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A B S T R A C T   

Iron oxyhydroxide (FeOOH) is an interesting material with major applications in water treatment. However, the 
gas-sensing properties of this nano-/micromaterial are not understood. Herein, we introduce a facile process for 
synthesizing submicron-sized γ-FeOOH spheres. The formation process of the γ-FeOOH phase after treatment is 
proposed, and the gas-sensing properties of the as-synthesized materials are investigated using NH3, H2S, NO2, 
and SO2. The influence of working temperature (from 25 �C to 300 �C) on material structure and gas-sensing 
performance is also studied and the gas-sensing process is explained and discussed.   

1. Introduction 

Iron oxyhydroxide (FeOOH) semiconductors, such as α-FeOOH, 
β-FeOOH, and γ-FeOOH, have narrow band gaps (Eg of ~2.1 eV) [1]. 
These materials have attracted considerable interest in the field of water 
splitting and as catalysts for degrading toxic pollutants under ultraviolet 
or visible light [2–5]. The nanostructures of these materials are 
commonly synthesized through various chemical approaches, such as 
low-temperature solution reaction [1], hydrothermal method [6], sol
vothermal synthesis [7] and solution oxidation method [8]. Amorphous 
FeOOH is grown on a Ni foil via one-pot hydrothermal synthesis [9]. 
Nevertheless, a direct synthesis procedure for FeOOH using Fe foil re
mains unavailable. A FeOOH semiconductor is treated as an immediate 
phase to form Fe2O3 before its gas-sensing properties are characterized 
[10,11]. Other studies investigated the sensing properties of FeOOH 
semiconductors modified/mixed with other materials [12,13], but the 
gas-sensing properties of FeOOH itself remain unclear. 

In this study, γ-FeOOH microstructures were synthesized by 
oxidizing a Fe plate in NH4OH at 40 �C. The gas-sensing properties of 
γ-FeOOH were characterized using a dynamical gas testing system at an 
operating temperature of 25–300 �C. The transformation of the gas- 
sensing properties and the material’s phase/structure were analyzed 
by field emission scanning electron microscopy (FE-SEM) and X-ray 
diffraction (XRD) techniques, respectively. 

2. Experimental 

A commercial Fe plate (purity of 99.5%, thickness of 0.25 mm) was 
cut into 2 � 2 cm2 plates. The plates were ground using grindstone and 
sandpaper for the removal of contaminants and oxides. The Fe plates 
were cleaned in a bath sonicator with acetone for 5 min, then dried 
under N2 flow. The prepared plates were soaked in 25 mL of NH4OH in a 
100 mL Duran laboratory bottle. The Duran bottle was subsequently 
maintained in an oven at 40 �C for 4 days. After the treatment, the Duran 
bottle was placed in a bath sonicator for 5 min for the extraction of red 
powder on the Fe surface. The received red solution was washed with 
distilled water three times and centrifuged. Approximately 0.1 g of the 
obtained red powder was dispersed in 10 mL of ethanol in the bath 
sonicator for 5 min. The prepared solution (5 μL) was dropped on an 
interdigitated electrode (Pt electrode with a gap of 20 μm) with a 
micropipette for the fabrication of the sensor device. 

The morphology and structure of the red powder were characterized 
by FE-SEM (JEOL JSM-7610 F) and XRD (X’Pert-Pro; λ ¼ 1.5418 Å), 
respectively. Its chemical composition was determined through X-ray 
photoelectron spectroscopy (XPS; Quantera SXM). The binding energy 
data were calibrated using the C1s signal of ambient hydrocarbons (C–H 
and C–C) at 284.6 eV. Gas-testing measurement was performed using a 
dynamic gas-testing system. Fig. 1 presents the structure of the electrode 
and the setup of our gas-sensing system. The sensor response is described 
as follows: 

* Corresponding author. 
E-mail address: hien.vuxuan@hust.edu.vn (V.X. Hien).  

Contents lists available at ScienceDirect 

Materials Science in Semiconductor Processing 

journal homepage: http://www.elsevier.com/locate/mssp 

https://doi.org/10.1016/j.mssp.2019.104857 
Received 16 August 2019; Received in revised form 1 November 2019; Accepted 18 November 2019   

mailto:hien.vuxuan@hust.edu.vn
www.sciencedirect.com/science/journal/13698001
https://http://www.elsevier.com/locate/mssp
https://doi.org/10.1016/j.mssp.2019.104857
https://doi.org/10.1016/j.mssp.2019.104857
https://doi.org/10.1016/j.mssp.2019.104857
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mssp.2019.104857&domain=pdf


Materials Science in Semiconductor Processing 107 (2020) 104857

2

S¼
Rg � Ra

Ra
� 100%; (1)  

where Ra and Rg are the sensor resistances of the device at a stable state 
in clean air and target gas, respectively. Response time is the duration at 
which 90% saturation response is achieved, and recovery time is the 
period required by the sensor to recover 90% of the maximum resistance 
when the target gas is off. 

Before gas measurement, the device was maintained at 5 h operating 
temperature for the stabilization of the material structure. During the 
gas test, the total gas flux was 200 sccm, and the carrier gas was dry air. 

3. Results and discussions 

Fig. 2 shows the structure and morphology of the synthesized red 
powder. In the XRD pattern (Fig. 2a), all diffraction peaks matched the 
orthorhombic structure of γ-FeOOH [JCPDS file No. 98-002-7846, 
orthorhombic structure, space group C m c m (63)]. No phase was 
detected in the pattern. The crystalline size of the sample calculated 

using Sherer–Debye equation [14] at the diffraction peak of 36.2� is 22 
nm. The FE-SEM images in Fig. 2b indicate that the γ-FeOOH sample is 
composed of submicron spheres. The sphere in Fig. 2c shows that the 
submicron spheres seem to be composed of many small plates arranged 
in different orientations. To the best of our knowledge, studies on the 
oxidation of metallic Fe in alkaline solution are rare. Nevertheless, the 
formation of γ-FeOOH during the treatment of Fe plate in NH4OH may 
be similar to the oxidation of Cu in ammonia solution [15]. Metallic Fe 
can be oxidized and produce Fe2þ in the ½FeðNH3Þ4�

2þ complex: 

Feþ
1
2
O2 þ H2Oþ 4NH3→½FeðNH3Þ4�

2þ
þ 2OH� : (2) 

In ammonia solution, OH� ions may swap NH3 in the ½FeðNH3Þ4�
2þ

complex to form FeðOHÞ2: 

½FeðNH3Þ4�
2þ
þ 2OH� →FeðOHÞ2 þ 4NH3: (3) 

The hydroxide form of Fe in an alkaline solution can be transformed 
into a further stable phase FeOOH via the intermediate of FeðOHÞ2�4 , such 
as that occurring with CuðOHÞ2 [16–18]: 

Fig. 1. Setup of the dynamic gas testing system.  

Fig. 2. (a) XRD pattern and (b–c) FE-SEM images of the red powder after 
treating the Fe plate in aqueous NH4OH at 40 �C for 4 days. The scale bar is 
1 μm. 

Fig. 3. Response/recovery curves of the γ-FeOOH device to various gases at 
25 �C. 
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FeðOHÞ2þ 2OH� →FeðOHÞ2�4 ; (4)  

FeðOHÞ2�4 → FeOOH þ OH� þ H2O: (5)  

here, the nanostructures of γ-FeOOH may be obtained through a 
reconstructive transformation involving a dissolution reaction followed 
by the precipitation of the FeðOHÞ2�4 units, such as in the case of CuO 
[18–20]. 

The gas-sensing properties of the γ-FeOOH device were investigated 
using SO2, NO2, NH3 and H2S at 25 �C, as shown in Fig. 3. Amongst the 
target gases, the device was extremely sensitive towards 10 ppm SO2, 
with a response of approximately 0.18%. Along with the low response 
value, the recovery time of the device at this temperature was gradual. 

This behavior may be explained by the slow adsorption/desorption of 
the target gas on the sensing sites at low temperatures, as mentioned in 
previous studies [21,22]. 

The bar chart in Fig. 4 summarises the influence of operating tem
perature on the sensor response towards H2S, NH3, NO2, and SO2. The 
optimal temperature of the device for detecting SO2 was 200 �C with S of 
~20%. Nevertheless, this device was increasingly sensitive towards NO2 
when the working temperature was increased. The highest response of 
the device to NO2 was 120% at 300 �C. The gas-sensing behavior of the 
device seemed to reverse when the operating temperature reached 250 
�C. The positive response (Rg > Ra) of the device towards NH3 and H2S 
completely changed to negative (Rg < Ra) at 250 �C, suggesting that the 
material phase did not remain when the working temperature increased. 
This phenomenon is reasonable because FeOOH is unstable and can 
transform to Fe2O3 at a temperature above 200 �C [23]. 

Fig. 5 shows the SO2-sensing properties of the device at 200 �C. The 
response time modulation in Fig. 5a indicates repeatability under the 
operating conditions. The response and recovery times of this device to 
10 ppm SO2 were 28 and 38 s, respectively. Fig. 5b illustrates the in
fluence of SO2 concentration on the sensor response. Here, the response 
and recovery times did not vary when the SO2 concentration changed. 
The detection limit of the sample to SO2 was 1 ppm. The fluctuation of 
the response data to the SO2 concentration was linear when the coeffi
cient of determination (R-square) was 99.8% (Fig. 5c). Thus, the sensing 
mechanism during this test was not derived from complex processes. 
Device stability was examined at an operating temperature of 200 �C for 
10 measurement days, as shown in Fig. 5d. The sensor response of the 
device slightly fluctuated after the 10-day test. The SO2 sensing per
formance of the γ-FeOOH was compared with those of other nano
materials in Table S1 (Supplemental Information). 

The gas-sensing properties of a metal oxide semiconductor originate 
from the imperfect structure of the material [24]. The defects that occur 
on the material surface tend to adsorb various chemical species in the 

Fig. 4. Comparative bar chart of sensor response towards H2S, NH3, NO2 and 
SO2 at different operating temperatures. The gas concentration is 10 ppm. 

Fig. 5. (a) Modulation curve of the device to five-pulse SO2 with 10 ppm concentration. (b) Response/recovery curves of the device to 1–10 ppm SO2. (c) Fitting line 
of the response to SO2 concentration data. (d) Radar chart of the sensor response to different target gases in different measurement days. The operating temperature is 
200 �C. 
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environment, such as oxygen or water molecules. The adsorption of 
oxygen species on the surface of a metal oxide has been well studied, and 
the transitions of oxygen species through physisorption and chemi
sorption can be described as follows [25–28]: 

O2ðgasÞ↔ O2ðadsÞ (6)  

O2ðadsÞþ e� ↔ O�2 ðadsÞðT < 100oCÞ (7)  

O�2 ðadsÞþ e� ↔ 2O� ðadsÞð100oC<T < 300oCÞ (8)  

O� ðadsÞþ e� ↔ O2� ðadsÞðT > 300oCÞ (9)  

where ‘ads’ is the adsorption. In n-type metal oxide semiconductors, 
such as SnO2, ZnO and Fe2O3, the chemical bonding process involved in 
the formation of O�2 ðadsÞ, O� ðadsÞ or O2� ðadsÞ results in the withdrawal 
of electrons in the conduction band or in the formation or expansion of a 
depletion zone on a material surface (Eq. (7)) [29,30]. Inversely, the 
formation of oxygen adatoms on the surface of p-type metal oxide 
semiconductors, such as SnO and CuO, leads to the addition of holes in 
the valence band or the formulation/expansion of the accumulation 
zone near the material surface [31]: 

O2ðadsÞ ↔ O�2 þ hþðadsÞ: (10) 

The oxygen adatoms in an n-type metal oxide can react with 
reducing gases, such as NH3 and H2S, as follows: 

4NH3ðgÞþ 5On�
2 ðadsÞ→4NOþ 6H2Oþ 5ne� ; (11)  

2H2Sþ 3On�
2 ðadsÞ→2H2Oþ 2SO2 þ 3ne� : (12) 

After the reactions, the released electrons can reduce material 
resistance (Rg < Ra). Inversely, the reducing gases can react with oxygen 
adatoms in a p-type metal oxide, leading to the increased resistance (Rg 
> Ra) of the sensing material. The free-electron generated in Eqs. 
(11–12) can recombine with the holes in the valence band of a p-type 
semiconductor, thereby increasing material resistance. These arguments 

indicate that our device presents the p-type semiconducting gas-sensing 
material and changes to the n-type sensing properties at operating 
temperatures below and above 200 �C, respectively. Therefore, the high 
response of the device to NO2 above 200 �C may result from another 
oxide form of Fe, except FeO. 

The phase transformation of γ-FeOOH under elevated temperature 
was characterized by XRD. Fig. 6a shows the XRD patterns of the 
γ-FeOOH powder after treatment at 100–300 �C for 5 h each. In the 
patterns of the samples treated at 100 and 200 �C, minor diffraction 
peaks that match γ-Fe2O3 were observed at 35.3� and 56.8� [JCPDS File 
No. 98–0.24-7034, cubic structure, space group F d -3 m (227)]. When 
the treatment temperature reached 300 �C, all the diffraction peaks of 
the γ-FeOOH were completely replaced with a set of peaks, which agreed 
with the cubic structure of γ-Fe2O3. XPS analysis was performed to 
characterize the chemical composition of the γ-FeOOH powder treated 
at 200 �C for 5 h. The survey spectrum shown in Fig. 6b indicates that Fe, 
O, and C are the main components in the sample. The O 1s spectrum of 
the sample is presented in Fig. 6c. In these data, one strong peak 
appeared, which is well deconvoluted into three peaks located at 529.6, 
531.0 and 532.5 eV. These peaks can be assigned to Fe–O–Fe, Fe–O–H 
and H–O–H bonds, respectively [32–34]. The appearance of the Fe–O 
and Fe–O–H bonds suggests the existence of the FeOOH phase in the 
sample [35]. The deconvoluted peaks in the Fe 2p spectrum (Fig. 6d) are 
quite similar to that of the reference of Fe2O3 in which the separation 
between Fe 2p1/2 and Fe 2p3/2 peaks (Δ ¼ 2p1/2 – 2p3/2) is 14 eV [36]. 
Based on these data, the gas-sensing properties of the device at 100–300 
�C involved two possible structures: Fe2O3/γ-FeOOH (n/p-type struc
ture) and γ-Fe2O3 (n-type structure). The sensing behavior of the 
Fe2O3/γ-FeOOH structure is possibly similar to that of the SnO2/SnO 
structure, which is well studied [37,38]. Both structures presented 
p-type sensing properties at low temperatures and changed to n-type 
sensing properties when the operating temperature was increased [39]. 
When the Fe2O3/γ-FeOOH structure completely transformed into a 
γ-Fe2O3 phase at 300 �C, the sensing properties of the device showed 
n-type semiconducting sensing properties, such as those of other Fe2O3 

Fig. 6. (a) XRD patterns of the as-synthesized powder of γ-FeOOH (a1) without annealing process and after heat treatment at (a2) 100, (a3) 200 and (a4) 300 �C for 
5 h. (b) XPS, (c) O 1s spectrum and (d) Fe 2p spectra of the γ-FeOOH powder annealed at 200 �C for 5 h. 
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nanomaterials [40,41]. 
The oxidations of γ-FeOOH to γ-Fe2O3 may cause a change in the 

surface morphology of the γ-FeOOH submicron spheres, as captured in 
Fig. 7. At 100 �C, the surfaces of the spheres were rough because of the 
appearance of curvy nanowalls (Fig. 7b), which became large straight 
nanowalls at a treatment temperature of 200 �C (Fig. 7c). When the 
sample was treated at 300 �C for 5 h, the average thickness of the 
straight wall roughly increased from 10 nm to 100 nm (Fig. 7d). This 
change in morphology may affect sensing performance owing to the 
variation in the effective sensing area [42,43]. The decreased number of 
specific surface areas and active sites for gas sensing when the average 
thickness of the straight wall expands may reduce sensor response. 
Therefore, the phase change is possibly the major reason for the 
response upsurge of the sensor towards NH3, H2S, and NO2 at 300 �C. 

4. Conclusions 

Submicron-sized γ-FeOOH rough spheres were synthesized by per
forming surface treatment on a Fe plate in aqueous NH4OH at 40 �C. The 
formation process of the γ-FeOOH material was proposed and discussed 
based on Fe oxidation in an alkaline solution. The gas-sensing properties 
of the as-synthesized γ-FeOOH sample were investigated with target 
gases NH3, H2S, SO2, and NO2. The γ-FeOOH device could detect 10 ppm 
SO2 at 25 �C, with a response of nearly 0.18%. The γ-FeOOH phase was 
partially transformed to Fe2O3 above 100 �C and completely changed to 
γ-Fe2O3 at 300 �C. This alteration led to the formation of curvy (at 100 
�C) and straight (above 200 �C) nanowalls on the surface of the sub
micron spheres. Therefore, the gas-sensing data were confirmed to be 
from Fe2O3/γ-FeOOH and γ-Fe2O3 structures. Here, the p-type sensing 
behavior of γ-FeOOH was observed, and this material seemed extremely 
sensitive to SO2 gas. The sensor response to 10 ppm SO2 at 200 �C was 
nearly 20%, and the detection limit of the sample was 1 ppm. The 
response and recovery time of the device working at 200 �C was 28 and 
38 s, respectively. γ-Fe2O3 was extremely sensitive to NO2 at 300 �C, 
with a sensor response of roughly 120% (10 ppm NO2). 
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