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Featured Application: The systematic and generic method proposed in this study for the 

kinematic design and dynamic modelling for a class of complex hybrid robots is useful and 

applicable for the development of new hybrid robot products. Based on the proposed method, 

the mechanism of a new hybrid robot can be synthesized and analysed effectively; the dynamic 

model and control law of a complex robot can be formulated and simulated in a simplified and 

effective manner. 

Abstract: Recently, more and more hybrid robots have been designed to meet the increasing 

demand for a wide spectrum of applications. However, development of a general and systematic 

method for kinematic design and dynamic analysis for hybrid robots is rare. Most publications deal 

with the kinematic and dynamic issues for individual hybrid robots rather than any generalization. 

Hence, in this paper, we present a novel method for kinematic and dynamic modelling for a class 

of hybrid robots. First, a generic scheme for the kinematic design of a general hybrid robot 

mechanism is proposed. In this manner, the kinematic equation and the constraint equations for the 

robot class are derived in a generalized case. Second, in order to simplify the dynamic modelling 

and analysis of the complex hybrid robots, a Lemma about the analytical relationship among the 

generalized velocities of a hybrid robot system is proven in a generalized case as well. Last, 

examples of the kinematic and dynamic modelling of a newly designed hybrid robot are presented 

to demonstrate and validate the proposed method. 

Keywords: Hybrid robot; kinematic design; dynamic modelling; local-closed loop; serial 

manipulator 

 

1. Introduction 

Generally, the robotic mechanisms can be categorized into three main groups: the open-loop 

mechanism, the closed-loop mechanism and the hybrid mechanism. A robot of the first group is 

usually designed with an end-effector connected to a fixed base by means of a single serial kinematic 
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chain. Meanwhile, each robot of the second group is a mechanism which is usually composed of a 

moving end-effector connected to a fixed base by at least two kinematic chains, such as the parallel 

robots. A hybrid manipulator is a mechanism which is usually composed of some open-loop 

kinematic chains combined with some closed-loop linkages [1–34].  

The main advantages of the serial robots are the large workspace, the high dexterity of the end-

effector and the large non-singular range of the joint variables. However, the robots of this group 

suffer from several drawbacks, such as relatively low stiffness and accuracy, low nominal 

load/weight ratio and heavy structure [21]. Therefore, in the last decades, several types of robots 

having closed-loop kinematic chains have been investigated in order to obtain better kinematic 

performances. The main advantages of these robots are low weight, compact structure, better 

accuracy and stiffness. Nevertheless, this robot group also have some disadvantages, such as a small 

workspace, a complex mechanical design and a complex procedure for dynamic modelling and 

control. For these reasons, in recent years, great attention has been paid to the development of hybrid 

robots which have combined advantages of the serial robots and the closed-loop architectures. More 

and more hybrid robots are designed and developed to meet the increasing demand for a wide 

spectrum of hybrid robotic applications [10–30]. 

In practice, the hybrid robots have been designed in a large variety of kinematic configurations 

and structures, and they can be classified into three main classes as follows:  

The first class (Class I) includes all the hybrid robots whose structure has several parallel 

modules connected in series [1–10] (Figure 1a). 

Class II consists of the hybrid robots which have a basic parallel module combined with a serial 

manipulator [11–24] (Figure 1b).  

Class III is a family of the hybrid robots which are composed of some local closed-loop chains 

appended to a main serial mechanism [25–33] (Figure 1c).  

 

 
 

(a) (b) (c) 

Figure 1. Three main classes of the hybrid robots: (a) Class I; (b) Class II and (c) Class III 

It is clearly seen that the main architecture of a hybrid robot Class I or II is a parallel mechanism. 

Other parallel modules or serial links are connected to such the main structure to complete a hybrid 

serial-parallel robot.  

Different from the robots Class I and II, each hybrid robot Class III is usually designed with a 

serial module as the main structure of a robot. To provide with desirable mechanical advantages for 

a hybrid robot, some local closed-loop mechanisms are added to the main serial module. For example, 

when designing manipulators which suffer a heavy payload and operate in a large workspace, 

parallelograms were added and hydraulic cylinders were used for driving some revolute joints of the 

manipulators [26,28–31]. The addition of parallelograms to the main arm is to increase the rigidity of 
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the robot, and also to restrict the orientation of the end- effector as desired. The use of the hydraulic 

cylinders is to increase the structural stiffness and to avoid the counterweights for the robot structure. 

The parallelograms and cylinders and other links of the serial arm naturally compose local closed 

loops of the entire robot mechanism. Other examples of using local closed-loop linkages to optimize 

the design and control for a robot can be found in [26–34]. 

In recent decades, a huge number of hybrid robot prototypes and products have been designed 

and developed [10–30]. The dynamic modelling and control for some of these complex robots have 

been addressed as well. However, to develop a generic method for formulating the dynamic model 

of a generalized hybrid robot mechanism is challenging.  

In the literature, there have been efforts that focused on the kinematic modelling of the hybrid 

robots Class I [1–5]. The kinematic modelling and analysis of two serially connected parallel 

mechanisms were investigated in [1]. In [2], the kinematic redundancy issue of a serial-parallel 

manipulator was addressed. The Screw theory and the Jacobian approach were applied for the 

kinematic modelling of a serial-parallel robot [3,4]. In particular, the dynamics and the structural 

stiffness models of some specific hybrid robots Class I were formulated and analysed [6–9]. 

There have also been attempts working on the modelling and analysis of the hybrid robots Class 

II [11–21]. A real-time implementation of path planning, trajectory generation, and servo control for 

a hybrid manipulation was presented in [11]. The kinematic modelling, the kinematic design, the 

workspace modelling and other aspects related to the kinematics of the hybrid robots Class II were 

studied [12–17]. The dynamic modelling and analysis of the robots Class II were also investigated 

[18,19]. In addition, the structural synthesis and the stiffness of the hybrid robots of this class were 

studied [20–22].  

Apart from the aforementioned works, there have been investigations that emphasized on 

design and development of the hybrid robots Class III [25–33]. A valuable comparison of the 

conventional serial robot architectures and the hybrid robots Class III was presented in [34]. In the 

research [25], some theoretical issues related to the kinematic modelling of multi closed-loop 

mechanisms were addressed. In addition, some closed-form solutions to the kinematics problem of 

individual hybrid robots Class III were presented in [26–28]. These solutions played an important 

role in validating the design of the robots. The workspace and mobility analysis were also 

investigated in [28,29]. Other aspects related to the design analysis of heavy-duty robots were 

presented in [30,31]. The control issues were studied in [32,33]. It is noticeable that the dynamic 

modelling of a hybrid manipulator Class III (forestry robot) was investigated in [33]. However, the 

effects of the local closed-loops on the dynamic responses of this robotic system were overlooked.  

Most of the efforts working on the hybrid robots Class III mainly focused on the design and 

control of some individual robots for the kinematical aspects. Though the dynamic modelling of the 

robots was addressed in a few researches, e.g., [33], however, the mass and inertia of the local closed-

loop linkages that have significant effects on the robot motion were neglected; the geometrical and 

kinematical constraints due to the presence of the local closed-loop linkages were usually ignored. 

Moreover, little attention has been paid to the development of a general method for the kinematic 

and dynamic modelling of this robot class. Therefore, in this paper, a new method for designing the 

kinematic chain and formulating the dynamic model of the hybrid robots is developed. First, a 

generic scheme for the kinematic design of a generalized hybrid robot mechanism is proposed. In 

this scheme, the generalized hybrid mechanism is synthesized with m local closed-loop linkages 

appended to a general n-link serial manipulator. Each locally closed linkage is regarded as a four bars 

mechanism which is made up of two successive links of the main serial arm, and other two added 

links. Second, the kinematic equation for the generalized hybrid mechanism and constraint equations 

for the closed loops are derived in a generalized case. Third, a Lemma about the relationship among 

the generalized velocities of the hybrid robots is proven, which is useful for transforming the dynamic 

equation and constraint equations into a minimal and compact form. Last, the kinematic and dynamic 

modelling of a real robot prototype are presented to demonstrate and validate the proposed method. 

It is shown clearly that, since the kinematic and dynamic modelling of a hybrid robot take into 

account the constraint equations and the dynamic effects of all the local closed loops, the kinematics 
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and dynamics models of a hybrid robot are formulated in a better and more accurate manner. 

Therefore, the method proposed in this study is advantageous and plays a crucial role in the 

development of hybrid robot products. 

2. Kinematics of a Generalized Mechanism for The Hybrid Robots Class III 

Let us consider a manipulator which is designed with n serial links  
1i i n

l
 

 and m local closed-

loop mechanisms  
1k k m 

 , ( 6m n  ) as shown in Figure 2. The serial chain of n links is the 

main mechanism of the robot arm, and the closed-loop mechanisms are designed as sub-mechanisms 

appended to the main one. The degree of freedom number (DOFs) of the designed robot equals the 

DOFs of the main mechanism, n . The presence of the local closed-loop mechanisms does not change 

the DOFs of the robot. 

Each local closed mechanism k is designed with two successive links 1il   and il of the main 

arm and other two appended links 
1k
l and 

2k
l . See Figures 2 and 3. In other words, each local closed-

loop mechanism is designed as a four bar linkage which is composed of the links 1il  , il , 
1k
l and 

2k
l . In a local closed chain linkage, the link 1il   is a local base link, and the remained links il , 

1k
l

and 
2k
l move relative to the base link 1il  .  

 

Figure 2. A generalized configuration of the hybrid robots Class III. 

As shown in Figure 3, there exists four types of the local closed-loops, Type A, B, C and D, which 

can be designed by combining a couple of successive links 1il   and il of the main arm and other 

two links 
1k
l and 

2k
l added to the robot architecture.  

In a local closed-loop Type A (Figure 3a), the two links 
1k
l and 

2k
l  are added to the main arm, 

and the output link is a link il . Meanwhile in Type B (Figure 3b), the two links 
1k
l and 

2k
l  are 
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inserted in between the links 1il   and il , but the output link is the link 
2k
l . When a loop Type B is 

added to the main kinematic chain, the link 
2k
l  is inserted in between il  and 1il  .  

When the two links 
1k
l and 

2k
l are not connected together, there exists two more combinations 

of the links 1il  , il , 
1k
l and 

2k
l as shown in Figure 3c,d. In a loop Type C, the output link is il , 

meanwhile in Type D, the output link is 
2k
l . 

 

    
(a) Type A (b) Type B (c) Type C (d) Type D 

Figure 3. Four types of the local closed-loops. 

For all four types of the local linkages, the base link is 1il  , and the formation of all the closed-

loop mechanisms does not change the DOFs of the robot. 

Let us consider the main kinematic chain of the hybrid robot. In Figure 2,  0 0 0 0 0O O x y z  is 

the reference frame, and  1 1 1 1 1O O x y z  to  n n n n nO O x y z are the local coordinate systems 

which are attached to all the links of the main arm. Let us denote  1 2 3 ...
T

nq q q qq as 

the vector of joint variables on the main arm, correspondingly.  

As usual, the geometric and kinematic parameters of a link il are denoted as i , id , ia and 

i . By using the Denavit–Hartenberg notation, the transformation matrix for the end-effector (EEF) 

can be calculated as follows: 

         0 01 1 12 2 23 3 1
...E nn n

q q q q


H H H H H
 

(1) 

where    1 ii i
q


H  is the transformation matrix for a link il . 

In other words, 0EH  can be expressed as follows:  

   
0

0 1
E

 
  
 

A q r q
H  (2) 

where  A q  is the rotation matrix, and  r q is the translation vector for the EEF. Equation (2) 

describes the kinematic relationship of the robot. If we denote  
T

E E E Ex y z   p  

as the posture of the EEF in 0O , where  
T

E E Ex y z  is the position and  
T

   the 

orientation of the EEF, the kinematic equation can be written as follows:  

 E p f q  (3) 

Let us consider all the local-closed loops Type A, B, C or D, which can be added to the main 

kinematic chain, as shown in Figure 3. The presence of a closed chain Type A does not change 
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Equation (1). However, Equation (1) must be recalculated if a closed loop Type B, C or D is designed 

for the robot. 

For a local linkage Type B, since a link 
2k
l  is inserted in between il  and 1il  , the 

transformation matrix    11 ii i
q 

H  in Equation (1) must be recalculated as follows: 

           
1 1 1 2 2 21 11 1i ik k k k k ii i k i

q q q q  
H H H H

 
(4) 

For a local linkage Type C and D, the matrix    1 ii i
q


H  is replaced by the following matrix: 

         
1 111 1i k k i ii i i k

q q q
 

H H H  (5) 

In particular, for a linkage Type D, not only    1 ii i
q


H  is re-calculated with Equation (5), but 

also the matrix    11 ii i
q 

H  must be re-calculated as follows: 

           
22 21 11 1 1i k ii i i k k i

q q q   
H H H  (6) 

Note that the variables 
1k
q and 

2k
q in Equations (4)–(6) can be determined with respect to iq

via the two constraint equations of a corresponding closed-loops k , which will be presented later 

in the next section. 

Constraint equations 

Different from the formulation of the kinematics model for a serial robot, the formulation of the 

hybrid kinematics models of the hybrid robots Class III must take into account the constraints due to 

the presence of the local closed-loops.  

As discussed before, each linkage k  includes two sub-kinematic chains that move relative to 

the base link. For example, as shown in Figure 4a, the first sub-chain of a linkage Type A is the link 

il , and the second sub-chain includes the two link 
1k
l and 

2k
l . Obviously, the two sub-chains of a 

linkage are closed at an intersection point M (see Figure 4).  

  

  

(a) Type A (b) Type B (c) Type C (d) Type D 

Figure 4. The closed kinematic chain of the local linkages. 

In order to derive the constraint equation for a loop k , the position of the point M are 

determined along the two sub-chains.  

On one hand, the point M, 1
Ti i i i

M M M Mx y z   r  represented in the coordinate iO  of 

the link il , can be determined via the position and orientation of the link il  that can be calculated 

relative to the base link 1il  . On the other hand, the point M, 2 2 2 2 1
Tk k k k

M M M Mx y z   r  expressed 
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in 
2k

O , can be calculated through the position and orientation of the link 
2k
l . Consequently, the 

constraint equation for a loop Type A and B can be yielded as follows:  

          2

1 1 2 211 1

ki
i M k k k k Mi i i k
q q q

 
   H r H H r  (7) 

For a loop Type C and D the constraint equation can be written as follows: 

         2

2 1 12 11 1

k i
k M k k i i Mi k i k
q q q

 
   H r H H r  (8) 

Note that, for a closed-loop Type A or Type C, the point M coincides the point 
2k

O , thus 

 2 0 0 0 1
Tk

M r . In addition, for a closed-loop Type B or Type D,  0 0 0 1
Ti

M r .  

In essence, Equations (7) and (8) can be rewritten as three constraint equations corresponding to 

three axes of the coordinate system 1iO . However, among such the three constraint equations, there 

exist only two independent ones, since all the closed-loops under consideration are planar four bar 

linkages. As a consequence, corresponding to a loop k , the two independent constraint equations 

can be written as follows: 

 
 
 

1 1 2

1 2

2 1 2

, ,
, , 0

, ,

k i k k

k i k k

k i k k

f q q q
q q q

f q q q

 
  
 
 

f

 

(9) 

For every local linkage, only one joint variable among iq , 
1k
q  and 

2k
q is independent. The 

kinematic relationships among iq , 
1k
q  and 

2k
q  are determined via the two constraint equations, 

Equation (9), for each closed-loop k . Therefore, in the case that, instead of iq , the variable 
1k
q  or 

2k
q is selected as the independent joint variable of k , the variable iq in the transformation matrix 

   1 ii i
q


H  in Equation (1) must be changed by the variable  

1i k kq h q  or  
2i k kq g q , 

respectively, where the functions kh  and kg  can be determined with respect to the kinematic 

relationships among iq , 
1k
q  and 

2k
q .  

3. Dynamic Modelling of the Hybrid Robots Class III 

 1 2 3 ...
T

nu u u uu  is the vector of n  independent generalized coordinates which 

are selected among n  joint variables  
1i i n

q
 

 of the main arm, and 2 m  joint variables 

 
1 2 1
,k k k m

q q
 

of m closed-loops. In other words, u  is the vector of all active joint variables. 

 1 2 2...
T

mz z zz is the vector of 2m dependent generalized coordinates. 

 
T

s u z is the vector of all  2n m generalized coordinates of the robot system.  

 11 12 1 2...
T

m mf f f ff  is the vector of 2m constraint equations. 

1 2

2

... 0 ... 0

T

n

mn

  
 
 
  

τ


 is the vector of applied torques/forces. 

By using the Lagrangian formulation, the equations of motion including constraint equations for 

the robot can be written as follows: 
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       

 

, , , ,

,

T
st t t t

t

    




M s s C s s s g s J λ τ

f s 0

  
 (10) 

Note that the size of the global matrices  , tM s  and  , , tC s s  is    2 2n m n m   . The 

global mass matrix  , tM s  must be formulated with respect to all the links of the robot including 

n  links of the serial chain and 2m links added to m  local closed-loops.  

The global mass matrix is calculated as follows: 

   
2

1

,
j j j j

n m
T T

j T T R j R
j

t m




 M s J J J I J  (11) 

where jm  and jI  are the mass and inertia of a link j . The translational and rotational Jacobian 

matrices are calculated as 
j

Cj

T






r
J

s
 and

j

j

R






ω
J

s
, where Cjr is the centre of mass, and jω is 

the angular velocity of a link j , respectively. 

The Coriolis and centrifugal matrix  , , tC s s is calculated by using Cristoffel notation. 

The matrix  ,tg s  is calculated as follows: 

 ,
T

t
 

   
g s

s
 (12) 

where the total potential energy of the entire system is calculated as 

2

1

n m
T

j Cj
j

m




   g r  (13) 

The Jacobian matrix sJ  is derived with respect to 2m constraint equations as s





f
J

s
 , and 

 1 2 2...
T

m  λ is the vector of 2m Lagrangian Multipliers. 

It is clear that the system of DAE equations seen in Equation (11) consists of  2n m  

differential equations of second order and 2m  constraint equations  , t f s 0 . Moreover, 

Equation (10) has not only n  independent variables u , but also 2m  dependent variables z  and 

2m  unknown Lagrangian Multipliers λ . Therefore, if using this complex system of DAEs to 

analyse the dynamics behaviour and to design a control law for the robot, the time complexity of the 

formulation and computation will be increased dramatically. For this reason, it is necessary to 

transform Equation (10) into a more compact form in which the Lagrangian Multipliers λ should be 

cancelled, and the number of the differential equations is minimized.  

By using the following Lemma,  2n m  differential equations of second order, Equation (10), 

can be transformed into only n  differential equations of second order which are expressed in terms 

of only n  independent generalized coordinates, not including 2m Lagrangian Multipliers 

 1 2 2...
T

m  λ . 

Lemma: Consider a generalized hybrid robot mechanism Class III which has n  independent 

joint variables  1 2 3 ...
T

nu u u uu  and 2m  dependent joint variables 

 1 2 2...
T

mz z zz . The relationship between u  and z  is expressed as  
T

 s u z Ru    , in 
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which the matrix R  is explicitly calculated as 
1
z u


 
   

E
R

J J
, where E is an identity matrix of 

appropriate dimension, u





f
J

u
 and z





f
J

z
, where  , t f s 0  is the constraint equation. 

As a consequence of this Lemma, the following important relationships, Equations (14) and (15), 

can be proved easily.  

 

T T
s R J 0  (14) 

s = Ru + Ru    (15) 

In Equation (14), the Jacobian matrix sJ can be expressed as follows: 

 

s

u z





  
    

f
J

s

f f
J J

u z

 (16) 

Note that Equations (14) and (15) play a very important role in transforming the complex system 

Equation (10) into a minimal form. With respect to Equations (14) and (15), multiplying 
TR  with 

both sides of Equation (10) yields  

       , , , ,t t t t   qM s u C s s u G s u τ   (17) 

where  

 ,T tM R M s R ,     , , ,T t t C R M s R C s s R  ,  ,T tG R g s , and  T tqτ R τ . 

Different from the complex ADEs system in Equation (10), which has 2n m  differential 

equations with the presence of 2m  dependent variables z , and 2m  unknown Lagrangian 

Multipliers λ , the minimal form of the dynamic equation, Equation (17), consists of only n  

differential equations which are expressed for n  independent generalized coordinates u  only. 

Moreover, the matrix form of Equation (17) is similar to the form of any dynamic equation that is 

usually written for a conventional industrial robot. Hence, by using Equation (17), the dynamic 

analysis and control law computation for any complex hybrid robot Class III can be implemented in 

an effective and simplified manner. 

Proof of the Lemma:  

Taking a time derivative of the constraint equation  , t f s 0  yields 

s J s 0  (18) 

Substituting Equation (16) into Equation (18) obtains 

u z J u J z 0   (19) 

Rewriting the relationship  
T

 s u z Ru     in the following form:  

 
  
 

 
  
 

u
s Ru

z

E
u

T


 




 (20) 

Note that E is an identity matrix and T  is an unknown matrix which needs to be proved. 
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With respect to Equation (20), the vector z  can be expressed as follows: 

z Tu   (21) 

Multiplying zJ  with both sides of Equation (21) yields 

z zJ z J Tu   (22) 

Substituting Equation (22) into Equation (19) yields 

u z J u J Tu   (23) 

Hence  

1
z u
 T J J  (24) 

Finally, substituting Equation (24) into Equation (20) yields 

1
z u


 
   

E
R

J J
 (25) 

Equation (25) completes the proof. 

4. Example: Kinematic and Dynamic Modelling of a Real Robot 

In this section, the kinematic and dynamic modelling of a newly designed hybrid robot Class III 

are presented. The robot was designed and implemented with the purpose of handling material for 

a hot forging press shop floor. The 3D design of the robot and the robot prototype are shown in Figure 

5a,b, respectively. The functional tests of the robot prototype and the numerical simulation of the 

kinematic and dynamic responses shows clearly the effectiveness and advantages of the method 

proposed in this study. 

 

 

(a) (b) 
  

Figure 5. The forging robot: (a) The 3D design, and (b): The robot prototype 

The kinematic diagram of the robot is presented in Figure 6, which is designed with 4 serial links 

 
1 4i i

l
 

, and 4 local closed loops  
1 4k k 

 ( Figure 7). The reference frame 0 0 0 0O x y z is located on 

the ground. The coordinate systems 1 1 1 1O x y z , 2 2 2 2O x y z , 3 3 3 3O x y z  and 4 4 4 4O x y z  are located on 

the serial links. 

The joint variables of the main serial chain are  1 2 3 4

T
q q q qq (Figure 6). 
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Each local closed loop presented in Figure 7 is a four-bar linkage which is made up of two serial 

links (in red colour) and other two additional links (in green colour). Note that 1  and 2  are the 

loops of Type A; 3  and 4  are the loops of Type B.  

The loop 1 includes the link 1l , 2l , 11l  and 12l . The joint variables of the loop are 2q , 11q  

and 12q . The loop 2 consists of 2l , 3l , 21l  and 22l . The joint variables of the loop are 3q , 21q  

and 22q . The loop 3 consists of 1l , 2l , 31l  and 32l . The joint variables of the loop are 2q , 31q  

and 32q . The loop 4 consists of 3l , 32l , 41l  and 42l . The joint variables of the loop are 3q , 41q  

and 42q . Table 1 presents the Denavit–Hartenberg notations of the four loops. Table 2 presents the 

dynamics parameters of the robot.  

 

Figure 6. The kinematic chain of the forging robot. 

 

 

 

(a) (b) 
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(c) (d) 

Figure 7. The local closed-loop linkages of the forging robot: (a) Loop 1 ,(b) Loop 2 , (c) Loop 

3 , and (d) Loop 4 . 

Table 1. The D-H notations of the four local closed loops. 

 Loop 1  Loop 2  Loop 3  Loop 4  

Lin

k 2l  11l  12l  3l  21l  22l  2l  31l  32l  3l  41l  42l  

  2q  11q  0 3q  21q  0 2q  31q  32q  
'
3q  41q  42q  

d  0 0 12q  0 0 22q  0 0 0 0 0 0 

a  2L  1 11cosL q 0 3 3L b  2 21cosL q 0 2L  2L  0 3 3L b  3 3L b  0 

  0 
2


 

2


 0 

2


 

2


 0 0 0 0 0 

2


 

Table 2. Dynamic parameters of the robot. 

Index 

j  
Link 

Mass Centre (m) 
Mass 

(kg) 

Cx  Cy  Cz   

1 1l  0 1 / 2b  0
 

1 81.3m   

2 2l  2 / 2L  0 0 2 50.6m   

3 11l  0 0 11 / 2L  3 25.6m   

4 12l  0 12 / 2L  0 4 5.70m   

5 3l  3 / 2L  0 0 5 58.4m   

6 21l  0 0 21 / 2L  6 25.6m   

7 22l  0 22 / 2L  0 7 5.70m   

8 42l  0 0 42 / 2L  8 37.7m   

9 4l  0 0
 

4 / 2L  9 73.1m   

10 31l  2 / 2L  0
 0 10 7.20m   

11 32l  2 / 2c  0 0 11 12.9m   

12 41l  3 / 2L  0
 0 12 6.50m   



Appl. Sci. 2020, 10, 2567 13 of 21 

The length of the links are given as follows: 1 0.7L 
; 2 0.7L 

; 3 0.8L 
; 4 0.2L 

; 

11 0.4L 
; 21 0.4L 

; 
42 0.2L 

 ; 1 0.3b 
; 2 0.3b 

; 3 0.2b 
; 1 0.2c 

; 2 0.2c 
. 

Note that 1q , 2q , 3q , 4q , 11q , 12q , 21q , 22q , 31q , 32q , 41q  and 42q  are 12 generalized 

coordinates of the robot, in which 

 1 12 22 4

T
q q q qu   is the vector of 4 independent generalized coordinates,  

 2 3 11 21 31 32 41 42

T
q q q q q q q qz   is the vector of 8 dependent generalized coordinates 

and 

 
T

s u z is the vector of all 12 generalized coordinates of the robot.  

Constraint equations 

By using the formulation Equation (7), the constraint equations can be derived for 4 closed loops 

as follows: 

   1 2 2 2 1 12 11 11cos + cos = 0f L b q L q L q     (26) 

   2 2 2 2 12 11 11sin sin 0f L b q q L q      (27) 

   3 3 3 2 2 22 21 21cos cos 0f b q L c q L q       (28) 

 4 3 3 22 21 21sin sin 0f b q q L q     (29) 

 5 1 2 32 2 2 2 31 1cos 3 / 2 cos cos 0f c q q L q L q c        (30) 

 6 1 2 32 2 2 2 31sin 3 / 2 sin sin 0f c q q L q L q       (31) 

       7 3 3 32 41 3 3 3 1 3 42 1 32cos cos sin cos 0f L b q q L b q c q q c q         (32) 

       8 3 3 32 41 3 3 3 1 3 42 1 32sin sin sin sin 0f L b q q L b q c q q c q          (33) 

Kinematics of the robot 

By using the formulation Equation (1), the transformation matrix for the end-effector is 

calculated as follows: 

       04 01 1 12 2 23 3 34 4q q q qH H H H H  (34) 

Since 3  and 4  are the loops of Type B, by applying Equation (4), the matrices  23 3qH  

and  34 4qH are recalculated as follows: 

              23 3 31 32 32 31 31 32 32 3
q q q qH H H H  (35) 

              34 4 41 42 432 41 41 42 42 4
q q q qH H H H  (36) 

Finally, the position of the end-effector  
T

E E Ex y zE  is yielded as follows: 

    
    

   

1 4 42 3 3 2 3 2 2

1 4 42 3 3 2 3 2 2

3 3 2 3 2 2 1

cos cos cos

sin cos cos

sin sin

E

E

E

q L L L b q q L qx

y q L L L b q q L q

z L b q q L q b

                            

 (37) 

Note that 
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   
 

2 22
12 11 1 2 2

2

1 2 2

cos
2

q L L L b
q

L L b

   



 (38) 

   
 

2 22
22 21 3 2 2

3

3 2 2

cos
2

q L b L c
q

b L c

    



 (39) 

Note that all the joint variables and the position of the end-effector in Equations (34)–(39) must 

be functions of time t . However, to simplify the representation of such the complex equations, the 

term  t is truncated. 

In order to verify the formulation of the kinematics model, the following numerical experiments 

were carried out: 

1. Calculate the trajectory of the end effector        
T

E E Et x t y t z t   E , with the input data 

is given as  1
18

q t t


  ,  12 0.1 0.01q t t    and  22 0.15 0.005t tq    . Figure 8 

shows the curves of        
T

E E Et x t y t z t   E . 

(a) The curves ,E E Ex y and z  (b) The trajectory  tE in the workspace 

Figure 8. The trajectory of the end-effector. 

2. Take the data        
T

E E Et x t y t z t   E  obtained in Step 1 as the input for the inverse 

kinematic analysis, and calculate the displacement of the joints  1'q t ,  12'q t  and  22'q t . The 

results are shown in Figure 9. 

It is clearly shown in Figure 9 that the curves  1'q t ,  12'q t  and  22'q t  obtained in Step 2 

match exactly the given data  1q t ,  12q t  and  22q t , respectively. This demonstrates and 

validates the proposed kinematic modelling method. 
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Figure 9. The displacement of the active joints. 

Dynamic modelling and analysis of the robot 

The dynamic equation of this robot can be derived directly by using the formulation Equation 

(17). In order to formulate  ,tM s ,  , ,tC s s ,  ,tG s and  q tτ , the matrices  ,tM s , 

 , ,tC s s ,  ,tg s and R must be computed.  

In this manner,  , tM s  can be calculated with Equation (11), where the masses jm  are given 

in Table 2, and the inertias jI  can be calculated based on the geometrical dimension of the links 

given in Table 2 as well. In Equation (11), the Jacobian matrices are calculated as 
j

Cj

T






r
J

s
 and

j

j

R






ω
J

s
, where the centre of mass Cjr  and the angular velocity jω are calculated and presented 

in the Appendix. Based on all the components of  ,tM s , the matrix  , ,tC s s is then calculated 

by using Cristoffel notation. 

The component  ,tg s  is calculated with Equation (13), where the total potential energy of the 

robot,  , is calculated and presented in the Appendix also. 

The matrix R  is calculated with Equation (25), where the Jacobian matrices uJ  and zJ  are 

presented in the Appendix, respectively. 

Finally, all the terms of Equation (17) can be formulated properly that can be used for the 

dynamic analysis and the control law computation. In the following example, we demonstrate an 

inverse dynamic solution  1 12 22 4

T

q F Fτ   that was calculated with respect to a input data 

given as follows:  1
18

t
q t


 ,  12 0.1 0.01q t t  ,  22 0.15 0.005q t t   and 

 4
36

t
q t


 . The responses of  1 12 22 4

T

q F Fτ   are shown in Figure 10. 
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(a) The applied forces 12F  and 22F  (b) The applied torques 1  and 4  

Figure 10. The forces/torques applied on the active joints. 

It has shown that instead of the complex governing equations seen in Equation (10), the minimal 

form of the dynamic Equation (17) can be used directly for computation of the control (the inverse 

dynamic analysis) for the robot. In addition, analysing the dynamic model of a hybrid robot does not 

need to take into account the unknown Lagrangian Multipliers λ . 

5. Conclusions 

A new method for the kinematic and dynamic modelling for a class of hybrid robots was 

introduced in this study. The proposed method can be applied for the kinematic design of a robot 

mechanism composed of m local closed-loop linkages appended to a general n-link serial 

manipulator. In this manner, the kinematic equation for a generalized hybrid robot mechanism and 

the constraint equations due to the closed-loop linkages of a robot are derived effectively. Since a 

Lemma about the analytical relationship among the generalized velocities of a hybrid robot system 

was proven in a generalized case, the dynamic equation and constraint equations can be transformed 

into a minimal and compact form, so that the dynamics model of any hybrid robot can be formulated 

and analysed in an effective and simplified manner. Finally, to demonstrate and validate the 

proposed method, examples about the kinematic and dynamic modelling of a real robot are 

presented. It was shown clearly that, since the kinematic synthesis and the dynamic modelling of a 

hybrid robot take into account the constraint equations and the dynamic effects of all the local closed 

loops, the kinematics and dynamics model of a hybrid robot is formulated in a better and more 

accurate manner. In addition, since the method presented in this study was proposed and validated 

in a generalized case, it can be applied effectively for the kinematic and dynamic modelling of any 

individual hybrid robot Class III. In particular, when designing a new hybrid robot, the designers 

can follow all the steps of the kinematic design procedure presented in this paper to archive easily an 

optimal mechanism for the robot. The control law of the designing robot is then designed and 

simulated in an effective and useful manner by using the dynamic modelling procedure presented in 

this study as well. Therefore, the method proposed in this study is advantageous and plays an 

important role in the development of the hybrid robot products. All the experimental procedures for 

development of next versions of the robot prototype will be the future work of this study. The 

simulation of the kinematic and dynamic modelling of the hybrid robots having closed loops Type C 

and D will be the future study of the authors. 
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Appendix A 

The centre of mass calculated for all the links of the robot  
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