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Abstract
This article shows the existence of weak solutions of a resonant problem for a frac-
tional p-Laplacian equation in a bounded domain in R

N . Our arguments are based
on the Minimum principle, saddle point theorem and rely on a generalization of the
Landesman–Lazer-type condition.
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1 Introduction and Preliminaries

Let � be a bounded domain in R
N , (N ≥ 3) with smooth boundary ∂�. In this

article, we study the existence of weak solutions of the following Dirichlet problem
at resonance for fractional p-Laplacian equation:{

(−�)spu = λ1|u|p−2u + f (x, u) − k(x), x ∈ �

u = 0 in RN \ �,
(1.1)
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where p ≥ 2, s ∈ (0; 1) [1–5].

(−�)spu(x) = 2 lim
ε→+0

∫
RN \Bε (x)

|u(x) − u(y)|p−2 (u(x) − u(y))

|x − y|N+sp
dy, x ∈ R

N ,

(1.2)
and f : �×R → R is a Carathéodory function, λ1 denotes the first eigenvalue of the
eigenvalue problem {

(−�)spu = λ|u|p−2u in �

u = 0 on R
N \ �.

(1.3)

The properties of eigenvalue problem will be specialited below.
Remark that the operation (−�)sp known as the fractional p-Laplacian leads natu-

rally to the study of the quasilinear problem

{
(−�)spu(x) = g(x, u) in �

u = 0 on R
N \ �.

(1.4)

One feature of the aforementioned operator is the nonlocality in the sense that the
value of (−�)spu(x) at any point x ∈ � depends not only on the values of u on the
whole �, but also on the whole R

N , since u(x) represents the expected value of a
random variable tied to a process randomly jumping arbitrarily far from the points.
The fractional p-Laplacian operator (−�)spu(x), p ≥ 2, and more generally pseudo
differential operators, have been a classical topic in Hamonic analysis and partial
differential equations. Nonlocal operator (−�)sp such as naturally arise in continuum
mechanics, phase transition phenomena, population dynamics,...

In the literature, there are many works on the existence of solutions for fractional
p-Laplacian equation, p ≥ 2. The authors applied some different methods to study the
existence, nonexistence ormultiplicity results ofweak solutions for nonlocal equations
involving the fractional p-Laplacian in domain � ⊂ R

N . We refer the reader to some
following paper. In [6], the authors investigated the fractional p-Laplacian equation
(1.4) and established the existence and multiplicity results of weak solutions by using
Morse Theory. In [7], the authors established the existence of multiple weak solutions
for (1.4) with nonlinearity in form

λ f (x, u) + μg(x, u).

In [7–16], the authors applied some differentmethods (asVariationalmethod via the
Mountain Pass Theorem, fixed point method, etc.) to study the existence, nonexistence
ormultiplicity results of weak solutions for nonlocal equations involving the fractional
p-Laplacian in domain � ⊂ R

N .
Our aim in this paper is to study the existence of weak solutions for a fractional

p-Laplacian problem (1.1) by using the Minimum principle, the saddle point theorem
together with a generalization of the Landesman–Lazer-type condition.

Now, let us introduce a variational setting for the problem (1.1).
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Wefirst recall some results related to the fractional Sobolev space and the fractional
p-Laplacian, for more details see [6,17].

Let � ⊂ R
N be a bounded domain with smooth boundary ∂�. For p ∈

(1;+∞), s ∈ (0; 1), the fractional critical exponent is defined as

p∗
s =

{
Np

N−sp if sp < N
+∞ if sp ≥ N .

Define the Gagliardo seminorm by

[u]s,p =
⎛
⎜⎝∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

⎞
⎟⎠

1
p

,

where u : RN → R is a measurable function, and we define the fractional Sobolev
space

Ws,p
(
R

N
)

=
{
u ∈ L p

(
R

N
)

: u measurable, [u]s,p < +∞
}

,

endowed with the norm
‖u‖s,p = (‖u‖p

p + [u]ps,p
) 1
p ,

where ‖.‖p denotes the norm of L p(�).
Denote X(�) as the closed linear subspace

X (�) =
{
u ∈ Ws,p

(
R

N
)

: u(x) = 0 a.e. x ∈ R
N \ �

}
.

which can be equivalently renormed by setting ‖.‖ = [.]s,p (see [6,17]).
Moreover (X (�) , ‖.‖) is a uniformly convex Banach space and that the embedding

X(�) into Lq(�) is continuous for all 1 ≤ q ≤ p∗
s and compact for all 1 ≤ q < p∗

s
(see [6,17]).

We set the nonlinear operator A : X(�) → X(�)∗ defined for all u, v ∈ X(�) by

〈A(u), v〉 =
∫
RN

∫
RN

|u(x) − u(y)|p−2 (u(x) − u(y)) (v(x) − v(y))

|x − y|N+sp
dxdy.

Remark that, if u is smooth enough, this definition coincides with that of (1.2).
Clearly for all u ∈ X(�), we have

〈A(u), u〉 = ‖u‖p, ‖A(u)‖∗ ≤ ‖u‖p−1.

Since X(�) is uniformly convex Banach space, operator A satisfies the following
compactness condition (see [6]).
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Lemma 1.1 (S-property) If {um} is a sequence weakly converging to u in X(�) such
that

〈A(um), um − u〉 → 0 as m → +∞.

Then {um} strongly converges to u in X(�).

Moreover A is the Gateaux derivative of the functional

u → J (u) = ‖u‖p

p
in X(�).

Now, we consider the nonlinear eigenvalue problem in X(�), namely

{
(−�)spu = λ|u|p−2u, in �

u = 0 on RN \ �.
(1.5)

Many properties of the eigenvalue problem (1.5) have been detected by several
authors (can see [6,18,19]). Hence we can recall only the properties that using in our
arguments below.

Let

λ1 = inf
u∈X(�)\{0}

‖u‖p

‖u‖p
p

= inf
u∈X(�)\{0}

〈A(u), u〉
‖u‖p

p
, (1.6)

where ‖u‖ = [u]s,p, u ∈ X (�). Then λ1 ∈ (0;+∞) is the first eigenvalue of the
eigenvalue problem (1.5). The number λ1 plays an important role in arguments for our
problem.

• λ1 = min σ(s, p) is an isolated point of σ(s, p), where σ(s, p) is the spectrum of
the operator (−�)sp in X(�). Moreover λ1− eigenfunctions are proportionale.

• ϕ1(x) is a λ1− eigenfunction, then either ϕ1(x) > 0 a.e. in � or ϕ1(x) < 0 a.e. in
�. In below we always assume that ϕ1(x) > 0 for a.e. x ∈ �.

Definition 1.1 A function u(x) ∈ X(�) is said a weak solution of the problem (1.1)
if only if

〈A(u), v〉 = λ1

∫
�

|u|p−2uvdx +
∫
�

f (x, u)vdx −
∫
�

k(x)vdx (1.7)

for all v ∈ X(�).

In order to establish our main theorem, we introduce the following hypotheses:
(H1) [1–5]

(i) k(x) �= 0 a.e. x ∈ �, k(x) ∈ L p′
(�), 1

p + 1
p′ = 1.

(ii) f : � × R → R is a Carathéodory function, f (x, 0) = 0 and there exists a
function τ(x) ∈ L p′

(�) such that

| f (x, s)| ≤ τ(x) for a.e.x ∈ �, all s ∈ R.
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Denotes by

f +∞(x) = lim
s→+∞ f (x, s) , f−∞(x) = lim

s→−∞ f (x, s) a.e. x ∈ �. (1.8)

F+∞(x) = lim
τ→+∞

1

τ

τ∫
0

f (x, yϕ1)dy, a.e. x ∈ �. (1.9)

F−∞(x) = lim
τ→+∞

1

τ

τ∫
0

f (x,−yϕ1)dy, a.e. x ∈ �. (1.10)

(H21)

(i) f−∞(x) < k(x) < f +∞(x), a.e. x ∈ �. (1.11)

(ii)
∫
�

F+∞(x)ϕ1(x)dx <

∫
�

k(x)ϕ1(x)dx <

∫
�

F−∞(x)ϕ1(x)dx . (1.12)

(H22)

(i) f +∞(x) < k(x) < f−∞(x), a.e. x ∈ �. (1.13)

(ii)
∫
�

F−∞(x)ϕ1(x)dx <

∫
�

k(x)ϕ1(x)dx <

∫
�

F+∞(x)ϕ1(x)dx . (1.14)

Our main result is given by the following theorem

Theorem 1.1 Problem (1.1)admits a nonzeroweak solution in X(�) if one of following
two conditions

(i) (H1) and (H21),

or

(ii) (H1) and (H22) holds.

Proof of the Theorem 1.1 is based on variational techniques via theMinimum principle
and the saddle point theorem.

Theorem 1.2 (Minimum principle (see [20,21])) Let F ∈ C1(Y ),where Y is a Banach
space.

Assume that

(i) F is bounded from below, c = inf F.
(ii) F satisfies the Palais–Smale condition in Y .

Then there exists u0 ∈ Y such that F(u0) = c.

Theorem 1.3 (saddle point theorem-P.H.Rabinowitz (see [21,22])) Let X = E ⊕Y be
a Banach space with Y closed in X and dim E < +∞. For ρ > 0 define

M = {u ∈ E : ‖u‖ < ρ} , M0 = {u ∈ E : ‖u‖ = ρ}.
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Let F ∈ C1(X , R) be such that

b = inf
u∈Y F(u) > a = max

u∈M0
F(u).

If F satisfies the (P − S)c condition with

c = inf
γ∈�

max
u∈M F(γ (u)),

where

� = {γ ∈ C(M, X) : γ |M0 = 1},
then c is a critical value of F.

2 Proof of Theorem 1.1(i) (Minimum principle and Existence of Weak
Solutions)

We define the Euler–Lagrange functional associated with the problem (1.1) as

I (u) = 1

p
‖u‖p − λ1

p

∫
�

|u|pdx −
∫
�

F(x, u)dx +
∫
�

k(x)udx

= J (u) + T (u), u ∈ X(�),

(2.1)

where

J (u) = 1

p
‖u‖p = 1

p
〈A(u), u〉 , u ∈ X(�). (2.2)

T (u) = −λ1

p

∫
�

|u|pdx −
∫
�

F(x, u)dx +
∫
�

k(x)udx, u ∈ X(�)

F(x, u) =
u∫

0

f (x, s)ds.

We deduce that I ∈ C1(X(�)) (see [6]) and the derivative of I is defined by

〈
I ′(u), v

〉 = 〈A(u), v〉 − λ1

∫
�

|u|p−2uvdx −
∫
�

f (x, u)vdx

+
∫
�

k(x)vdx,∀u, v ∈ X(�). (2.3)

Therefore the critical points of I are weak solutions of the problem (1.1).

Proposition 2.1 Assuming the hypotheses (H1) and (H21) are fulfilled, then the func-
tional I : X(�) → R given by (2.1) satisfies the (P–S) condition in X(�).
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Proof Let {um} be a Palais–Smale sequence in X(�), i.e.,

|I (um)| ≤ M with a positive constant M . (2.4)

I ′(um) → 0 in X(�)∗ as m → +∞. (2.5)

First, we shall prove that the sequence {um} is bounded in X(�). We suppose
by contradiction that the sequence {um} is not bounded in X(�). Without loss of
generality, we assume that

‖um‖ → +∞ as m → +∞.

Let ûm = um‖um‖ . Thus the sequence {̂um} is bounded in X(�). Then there exists a
subsequence {̂umk }which converges weakly to û in X(�). Since the embedding X(�)

into L p(�) is compact, {̂umk } converges strongly to û in L p(�).
From (2.4), we have

lim
k→+∞ sup

⎧⎨
⎩ 1

p

∥∥ûmk

∥∥p − λ1

p

∫
�

∣∣̂umk

∣∣pdx −
∫
�

F
(
x, umk

)
∥∥umk

∥∥p dx+
∫
�

k(x )̂umk∥∥umk

∥∥p−1 dx

⎫⎬
⎭ ≤ 0.

(2.6)
By hypotheses (H1), we have:

lim
k→+∞ sup

∫
�

F
(
x, umk

)
∥∥umk

∥∥p dx = 0.

lim
k→+∞ sup

∫
�

k(x )̂umk∥∥umk

∥∥p−1 dx = 0.

Moreover

lim
k→+∞

∫
�

∣∣̂umk

∣∣pdx =
∫
�

|̂u|pdx = ‖û‖p
p .

Then, from (2.6) we obtain that

lim
k→+∞ sup ‖ûmk‖pdx ≤ λ1 ‖û‖p

p . (2.7)

From (2.7) and since the functional J (u) = ‖u‖p

p is sequentially weakly lower
semicontinous in X(�), we come to a conclusion that

λ1
p ‖û‖p

p = λ1
p

∫
�

|̂u|pdx ≤ J (̂u) ≤ lim
k→+∞ inf J

(̂
umk

)
≤ lim

k→+∞ sup J
(̂
umk

) = lim
k→+∞ sup 1

p

∥∥ûmk

∥∥p ≤ λ1
p ‖û‖p

p .

Hence,

J (̂u) = 1

p
‖û‖p = λ1

p
‖û‖p

p . (2.8)

123



B. Q. Hung, H. Q. Toan

By definition of λ1, from (2.8) we deduce that û = ±ϕ1, where ϕ1(x) is λ1 eigen-
function of the eigenvalue problem (1.5).

We shall consider following two cases.
First, we assume that ûmk → ϕ1 in L p(�) as k → +∞; hence, umk (x) → +∞

a.e. x ∈ � and ûmk (x) → ϕ1(x) a.e. x ∈ �.
From (2.4), we have

−pM ≤ −∥∥umk

∥∥p + λ1

∫
�

∣∣umk

∣∣pdx + p
∫
�

F
(
x, umk

)
dx

−p
∫
�

k(x)umk (x)dx ≤ pM . (2.9)

and from (2.5), there exists a sequence {εk}, εk > 0, εk → 0 as k → +∞ such as∣∣〈I ′ (umk

)
, umk

〉∣∣ ≤ εk
∥∥umk

∥∥ , (k = 1, 2, . . . .)

that is

−εk
∥∥umk

∥∥ ≤ ∥∥umk

∥∥p − λ1

∫
�

∣∣umk

∣∣pdx −
∫
�

f
(
x, umk

)
umkdx

+
∫
�

k(x)umk (x)dx ≤ εk
∥∥umk

∥∥ .

(2.10)

By summing (2.9) and (2.10), we have

−pM − εk
∥∥umk

∥∥ ≤ p
∫
�

F
(
x, umk

)
dx −

∫
�

f
(
x, umk

)
umkdx

+ (1 − p)
∫
�

k(x)umk (x)dx ≤ pM + εk
∥∥umk

∥∥ .

(2.11)

After dividing (2.11) by ‖umk‖, remark that

lim
k→+∞

∫
�

f
(
x, umk

)
ûmk (x)dx = ∫

�

f +∞(x)ϕ1(x)dx,

lim
k→+∞

∫
�

k (x) ûmk (x)dx = ∫
�

k(x)ϕ1(x)dx

and due to the Lebesgue Theorem, we have

lim
k→+∞ sup

∫
�

(
p
F

(
x, umk

)∥∥umk

∥∥ − f +∞(x)ϕ1(x)

)
dx = (p − 1)

∫
�

k(x)ϕ1(x)dx .

(2.12)
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Denote lk = ‖umk‖ → +∞ as k → +∞, by hypotheses (H1), and we have

∣∣∣∣∣∣
∫
�

1

lk

⎛
⎝

umk∫
0

f (x, s) ds −
lkϕ1∫
0

f (x, s) ds

⎞
⎠

∣∣∣∣∣∣ ≤
∫
�

1

lk

∣∣umk − lkϕ1
∣∣ τ (x) dx

≤ ‖τ‖p′
∥∥ûmk − ϕ1

∥∥
p → 0 as k → +∞.

This implies

lim
k→+∞ sup

∫
�

F
(
x, umk

)∥∥umk

∥∥ dx = lim
k→+∞

∫
�

⎛
⎝ 1

lk

lkϕ1∫
0

f (x, s) ds

⎞
⎠dx .

By changing s = yϕ1, ds = ϕ1dy, we deduce that

lim
k→+∞

1

lk

lkϕ1∫
0

f (x, s) ds = lim
k→+∞

1

lk

lk∫
0

f (x, yϕ1) ϕ1dy = F+∞(x)ϕ1(x),

where F+∞(x) is given by (1.9). Hence

lim
k→+∞ sup

∫
�

F
(
x, umk

)∥∥umk

∥∥ dx =
∫
�

F+∞ (x)ϕ1(x)dx . (2.13)

Therefore from (2.12), (2.13), we obtain that

∫
�

(
pF+∞(x) − f +∞(x)

)
ϕ1(x)dx = (p − 1)

∫
�

k(x)ϕ1(x)dx . (2.14)

On the other hand, from the hypotheses (1.11) we have

f +∞(x) − k(x) ≥ 0 a.e. x ∈ �.

Hence (2.14) implies that

∫
�

pF+∞(x)ϕ1(x)dx = p
∫
�

k(x)ϕ1(x)dx +
∫
�

(
f +∞(x) − k(x)

)
ϕ1(x)dx

≥ p
∫
�

k(x)ϕ1(x)dx

which contradicts (H21). ��
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In the case when ûmk → −ϕ1(x) as k → +∞, by similar arguments we also have

∫
�

(pF−∞(x) − f−∞(x)) ϕ1(x)dx = (p − 1)
∫
�

k(x)ϕ1(x)dx . (2.15)

By hypotheses, (1.11), (2.15) imply that

∫
�

pF−∞(x)ϕ1(x)dx = p
∫
�

k(x)ϕ1(x)dx +
∫
�

( f−∞(x) − k(x))ϕ1(x)dx

≤ p
∫
�

k(x)ϕ1(x)dx,

which contradicts (H21).
This implies that the (P–S) sequence {um} is bounded in X(�). Then there exists

a subsequence {umk } which converges weakly to u0 in X(�). We will prove that the
subsequence converges strongly to u0 in X(�).

Indeed, since umk⇀u0 in X(�) and the embedding X(�) into L p(�) is compact,
{umk } converges strongly to u0 tin L p(�).

Firstly we remark that by (H1)

∣∣〈T ′ (umk

)
, umk − u0

〉∣∣ ≤ λ1
∥∥umk

∥∥p−1
p

∥∥umk − u0
∥∥
p

+ ‖τ‖p′
∥∥umk − u0

∥∥
p + ‖k‖p′

∥∥umk − u0
∥∥
p

≤
(
λ1

∥∥umk

∥∥p−1
p + ‖τ‖p′ + ‖k‖p′

) ∥∥umk − u0
∥∥
p.

Since {umk } is bounded in L p(�),
∥∥umk − u0

∥∥
p → 0 as k → +∞, we obtain that

lim
k→+∞

〈
T ′ (umk

)
, umk − u0

〉 = 0. (2.16)

Combining (2.16) and the fact

lim
k→+∞

〈
I ′ (umk

)
, umk − u0

〉 = 0

we get

lim
k→+∞

〈
J ′ (umk

)
, umk − u0

〉 = lim
k→+∞

〈
I ′ (umk

)
, umk − u0

〉
− lim

k→+∞
〈
T ′ (umk

)
, umk − u0

〉 = 0.

That is
lim

k→+∞
〈
A

(
umk

)
, umk − u0

〉 = 0. (2.17)
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From (2.17), by the (S)-property of the operator A (see Lemma 1.1), we deduce that
the subsequence {umk } converges strongly to u0 in X(�). Therefore the functional I
satisfies the Palais–Smale condition in X(�). Proposition 2.1 is proved.

Proposition 2.2 The functional I given by (2.1) is coercive on X(�) provided (H21)

holds.

Proof Firstly we noted that, in the proof of the Proposition 2.1, we have proved that if
{I (um)} is a sequence bounded from above with a sequence {um} in X(�) such that
‖um‖ → +∞ as m → +∞, then (up to a subsequence),

ûm = um
‖um‖ → ±ϕ1(x) in X(�) as m → +∞.

Using this fact, we will prove that the functional I is coercive in X(�) if (H21)

satisfied.
Indeed, suppose by contradiction that I is not coercive, it is possible to choose a

sequence {um} in X(�) such that ‖um‖ → +∞ as m → +∞, I (um) ≤ const and

ûm = um
‖um‖ → ±ϕ1(x) in X(�) as m → +∞.

Remark that by (1.6) we deduce that

−
∫
�

F (x, um)dx +
∫
�

k(x)um(x)dx ≤ I (um) ≤ const, m = 1, 2, . . . (2.18)

We now consider following two cases
Case 1: Assume that ûm → ϕ1 as m → +∞.
Dividing (2.18) by ‖um‖, we get

−
∫
�

F+∞(x)ϕ1(x)dx +
∫
�

k(x)ϕ1(x)dx

= lim
k→+∞ sup

⎛
⎝−

∫
�

F (x, um)

‖um‖ dx +
∫
�

k(x )̂um(x)dx

⎞
⎠ ≤ lim

m→+∞ sup
const

‖um‖ = 0

which gives ∫
�

k(x)ϕ1(x)dx ≤
∫
�

F+∞(x)ϕ1(x)dx .

which contradicts (H21).

Case 2: Assume that ûm → −ϕ1 as m → +∞.
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By similar computation above, we get∫
�

F−∞(x)ϕ1(x)dx −
∫
�

k(x)ϕ1(x)dx ≤ 0,

that is ∫
�

F−∞(x)ϕ1(x)dx ≤
∫
�

k(x)ϕ1(x)dx

which contradicts (H21).

It implies that I is coercive in X(�). The Proposition 2.2 is proved. ��
Proof of Theorem 1.1(i): The coerciveness (see Proposition 2.2) and the Palais–Smale
condition (see Proposition 2.1) are enough to prove that the functional I attains its
proper infimum at some u0 in X(�) (see Theorem 1.3) so that the problem (1.1) has
at least a weak solution u0 ∈ X(�). It is clear that u0 is a nontrivial solution of the
problem (1.1). ��

3 Proof of the Theorem 1.1(ii): (saddle point theorem and Existence
of Weak Solutions)

First, we remark that by similar arguments as in the proof of proposition 2.1, with
hypotheses (H22), we can prove that the functional I given by (2.1) satisfies the (P–S)
condition in X(�).

Splitting X(�) as the sum: X(�) = E ⊕ Y , where

E = {tϕ1, t ∈ R}.
Y = {v ∈ X(�) :

∫
�

ϕ
p−1
1 vdx = 0}, (3.1)

whereϕ1 is normalized eigenfunction associatedwith the eigenvalue λ1 of the problem
(1.5), ϕ1 > 0, x ∈ �, ‖ϕ1‖ = 1.

For u = tϕ1 + v, v ∈ Y ; then, we have∫
�

uϕ
p−1
1 dx = t

∫
�

|ϕ1|pdx +
∫
�

vϕ
p−1
1 dx .

Since v ∈ Y ,
∫
�

vϕ
p−1
1 dx = 0 and by definition of λ1,∫

�

ϕ
p
1 dx = 1

λ1
‖ϕ1‖p = 1

λ1
.

Hence t = λ1
∫
�
uϕ

p−1
1 dx .

On the other hand, for any u ∈ X(�), take t = λ1
∫
�
uϕ

p−1
1 dx , v = u − tϕ1. It is

clear that v ∈ Y . Thus u = tϕ1 + v, v ∈ Y .
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Lemma 3.1 There exists λ > λ1 such that

(Av, v) = ‖v‖p > λ

∫
�

|v|pdx, for all v ∈ Y .

Proof Let

λ = inf{(Av, v) :
∫

�

|v|pdx = 1, v ∈ Y }.
We shall prove that value λ is attained in Y .
Let {vm} in Y be a minimizing sequence, i.e.,

∫
�

|vm |pdx = 1,m = 1, 2, . . .

lim
m→+∞ (Avm, vm) = lim

m→+∞ ‖vm‖p = λ.

This implies that the sequence {vm} is bounded in X(�). Hence there exists a
subsequence {vmk } such as

vmk⇀v0 in X(�),

vmk → v0 in L p(�)

provided the embedding X(�) into L p(�) is compact.
Observe that∣∣∣∣∣∣

∫
�

ϕ
p−1
1

(
vmk − v0

)
dx

∣∣∣∣∣∣ ≤ ‖ϕ1‖p−1
p

∥∥vmk − vo
∥∥
p → 0 as m → +∞.

Hence

0 = lim
k→+∞

∫
�

vmk (x)ϕ
p−1
1 (x)dx =

∫
�

v0(x)ϕ
p−1
1 (x)dx

this implies that v0 ∈ Y .
Besides

1 = lim
k→+∞

∫
�

∣∣vmk (x)
∣∣pdx =

∫
�

|v0(x)|pdx,

so v0 �= 0.
By the lower weak semicontinous of the functional v �→ ‖v‖p, v ∈ X(�),we have

λ ≤ (Av0, v0) = ‖v0‖p ≤ lim
k→+∞ inf

∥∥vmk

∥∥p ≤ lim
k→+∞

∥∥vmk

∥∥p = λ.

hence λ = ‖v0‖p. It means that the value λ is attained at v0.
By the variational characterization of the eigenvalue λ1, it is clear that λ ≥ λ1.
If λ = λ1, by simplicity of λ1, there exists t ∈ R such that v0 = tϕ1.

123



B. Q. Hung, H. Q. Toan

But since v0 ∈ Y , we have

0 =
∫

�

ϕ
p−1
1 v0dx = t

∫
�

ϕ
p
1 dx = t‖ϕ1‖p

p,

hence t = 0 and then v0 = 0 which a contradiction due to v0 �= 0.
This implies that λ = λ > λ1 and the proof of the Lemma 2.1 is complete. ��

Proposition 3.1 The function I given by (2.1) is coercive on Y provided hypotheses
(H1) and (H22) hold.

Proof Observe that by Holder inequality, Lemma 3.1 and hypotheses (H1) we have
for any v ∈ Y :

|I (v)| ≥ 1

p
‖v‖p − λ1

p

∫
�

|v|pdx−
∫
�

|F (x, v)| dx −
∫
�

k(x) |v| dx

≥ 1

p

(
1 − λ1

λ

)
‖v‖p − (‖τ‖p′ + ‖k‖p′

) ‖v‖p

≥ 1

p

(
1 − λ1

λ

)
‖v‖p − M

(‖τ‖p′ + ‖k‖p′
) ‖v‖,

(3.2)

with M is positive.
From (3.2), since p ≥ 2 , 1− λ1

λ
> 0 it follows |I (v)| → +∞ as ‖v‖ → +∞. So

that the functional I is coercive on Y and Proposition 3.1 is proved. ��
From Proposition 3.1, it implies that

BY = min
v∈Y I (v) > −∞.

Remark that for every t ∈ R, we have

1

p
‖tϕ1‖p − λ1

p

∫
�

|tϕ1|pdx = 0,

as follows from the definition of λ1 and ϕ1. Thus

I (tϕ1) = t
∫
�

k(x)ϕ1(x)dx −
∫
�

F (x, tϕ1) dx

= t
∫
�

(
k(x)ϕ1(x) − F (x, tϕ1)

t

)
dx,

(3.3)

where

F (x, tϕ1)

t
= 1

t

tϕ1∫
0

f (x, s) ds.
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Note that

lim
t→+∞

F (x, tϕ1)

t
= lim

t→+∞
1

t

tϕ1∫
0

f (x, s) ds

= lim
t→+∞

1

t

⎛
⎝ t∫

0

f (x, yϕ1) dy

⎞
⎠ ϕ1 = F+∞(x)ϕ1

(3.4)

and

lim
t→−∞

F (x, tϕ1)

t
= lim

t→−∞ − 1

|t |

tϕ1∫
0

f (x, s) ds

= lim
t→−∞

1

|t |

⎛
⎝ |t |∫

0

f (x,−yϕ1) dy

⎞
⎠ ϕ1 = F−∞(x)ϕ1.

(3.5)

Hence by the hypotheses (H22), from (3.3), (3.4), (3.5), we have

lim
t→+∞ I (tϕ1) = lim

t→+∞ t
∫
�

(
k(x)ϕ1(x) − F (x, tϕ1)

t

)
dx

= lim
t→+∞ t

∫
�

(
k(x)ϕ1(x) − F+∞(x)ϕ1

)
dx = −∞

(3.6)

and

lim
t→−∞ I (tϕ1) = lim

t→−∞ t
∫
�

(
k(x)ϕ1(x) − F (x, tϕ1)

t

)
dx

= lim
t→−∞ t

∫
�

(k(x)ϕ1(x) − F−∞(x)ϕ1)dx = −∞.

(3.7)

Thus there exists R > 0 such that for any t : |t | = R we have

I (tϕ1) < BY ≤ I (v) for all v ∈ Y .

From this, we can finish the proof of Theorem 1.1 (ii).

Proof of Theorem 1.1(ii): By Proposition 3.1, applying the saddle point theorem (see
Theorem 1.4) we deduce that the functional I attains its proper infimum at some
u0 ∈ X(�), so that the problem (1.1) has at least a weak solution u0 ∈ X(�) and it is
clear that u0 �= 0.

The Theorem 1.2 is proved. ��
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