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Abstract
We show that the solution set of a strictly convex combination of equilibrium prob-
lems is not necessarily contained in the corresponding intersection of solution sets of
equilibrium problems even if the bifunctions defining the equilibrium problems are
continuous andmonotone. As a consequence, we show that some results given in some
recent papers are not always true. Therefore different numerical methods for comput-
ing common solutions of families of equilibrium problems proposed in the literature
may not converge under the monotonicity assumption. Finally, we prove that if the
bifunctions are also parapseudomonotone, then the solution set of any strictly convex
combination of a family of equilibrium problems is equivalent to the solution set of
the intersection of the same family of equilibrium problems.
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1 Introduction

Let C be a nonempty, closed and convex subset in a real Hilbert space H and f :
C × C → R be a bifunction. The equilibrium problem (shortly EP(C, f )), in the
sense of Blum and Oettli (1994), Muu and Oettli (1992) (see also Fan 1972), consists
of finding x∗ ∈ C such that

f (x∗, y) ≥ 0, ∀y ∈ C .

We denote the solution set of EP(C, f ) by Sol(C, f ). Numerical methods for solving
EP(C, f ) can be found in Dinh and Kim (2016), Tran et al. (2008).

Let fi : C × C → R, i = 1, 2, . . . , N , be bifunctions defined on C . Recently,
many researchers were interested in finding a common solution of a finite family of
equilibrium problems (Suwannaut and Kangtunyakarn 2013, 2014, 2016; Khan et al.
2018) (CSEP for short):

Find x∗ ∈ C such that fi (x
∗, y) ≥ 0, ∀y ∈ C and i = 1, 2, . . . , N . CSEP(C, fi )

or, equivalently,

find x∗ ∈ � := ∩N
i=1Sol(C, fi ).

Let αi ∈ (0, 1), i = 1, . . . , N such that
∑N

i=1 αi = 1 and set

f (x, y) =
N∑

i=1

αi fi (x, y),∀x, y ∈ C .

The combination of equilibrium problems (shortly, CEP(C,
∑N

i=1 αi fi )) consists of
finding x∗ ∈ C such that

f (x∗, y) =
N∑

i=1

αi fi (x
∗, y) ≥ 0,∀y ∈ C .

We denote by Sol(C,
∑N

i=1 αi fi ) the solution set of the combination of equilibrium
problems.

In Suwannaut and Kangtunyakarn (2013) said that under certain conditions one
has

� = ∩N
i=1Sol(C, fi ) = Sol

(

C,

N∑

i=1

αi fi

)

.

Therefore, common solutions of a finite family of equilibrium problems can be com-
puted by simply finding solutions of any strictly convex combination of the same
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family of equilibrium problems. Based on this relation, Suwannaut and Kangtun-
yakarn (2013, 2014, 2016), Khuangsatung and Kangtunyakarn (2014), Khan et al.
(2018) gave algorithms for finding a common element of the fixed point sets of a fam-
ily of mappings and the solution sets of equilibrium problems and/or the zero point
sets of a family of mappings.

In this short paper, we show that, under the same conditions as the ones given in
Suwannaut and Kangtunyakarn (2013), the relation

Sol

(

C,

N∑

i=1

αi fi

)

⊂ ∩N
i=1Sol(C, fi ),

is not always true. Therefore, different results given in the recent papers Suwannaut
and Kangtunyakarn (2013, 2014, 2016), Khuangsatung and Kangtunyakarn (2014),
Khan et al. (2018) are not necessarily true because they rely on the wrong inclusion
above. Moreover, we present a sufficient condition for which the above formula is
correct not only when N is finite but also when N = +∞.

The rest of paper is organized as follows. The next section contains first some pre-
liminaries on equilibrium problems and then the inexact statements given in papers
Suwannaut and Kangtunyakarn (2013, 2014, 2016), Khuangsatung and Kangtun-
yakarn (2014), Khan et al. (2018) related with combination of equilibrium problems.
The main section is devoted to show that there exists a finite family of monotone
equilibrium problems such that the set of their common solutions is strictly contained
in the solution set of a combination of equilibrium problems. We also prove that under
certain conditions these two sets are equal.

2 Preliminaries

In this section, we recall some definitions and statements presented in recent papers
related to combination of equilibrium problems.

Let C be a nonempty, closed and convex subset ofH. We denote the metric projec-
tion onto C by PC . Namely, for each x ∈ H, PC (x) is the unique element in C such
that

‖x − PC (x)‖ ≤ ‖x − y‖, ∀y ∈ C .

We also recall the following well-known definitions.

Definition 2.1 Let ϕ : C ×C → R be a bifunction defined on C . Bifunction ϕ is said
to be:

(a) monotone on C if ϕ(x, y) + ϕ(y, x) ≤ 0,∀x, y ∈ C ;
(b) pseudomonotone on C if

∀x, y ∈ C : ϕ(x, y) ≥ 0 ⇒ ϕ(y, x) ≤ 0;
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(c) paramonotone on C if ϕ is monotone on C and

{x ∈ Sol(C, ϕ), y ∈ C, ϕ(x, y) = ϕ(y, x) = 0} ⇒ y ∈ Sol(C, ϕ);

(d) parapseudomonotone on C if ϕ is pseudomonotone on C and

{x ∈ Sol(C, ϕ), y ∈ C, ϕ(x, y) = ϕ(y, x) = 0} ⇒ y ∈ Sol(C, ϕ).

From the above definition, it can be seen that a) ⇒ b) and c) ⇒ d), c) ⇒ a) and
d) ⇒ b).

In the sequel, we need the following blanket assumptions:
Assumptions A.

(A1) ϕ(x, x) = 0 for every x ∈ C ;
(A2) ϕ is monotone on C ;
(A3) ϕ is upper hemicontinuous, i.e., for each x, y, z ∈ C , we have

lim sup
t→0+

ϕ(t z + (1 − t)x, y) ≤ ϕ(x, y);

(A4) for each x ∈ C , ϕ(x, ·) is lower semicontinuous and convex on C ;
(A5) for fixed r > 0 and z ∈ C , there exist a nonempty compact convex subset B

of H and x ∈ C ∩ B, such that

ϕ(y, x) + 1

r
〈y − z, z − x〉 < 0,∀y ∈ C\B.

The following five statements are displayed in Suwannaut and Kangtunyakarn (2013,
2014, 2016), Khuangsatung and Kangtunyakarn (2014), Khan et al. (2018), respec-
tively.

Statement 2.1 (See Suwannaut and Kangtunyakarn 2013, Lemma 2.7) Let fi , i =
1, 2, . . . , N be bifunctions satisfying A1 − A4 with ∩N

i=1Sol(C, fi ) �= ∅. Then

∩N
i=1Sol(C, fi ) = Sol(C, f ),

where f (x, y) = ∑N
i=1 αi fi (x, y), αi > 0,∀i = 1, 2, . . . , N and

∑N
i=1 αi = 1.

If Statement 2.1 holds true then it allows us to find common solutions of N equilibrium
problems by solving a combination of equilibrium problems.

Statement 2.2 (See Suwannaut and Kangtunyakarn 2014, Theorem 3.1) Let F be a τ -
contractive mapping onH and let A be a strongly positive linear bounded operator on
H with coefficient γ̄ and 0 < γ <

γ̄
τ
. For every i = 1, 2, . . . , N let fi : C × C → R

be a bifunction satisfyingA1−A4 with� = ∩N
i=1Sol(C, fi ) �= ∅. Let {xk}, {yk}, {zk}

be sequences generated by x1 ∈ H and
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⎧
⎪⎨

⎪⎩

∑N
i=1 αi fi (zk, y) + 1

ρk
〈y − zk, zk − xk〉 ≥ 0,∀y ∈ C,

yk = θk PC (xk) + (1 − θk)zk,

xk+1 = δkγ F(xk) + (I − δk A)yk,

where {δk}, {θk}, {ρk} ⊂ (0, 1), 0 < αi < 1,∀i = 1, . . . , N . Suppose the following
conditions (i) − (v) hold.

(i) limk→∞ δk = 0 and
∑∞

k=0 δk = ∞;
(ii) 0 < θ ≤ θk ≤ θ̄ < 1, for some θ, θ̄ ∈ (0, 1);
(iii) 0 < α ≤ αk ≤ ᾱ < 1, for some α, ᾱ ∈ (0, 1);
(iv)

∑N
i=1 αi = 1;

(v)
∑N

i=1 |δk+1 − δk | < ∞,
∑∞

i=1 |θk+1 − δk | < ∞,
∑∞

i=1 |ρk+1 − ρk | < ∞.

Then the sequences {xk}, {yk}, and {zk} converge to q = P�(I − A + γ F)q.

Statement 2.3 (See Khuangsatung and Kangtunyakarn 2014, Theorem 3.1) Let
fi , i = 1, 2, . . . , N satisfy assumptionsA1−A4.Assume that� = ∩N

i=1Sol(C, fi ) �=
∅. Let the sequences {xk} and {yk} be generated by u, x1 ∈ H and

{∑N
i=1 αi fi (yk, y) + 1

ρk
〈y − yk, yk − xk〉 ≥ 0,∀y ∈ C,

xk+1 = λku + μk xk + δk yk

where {λk}, {μk}, {δk} ⊂ (0, 1) and λk + μk + δk = 1; {ρk} ⊂ (ρ, ρ̄) ⊂ (0, 1),
0 < αi < 1,∀i = 1, . . . , N . Suppose the conditions (i) − (i i i) hold:

(i) limk→∞ λk = 0 and
∑∞

k=0 λk = ∞;
(ii)

∑N
i=1 αi = 1;

(iii)
∑N

i=1 |δk+1 − δk | < ∞.

Then the sequences {xk}, {yk} converge to q = P�(u).

Statement 2.4 (Suwannaut and Kangtunyakarn 2016, Theorem 3.1) Let F be τ -
contractive mapping on H and let fi , i = 1, 2, . . . , N satisfy assumptions A1 − A4.
Assume that � = ∩N

i=1Sol(C, fi ) �= ∅. Let the sequence {xk} and {yk} be generated
by x1 ∈ C and

{∑N
i=1 αi fi (yk, y) + 1

ρk
〈y − yk, yk − xk〉 ≥ 0,∀y ∈ C,

xk+1 = λk F(xk) + μk PC (xk) + δk yk

where {λk}, {μk}, {δk} ⊂ (0, 1) such that λk+μk+δk = 1 ∀k; {ρk} ⊂ (ρ, ρ̄) ⊂ (0, 1),
0 < αi < 1,∀i = 1, . . . , N . In addition, suppose the conditions (i) − (i i i) hold:

(i) limk→∞ λk = 0 and
∑∞

k=0 λk = ∞;
(ii)

∑N
i=1 αi = 1;

(iii)
∑∞

i=1 |ρk+1 − ρk | < ∞.

Then the sequences {xk}, {yk} converge to q = P�(u).
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Statement 2.5 (Khan et al. 2018, Theorem 4.2) Let fi , i = 1, 2, . . . , N satisfy
assumption A. Assume that � = ∩N

i=1Sol(C, fi ) �= ∅. For given x0, x1 ∈ H, let
the sequence {xk}, {yk} and {zk} be generated by

⎧
⎪⎨

⎪⎩

yk = xk + θk(xk − xk−1)
∑N

i=1 αi fi (zk, y) + 1
ρk

〈y − zk, zk − yk〉 ≥ 0,∀y ∈ C,

xk+1 = λk xk + μk zk

where {θk} ⊂ [0, θ ], θ ∈ [0; 1], {λk}, {μk} ⊂ (0, 1) and λk + μk = 1 for all k;
{ρk} ⊂ (ρ, ρ̄) ⊂ (0, 1), 0 < αi < 1,∀i = 1, . . . , N . Suppose that the following
conditions hold:

(i) θk‖xk − xk−1‖ < ∞;
(ii)

∑∞
i=1 αi < ∞ and limi→∞ αi = 0;

(iii)
∑∞

i=1 |ρk+1 − ρk | < ∞,
∑∞

i=1 |λk+1 − λk | < ∞.

Then the sequence {xk} converges to q = P�(u).

Remark 2.1 • Each Statement 2.2–2.5 implies that the sequence {xk} obtained by
the numerical precedure converges to a solution of the CSEP.

• In Corollary 3.1b–e it is shown that this is not necessarily true.

3 Main results

Let C be a nonempty, closed convex subset of H and let fi (i = 1, . . . , N ) be bifunc-
tions defined on C such that

∩N
i=1Sol(C, fi ) �= ∅.

For αi ∈ (0, 1), i = 1, . . . , N and
∑N

i=1 αi = 1 we consider the bifunction f defined
by

f (x, y) =
N∑

i=1

αi fi (x, y),∀x, y ∈ C .

It is clear that if x∗ ∈ ∩N
i=1Sol(C, fi ) then fi (x∗, y) ≥ 0,∀y ∈ C, and i =

1, 2, . . . , N . Therefore

f (x∗, y) =
N∑

i=1

αi fi (x
∗, y) ≥ 0,∀y ∈ C .

Hence x∗ ∈ Sol(C, f ) and

∩N
i=1Sol(C, fi ) ⊂ Sol(C, f ).
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The following theorem shows that under assumptionsA1 −A4, the inverse inclusion
is not always true.

Theorem 3.1 For any integer N ≥ 2, there exist a nonempty, closed convex set C
and bifunctions f1, f2, . . . , fN defined on C satisfying assumptions A1 − A4 and
αi ∈ (0, 1), i = 1, 2, . . . , N ,

∑N
i=1 αi = 1 such that

Sol

(

C,

N∑

i=1

αi fi

)

�⊂ ∩N
i=1Sol(C, fi ).

Proof It is clear that we only need to prove the case when H = R
2 and N = 2. In

that purpose, for x = (x1, x2) ∈ R
2, y = (y1, y2) ∈ R

2 we consider the set C and
bifunctions f1 and f2 given as follows

C = {(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0}.

f1(x, y) = x2y1 − x1y2.

f2(x, y) = x1y2 − x2y1.

Then we have: f1(x, x) = 0,∀x ∈ C and for all x, y ∈ C , we obtain

f1(x, y) + f1(y, x) = x2y1 − x1y2 + y2x1 − y1x2 = 0.

Hence, f1 is monotone on C . For each x ∈ C we have also f1(x, y) is linear in y, and
thus f1(x, ·) is convex. Furthermore, it is obvious that f1 is continuous on C × C .

Therefore the bifunction f1 satisfies assumptions A1,A2,A3, and A4.
Similarly, f2 satisfies assumptionsA1,A2,A3, andA4. In addition, it can be seen

that

Sol(C, f1) = {0} × [0,+∞).

Sol(C, f2) = [0,+∞) × {0}.

So,

Sol(C, f1) ∩ Sol(C, f2) = {(0, 0)}.

Now, we consider a combination of f1, f2 given as follows

f (x, y) = 1

2
f1(x, y) + 1

2
f2(x, y)

= 1

2

[
f1(x, y) + f2(x, y)

]

= 0,∀x, y ∈ C .
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It is obvious that f satisfies assumptions A1,A2,A3, and A4. Moreover

Sol(C, f ) = C = [0,+∞) × [0,+∞).

Therefore

Sol(C, f ) �⊂ Sol(C, f1) ∩ Sol(C, f2).

��
From this theorem, we have the following corollary

Corollary 3.1 Statements 2.1–2.5 are not always true.

Proof Let N = 2 and take the set C and the bifunctions f1 and f2 defined as in
Theorem 3.1. Consider the combination of f1 and f2 given by

f (x, y) = 1

2
f1(x, y) + 1

2
f2(x, y) = 0,∀x, y ∈ C .

Hence,

� = Sol(C, f1) ∩ Sol(C, f2) = {(0, 0)},

Sol(C, f ) = C = [0,+∞) × [0,+∞).

Then we have the following results:

(a) Statement 2.1 is false because Sol(C, f ) �⊂ Sol(C, f1) ∩ Sol(C, f2).
(b) Let us consider the numerical procedure given in Statement 2.2. Take x1 ∈ C

such that x1 �= (0, 0) and set F(x) = x1, Ax = x, ∀x ∈ R
2. Choose γ = 1, we

have
⎧
⎪⎨

⎪⎩

1
ρk

〈y − zk, zk − xk〉 ≥ 0,∀y ∈ C,

yk = θk PC (xk) + (1 − θk)zk,

xk+1 = δk x1 + (1 − δk)yk .

Hence
⎧
⎪⎨

⎪⎩

zk = PC (xk)

yk = PC (xk)

xk+1 = δk x1 + (1 − δk)PC (xk).

Because x1 ∈ C we can conlude that xk = x1,∀k. Since x1 /∈ � this means that
Statement 2.2 is false.
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(c) Take u = x1 ∈ C such that x1 �= (0, 0). The sequence {xk} generated by
Statement 2.3 becomes

{
1
ρk

〈y − yk, yk − xk〉 ≥ 0,∀y ∈ C,

xk+1 = λku + μk xk + δk yk .

Hence

{
yk = PC (xk)

xk+1 = λku + μk xk + δk PC (xk).

Since x1 = u ∈ C , yk ∈ C and λk + μk + δk = 1, the sequence {xk} ⊂ C and
thus

xk = u,∀k.

This leads to xk → u /∈ � and thus Statement 2.3 is false.
(d) Take x1 ∈ C such that x1 �= (0, 0) and set F(x) = x1. Then the sequences {xk}

and {yk} generated by Statement 2.4 take the form

{
1
ρk

〈y − yk, yk − xk〉 ≥ 0,∀y ∈ C,

xk+1 = λk F(xk) + μk PC (xk) + δk yk .

So

xk+1 = λk x
1 + μk x

k + δk PC (xk).

Since x1 ∈ C and λk + μk + δk = 1 we have xk = x1,∀k. Because x1 /∈ � the
Statement 2.4 is false.

(e) Firstly, we show that bifunction f1 satisfies assumptionA5. In that purpose, fixed
r > 0 and z ∈ C , we have

f1(y, x) + 1

r
〈y − z, z − x〉 = x1y2 − x2y1

+ 1

r

(
(y1 − z1)(z1 − x1) + (y2 − z2)(z2 − x2)

)

= y1
(1

r
(z1 − x1) − x2

) + y2(x1 + 1

r
(z2 − x2)

)

− 1

r

(
z1(z1 − x1) + z2(z2 − x2)

)
.

By choosing x = (z1, z2 + r(z1 + 1)). Then, we have that x ∈ C and

f1(y, x) + 1

r
〈y − z, z − x〉 = −y1

(
z2 + r(z1 + 1)

) − y2 + z2(z1 + 1
)
. (3.1)
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By setting B = {(y1, y2) ∈ R
2 : |y1| ≤ z1+1, |y2| ≤ z2+r(z1+1)+z2(z1+1)},

we have that B is a nonempty compact, convex subset of R2 and x = (z1, z2 +
r(z1 + 1)) ∈ C ∩ B. From (3.1) we have that

f1(y, x) + 1

r
〈y − z, z − x〉 < 0, ∀y ∈ C\B.

Similarly, f2 satisfies assumption A5.
Now, take x1 = x0 ∈ C such that x0 �= (0, 0). Then yk = xk and zk = xk for all
k and the sequence {xk} generated by Statement 2.5 becomes

xk = x1,∀k.

So, Statement 2.5 is false.

��
From Theorem 3.1 we can see that under assumptions A1 − A4 the statement

∩N
i=1Sol(C, fi ) = Sol(C, f ),

is not always true. So a natural question is to find under which conditions this formula
is correct. The following theorem gives us an answer under the assumption:

(A′
2) ϕ is parapseudomonotone on C .

Theorem 3.2 Let fi , i = 1, 2, . . . be bifunctions satisfying A1,A′
2,A3 and A4 such

that ∩∞
i=1Sol(C, fi ) �= ∅ and bifunction f (x, y) = ∑∞

i=1 αi fi (x, y), where αi >

0,∀i = 1, 2, . . . and
∑∞

i=1 αi = 1, is well-defined on C, i.e., f (x, y) < ∞ ∀x, y ∈ C.
Then

∩∞
i=1 Sol(C, fi ) = Sol(C, f ). (3.2)

Proof By the assumption and the observation above, we have that

∅ �= ∩∞
i=1Sol(C, fi ) ⊂ Sol(C, f ).

Therefore, we only have to show the inverse inclusion. In that purpose, we take x∗ ∈
Sol(C, f ). Then we have

f (x∗, y) =
∞∑

i=1

αi fi (x
∗, y) ≥ 0,∀y ∈ C . (3.3)

Taking x̄ ∈ ∩∞
i=1Sol(C, fi ) we can write

fi (x̄, y) ≥ 0,∀y ∈ C and ∀i = 1, 2, . . .
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and, in particular,

fi (x̄, x
∗) ≥ 0,∀i . (3.4)

Since the bifunctions fi are pseudomonotone on C , we have

fi (x
∗, x̄) ≤ 0, ∀i . (3.5)

Fixing j ≥ 1 and replacing y by x̄ in (3.3), we get

0 ≤ α j f j (x
∗, x̄) +

∞∑

j �=i=1

αi fi (x
∗, x̄)

and by (3.5) that

f j (x
∗, x̄) ≥ 0. (3.6)

From (3.5) and (3.6) for all j we deduce that

f j (x
∗, x̄) = 0, for all j . (3.7)

By the pseudomonotonicity of the bifunctions f j , we get f j (x̄, x∗) ≤ 0, for all j .
Combining this with (3.4) we get

f j (x̄, x
∗) = 0 for all j . (3.8)

Using (3.7) and (3.8) with the parapseudomonotonicity of each f j , we obtain directly
that x∗ ∈ Sol(C, f j ),∀ j . So

x∗ ∈ ∩∞
i=1Sol(C, fi ).

The proof is completed. ��
Remark 3.1 • From the proof above, we can see that Theorem 3.2 is still valid when

H is a real Banach space.
• Under Assumptions A1,A′

2,A3, A4 and ∩∞
i=1Sol(C, fi ) �= ∅ we may not get

that f is well-defined on C . Indeed, let us consider the following example:

fi (x, y) = 4i x(y − x), ∀x, y ∈ C = [0,+∞) and i = 1, 2, . . .

Then it can be seen that fi satisfy Assumptions A1,A′
2,A3, A4 for all i ≥ 1

and ∩∞
i=1Sol(C, fi ) = {0}. However, with αi = 2−i , the combination bifunction

f (x, y) = ∑∞
i=1 αi fi (x, y) = ∑∞

i=1 2
i x(y − x) is not well defined on C . For

instance: f (1, 2) = ∑∞
i=1 2

i = ∞.
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• Taking fi (x, y) = 0 for all i > N , the formula (3.2) becomes

∩N
i=1Sol(C, fi ) = Sol(C, f ).

Therefore, Statement 2.1 is correct when assumption A2 is replaced by A′
2.

• For the reader’s convenience we report here the wrong implication made in the
proof of Lemma 2.7 presented in Suwannaut and Kangtunyakarn (2013). The
authors correctly proved in Suwannaut and Kangtunyakarn (2013) that under the
assumptions A1 − A4 one gets fi (x̄, x∗) = 0 for all i = 1, 2, . . . , N , where
x̄ ∈ Sol(C,

∑N
i=1 αi fi ) and x∗ ∈ �. But this fact with assumption A1 do not

necessarily imply that x̄ = x∗. In fact, by recalling again our example of Theorem
3.1, we can set

Sol

(

C,

N∑

i=1

αi fi

)

= [0,∞) × [0,∞) � (1, 1) = x̄ �= x∗ = (0, 0) = �.

• Statements 2.2–2.5 are correct if A2 is replaced by assumption A2bis :
(A2bis) ϕ is paramonotone on C .

4 Conclusion

We have proved that there exists a finite family of monotone equilibrium problems
such that the common solution set of them does not contain the solution set of a
combination of those equilibrium problems. Based on this fact, we can say that some
results given in some recent papers are not always true. We have also shown that
under certain conditions the solution sets of any strictly convex combination and of
the intersection of a family of equilibrium problems coincide not only in the finite
case ( fi , i = 1, 2, . . . , N ) but also in the infinite case ( fi , i = 1, 2, . . .).
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