Median SD Worst Best

UF2
SPEA/R 0.07145 0.04533 0.03754 0.14511 0.03626
NSGA-III 0.12344 0.1252 0.01263 0.14485 0.10454
HNSGA-III&SPEA/R 0.01351 0.01544 0.00255 0.01456 0.01274

UF4
SPEA/R 0.13433 0.14445 0.00643 0.15454 0.12344
NSGA-III 0.06823 0.06835 0.00254 0.07078 0.06424
HNSGA-III&SPEA/R 0.02645 0.02867 0.00145 0.02734 0.02267

UF5
SPEA/R 2.50643 2.42532 0.57097 3.03545 1.48643
NSGA-III 1.26765 1.33751 0.13839 1.46735 0.12145
HNSGA-III&SPEA/R 0.47843 0.45451 0.08445 0.53562 0.22371

UF8
SPEA/R 0.23629 0.43871 0.13765 0.45467 0.24565
NSGA-III 0.56682 0.53666 0.28667 0.69647 0.28530
HNSGA-III&SPEA/R 0.19639 0.27870 0.06766 0.33466 0.17565

UF10
SPEA/R 1.70325 1.54313 0.55104 3.03813 1.13804
NSGA-III 1.63539 1.59124 0.29349 2.16232 1.22048
HNSGA-III&SPEA/R 1.70346 1.54335 0.55137 3.03836 1.13823

IGD: Inverted Generational Distance; SD: standard deviation; SPEA/R: Strength Pareto evolutionary algorithm.
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methods because it uses simple operators to create a
new population derived from a non-dominant solution.

The hybrid HNSGA-III&SPEA/R method has
inherited the advantages of NSGA-III as a reference
point based on many-objective NSGA-II, emphasizing
that population members are not dominated but close
to a set of reference points are provided. And the
strengths of SPEA/R are the early resurgence and the
expensive computational power of the Pareto-based
Evolution algorithm by introducing an effective refer-
ence orientation density estimation tool, a new physical
assignment scheme, and a new environmental selection
strategy, to handle both multi-objective and multiple-
objective problems. This hybrid method has yielded a
more satisfactory and more accurate result.

Vibration characteristic of the half-car
dynamic model

The mounts play an important role in car dynamics
system. The principle diagram of the half-car dynamic
model with the transmission system is shown in
Figure 6.

By using Newton’s law, the mathematical model of
Figure 6 can be written as below

M€xi +K _xi +Cxi =Q(t) ð2Þ

where xi is Vector-column of displacements and angu-
lar oscillations of masses; M is Matrix of inertial

coefficients of car parts; C is Matrix of coefficients of
stiffnesses and torsional rigidity; K is Matrix of damp-
ing coefficients; Q(t) is Column vector of the perturb-
ing forces and moments; q2(t)= q1(t+ t) with t: time
interval; and va is the vehicle speed

Q(t)=

2kPM
1 � _q1(t)+2CPM

1 � q1(t), 2kPM
2 � _q2(t)+

2CPM
2 � q2(t), 0, 0,Pj(t),Pj(t) � l10, 0, 0, 0,M(t),

0, 0, 0, 0, g � 2 � kPM
1 � _q1(t)+2 � CPM

1 � q1(t)
	 


,

g � 2 � kPM
2 � _q2(t)+2 � CPM

2 � q2(t)
	 


, 0, 0, 0

2
6664

3
7775
T

ð3Þ

X=
z1, z2, z0,j

y
0, zca,j

y
ca, zpk,j

x
ca,j

x
pk,

j1,j2,j3,j4,j5,j6,j7,j8,j
Q

M,j3M

" #T

ð4Þ

Multi-objective optimization functions

There are many indicators to evaluate the vibration of
the powertrain. In particular, mean square acceleration
(MSA) oscillates at the front and rear of the engine
mount, the mean square displacement (MSD) difference
between the engine and vehicle chassis at the front and
rear engine mount. These are two important parameters
that determine the decisive influence of unit engine
vibration on chassis. In order to optimally reduce the
vibration of the unit engine, we need to simultaneously

Figure 5. The resulting Pareto-optimal set of HNSGA-III&SPEA/R on each benchmark functions.
SPEA/R: Strength Pareto evolutionary algorithm.
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optimize the parameters of MSA and MSD at the front
and rear of the engine mount.

The average square value of the vibration accelera-
tion of any points can be determined by the formulas

€zck =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘
�‘

S€z(v)dv

vuuut =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘
�‘

v4 Wz( jv)j j2Sq(v)

vuuut ð5Þ

where v is frequency; Wz( jv)j j2 is squared modulus of
amplitude and phase characteristics; and Sq(v) is spec-
tral density of exposure.

The modules of the amplitude and phase characteris-
tics of the vibratory displacement of the powertrain and
the car body in the place of the front mount are

WO1

k ( jv)=W0( jv)+W
j
0 ( jv) � l3 ð6Þ

WO1
ca ( jv)=Wj

ca( jv)+Wca( jv) � l6 ð7Þ

where W0( jv) is module amplitude-phase characteris-
tics in the center of the car body; Wu

0 ( jv) is module
amplitude-phase characteristics of the longitudinal-
angular body of the car; WO1

k ( jv) is module of the
amplitude and phase characteristics of the body in place
of the front mount of the powertrain; Wca( jv) is mod-
ule amplitude-phase characteristics in the center of the
powertrain of the car; Wj

ca( jv) is module amplitude-
phase characteristics of the longitudinal-angular power-
train of the car; and WO1

ca ( jv) is modulus of amplitude
and phase characteristics in place of the front mount of
the powertrain.

The modules of the amplitude and phase character-
istics of displacement of the engine and the car body in
the place of the rear mount are

WO2

k ( jv)=W0( jv)+W
j
0 ( jv) � l4 ð8Þ

WO2
ca ( jv)=Wca( jv)�Wj

ca( jv) � l7 ð9Þ

where WO2

k ( jv) is the module of the amplitude-phase
characteristics of the body in the place of the rear
mount of the powertrain and WO2

ca ( jv) is the module of
amplitude and phase characteristics in the place of the
rear mount of the powertrain.

The difference of the module frequency response of
the vibration of the powertrain and the car body in
place of the front mount of the powertrain (C31)

WO1

ca�k( jv)=WO1
ca ( jv)�WO1

k ( jv) ð10Þ

The difference of the frequency response module dis-
placement of the engine and the car body at the rear
mount (C32) is

WO2

ca�k( jv)=WO2
ca ( jv)�WO2

k ( jv) ð11Þ

Simulated input parameters

Road surface profiles. When the vehicle moves, there are
many factors that cause the vibration, the factors can
be listed as the internal force in the car; external forces
appear in the process of using acceleration, braking,
revolving; exterior conditions such as wind and storm;
and boring face street. Among the factors on the
bumpy side of the road is the oscillation cause of the
vehicle. To simulate the most general calculation, we
use the road surface profile as a random function as in
Figure 7, and simulated parameters as shown in Table
6–8.

Figure 6. Dynamic vibration model.
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Simulation results of application HNSGA-III&SPEA/R
method to optimization of the Powertrain Mount
System Stiffness Parameter

Through MATLAB, we calculated four functions of
acceleration and displacement according to the stiff-
nesses of the front and rear engine mount (C31, C32)
values as shown in Figure 8.

The results of multi-objective optimization would be
a set of non-dominated optimized points, it is called the
Pareto set. These points offer a wide range of para-
meters to the designer to choose the optimum point
depending on his designing conditions. There are
always conflicting objective functions in vehicle design-
ing where improvement in one function may have an
unfavorable influence on other functions. In this arti-
cle, multi-objective optimization for all four-objective
functions is done simultaneously. By application of
HNSGA-III&SPEA/R optimization algorithm, we
obtain results as shown in Figures 9–11. Area A is
Global Pareto front of the mount system as shown in
Figure 11.

The average square of the Pareto front of MSD at
the front engine mount: f1=2.1773e-04 (m).

The average square of the Pareto front of MSA at
the front engine mount: f2=13.8276 (m/s2).

The average square of the Pareto front of MSD at
the rear engine mount: f3=4.0500e-04 (m).

The average square of the Pareto front of MSA at
the rear engine mount: f4=18.1001 (m/s2).

Figure 9 depicts a set of Pareto front sets after
10,000 repetitions with an initial population of 100.
This figure shows the optimal points of the Pareto front
set according to the coordinate axis of the displacement
and acceleration functions of the two mount.

Figure 10 shows the optimal Pareto front points on
the displacement surface and the acceleration surface
of two engine mounts. From here, there is a visual view
of the optimal points corresponding to the hardness of
C31 and C32.

Table 6. Geometric parameters of engine (m).

l1 l2 l3 l4 l5

1.225 1.175 1.330 0.520 0.190

l6 l7 l8 l9 l10

0.187 0.623 0.760 0.210 0.030

Table 7. General settings information.

Mass of the equipped automobile, m0, kg 1210
Payload, kg 400
The weight of the front wheels, m1, kg 37
The weight of the rear wheels, m2, kg 37
The weight of the power unit, mca, kg 152.2
Transfer case weight, mpk, kg 27.8
Radius crank, r, M 0.04
The ratio of the crank radius to the
length of the connecting rod, l

0.308

Wheel radius in slave mode, rk, M 0.325

Table 8. Value ranges of stiffness factor.

Design variables
C31, C32

Initial values Varying ranges

Lower Upper

Stiffnesses of rear
engine mount C31 (N/m)

690,000 100,000 900,000

Stiffnesses of front
engine mount C32 (N/m)

190,000 100,000 900,000

Figure 7. Road surface profiles.

Figure 8. Values of four-objective optimization functions: (f1) MSD at the front engine mount, (f2) MSA at the front engine mount,
(f3) MSD at the rear engine mount, and (f4) MSA at the rear engine mount.
MSD: mean square displacement; MSA: mean square acceleration.
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Figures 10 and 11 visually depict the optimal points
according to the hardnesses of C31 and C32, respec-
tively, according to displacement and acceleration in
each mount and in both vehicles in the half-car simula-
tion model. From here, depending on the different
design requirements, the designer chooses which opti-
mal point best fits the design requirement. Table 9 is

the simulation results of optimization of the Powertrain
Mount System Stiffness Parameter.

Conclusion

The combination of the SPEA/R algorithm and the GA
NSGA-III has been implemented in this paper. This

Figure 9. Pareto front of the solutions after 1000 generations, 200 population.

Figure 10. Global Pareto front of four-Optimization Objective: (f1) Pareto front of MSD at the front engine mount, (f2) Pareto
front of MSA at the front engine mount, (f3) Pareto front of MSD at the rear engine mount, and (f4) Pareto front of MSA at the rear
engine mount.
MSD: mean square displacement; MSA: mean square acceleration.

Figure 11. Global Pareto front of the mount system: (f1–f2) Pareto front of MSD and MSA at the front engine mount, (f3–f4)
Pareto front of MSD and MSA at the rear engine mount, and (f1–f4) Pareto front of MSD and MSA of mount system.
MSD: mean square displacement; MSA: mean square acceleration.
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technique results in the globally optimal set of multi-
object problems. Hybrid method HNSGA-III&SPEA/
R has been rated as high performance. This has been
assessed through a series of comparative testing meth-
ods for benchmarking functions two goals and three
goals. In addition, these results are compared with
other multi-purpose optimization methods such as
SPEA/R and NSGA-III. The numerical results demon-
strate that this new hybrid algorithm is more effective
in solving multi-objective optimization problems with
many possibilities for convergence and search.

HNSGA-III&SPEA/R has been applied in the prob-
lem of Powertrain mount system stiffness parameters
optimization. Simulation results comparing one of the
results in the set of the Pareto front from the HNSGA-
III&SPEA/R algorithm with different stiffness values
(C31, C32) are shown in Figures 12 and 13.

Figure 12 shows the acceleration of the vehicle frame
corresponding to the different stiffness values. Symbol
A corresponds to the optimal stiffness value in a set of
the Pareto front. Symbol B corresponds to
C31=290,000; C32=350,000. Symbol C corresponds
to C31=790,000; C32=750,000. From the graph, we
see that the smallest acceleration is at the optimal stiff-
ness value. Similarly, Figure 13 shows the displacement
of the vehicle frame corresponding to the different stiff-
ness values. Symbol A corresponds to the optimal

stiffness value in a set of the Pareto front. Symbol B
corresponds to C31=290,000; C32=350,000. Symbol
C corresponds to C31=790,000; C32=750,000.
From the graph, we see that the smallest displacement
is at the optimal stiffness value.
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