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New hybrid between NSGA-III with
multi-objective particle swarm
optimization to multi-objective robust
optimization design for Powertrain
mount system of electric vehicles
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Abstract
In this study, a new methodology, hybrid NSGA-III with multi-objective particle swarm optimization (HNSGA-
III&MOPSO), has been developed to design and achieve cost optimization of Powertrain mount system stiffness para-
meters. This problem is formalized as a multi-objective optimization problem involving six optimization objectives: mean
square acceleration and mean square displacement of the Powertrain mount system. A hybrid HNSGA-III&MOPSO is
proposed with the integration of multi-objective particle swarm optimization and a genetic algorithm (NSGA-III). Several
benchmark functions are tested, and results reveal that the HNSGA-III&MOPSO is more efficient than the typical multi-
objective particle swarm optimization, NSGA-III. Powertrain mount system stiffness parameter optimization with
HNSGA-III&MOPSO is simulated, respectively. It proved the potential of the HNSGA-III&MOPSO for Powertrain mount
system stiffness parameter optimization problem. The amplitude of the acceleration of the vehicle frame decreased by
22.8%, and the amplitude of the displacement of the vehicle frame reduced by 12.4% compared to the normal design
case. The calculation time of the algorithm HNSGA-III&MOPSO is less than the algorithm NSGA-III, that is, 5 and 6 h,
respectively, compared to the algorithm multi-objective particle swarm optimization.
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Introduction

Due to the different configuration and operating prin-
ciple of electric motor and internal combustion engine
(ICE), the speed and speed of electric motors and ICEs
vary greatly, so the dynamic characteristics on electric
vehicles will be very different from traditional ICE cars.
On the other hand, due to increasing environmental
requirements, the big trend is shifting to a dynamical
system that uses electricity instead of gasoline as cur-
rently. Therefore, our research focuses on the vibration
of electric motors in vehicles. The electric vehicle’s

drive system consists of Powertrain, transmission, and
clutch, which is the source of energy for the vehicle and
is also one of the major sources of vibration in the car.
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There have been some authors studying electric vehicle
power systems.1–3 Therefore, to isolate vibrations trans-
mitted from the transmission system to the vehicle
body, the Powertrain mount is usually installed
between the transmission and the vehicle body.4

Powertrain mounting system is a system mounted
between the frame and the Powertrain. These mounts
play an important role in the entire dynamic system of
the vehicle and the principle diagram of the full-car
dynamic model with the Powertrain mount system is
shown in Figure 1. Powertrain mounting system has a
suitable stiffness. On the one hand, it will improve the
noise, vibration performance, and harshness of the
vehicle; on the other hand, it will extend the life of the
Powertrain and related parts.5 If calculated according
to the characteristics of controllability, Powertrain
racks can be classified into passive Powertrain racks
(hydraulic and rubber racks are the most popular),
Powertrain racks, and sold Powertrain. Typically, a
rubber hanger consists of a metal frame in which the
rubber is bonded through adhesives or during vulcani-
zation. With the advantage of low cost and simple
structure, rubber suspension is the most widely used
engine mount. The important step to designing racks is
the parameters that match their stiffness. Suitable rigid-
ity can not only reduce the vibration of the Powertrain
to the elastic platform (such as frame and body) but
can also reduce the unwanted impact of excitation from
the road and impact wheel on the body. One of the
most important steps to designing Powertrain racks is
to calculate the stiffness parameters of the suspension
so that it is best suited to the Powertrain and chassis
parameters. With the stiffness parameters of the appro-
priate Powertrain mount, it can not only reduce the
vibration of the Powertrain to the chassis but also
reduce the undesirable effects of stimuli from the road
and movable impact wheels transfer on the body. By
that, the problem of calculating the optimal hardness
parameters for the Powertrain mounting system is an
important task in designing the vehicle’s dynamic

system. This is a multi-object concurrency optimization
problem.

Recently, a number of researchers have studied in
the field of multi-objective optimization. They intro-
duced various methods, among them, presented in
Konak et al.6 in reviews and guidelines. NSGA-II algo-
rithm is published by Deb et al.7 and so far there are a
number of variations and applications of NSGA II
algorithm developed by Chang and Chang,8 Ishibuchi
et al.,9 and Malekmohammadi et al.10 Deb and Jain11

have published and applied the MONGA-II method
for a number of multi-objective testing problems.
NSGA-III algorithms have been studied to face multi-
ple goals at once (more than two). This is the
Algorithm published by Deb and Jain12 in 2014, in
which they changed some selection mechanisms. They
came up with a multi-objective evolution algorithm
based on reference points based on the NSGA-II algo-
rithm. They mainly emphasize that population mem-
bers are not popular, but close to the combination of a
set of reference points provided. The NSGA-III algo-
rithm is proposed to apply to a number of multi-
objective testing problems with 3 to 15 goals.

In addition, there are some researchers studying the
optimal problem of many objects. They have studied
and developed multi-objective particle swarm optimiza-
tion (MOPSO) algorithm. MOPSO algorithm is one of
the most popular multi-objective optimization algo-
rithms conceptually; it is similar to particle swarm opti-
mization (PSO). Coello et al.13 and his colleagues
applied MOPSO algorithm to handle multiple objec-
tives. In recent studies of MOPSO algorithm,13–15 they
have shown additional conditions such as multiple esti-
mates used to achieve better exploration characteristics.
Baltar and Fontane16,17 improved the MOPSO algo-
rithm to minimize deviation from outflow water qual-
ity. They also published an application of an
evolutionary optimization algorithm for multi-objective
analysis for reservoir operations and planning. Reddy
and Kumar18,19 published and applied the Elitist-
Mutated operator with MOPSO (EM-MOPSO) to
show the reduction of total squared deviations for irri-
gation, maximizing the yield of aquatic electricity and
the degree of satisfaction of downstream water quality
requirements. In addition, they used the Elitist-
Mutated MOPSO algorithm (EM-MOPSO) to maxi-
mize hydropower production and minimize the total
number of squares to release annual irrigation from
demand. Wang et al.20 have applied modified MOPSO
to minimize the highest water level, release peak flow,
water level difference after flood season, and flood con-
trol level. In this case, the concept of Pareto dominance
for selecting leaders from a non-dominated external
archive has been utilized by MOPSO algorithm where
the leaders of swarms that guide the particles to the

Figure 1. A full-car dynamic model with a Powertrain mount
system.
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Pareto Frontier are selected from the top portion of the
archive at each iteration.

Recently, there are some new optimization algo-
rithms proposed.21–27 However, each algorithm has
advantages and disadvantages, precisely, because no
algorithm can solve all optimization problems correctly.
Therefore, new hybrid algorithms should be proposed
to be able to solve new problems that have not been
resolved before and/or have better accuracy than exist-
ing techniques.

On the other hand, there are some hybrid methods
of optimization algorithms that have been recently
developed: Jeong et al.28 published the development
and investigation of the GA/PSO-hybrid algorithm
effectively for optimizing the design in the real world.
Premalatha and Natarajan29 published hybrid PSO and
GA for Global Maximization. A multi-objective parti-
cle optimization method based on extreme optimization
with variable and inertial inertia mutations (HM-
TVWF-MOEPSO) has been proposed to solve some of
the problems in optimization, multi-purpose particle
chemistry, and improved algorithm performance.30 A
new hybrid heuristic algorithm is published in the cur-
rent work for multi-objective optimization issues. The
hybrid algorithm has proposed a method to combine
the simple algorithm Nelder-Mead with the non-
dominant genetic algorithm II (NSGA II) to find the
best global point. The performance of this new algo-
rithm has been presented through a number of complex
benchmark functions.31 A pre-selected pre-creation
method has been published to address multivariate
technical optimization problems.32 This method can set
the number of Pareto solutions and optimize multiple
times until satisfactory results are obtained. This is an
effective algorithm that consists of independent parallel
genetic algorithms by dividing the entire population
into multiple populations,33 in which each population
group will be assigned to different weights to search for
optimal solutions in different directions. Therefore,
most published hybrid algorithms have many advan-
tages. This breeding has overcome the limitations of
each optimization algorithm. This proves that this is
one of the methods that should be studied in multi-
objective optimization.

In this article, a new hybrid optimization algorithm
is proposed in this work for multi-objective problems.
This is the hybrid between the MOPSO algorithm and
a multi-objective genetic algorithm (NSGA-III) to find
the best of the Pareto optimal front. HNSGA-
III&MOPSO is proposed to outperform MOPSO and
NSGA-III because it uses a combination of search
operators of both algorithms to create a new popula-
tion. This makes the search process more diverse, wider
search space. New hybrid algorithms show better per-
formance than other algorithms. This is demonstrated
through a number of complex benchmarking functions

and Powertrain mount system stiffness parameter opti-
mization problem with six-objective optimization in a
three-dimensional (3D) model. The amplitude of the
acceleration of the vehicle frame decreased by 22.8%,
and the amplitude of the displacement of the vehicle
frame reduced by 12.4% compared to the normal
design case. The calculation time of the algorithm
HNSGA-III&MOPSO is less than the algorithm
NSGA-III, that is, 5 and 6h, respectively, compared to
the algorithm MOPSO.

The organization of this article is as follows. Section
‘‘Structure’’ describes the proposed hybrid HNSGA-
III&MOPSO method and computational experimenta-
tion with several benchmark functions. Section
‘‘Vibration characteristic of the Powertrain mount sys-
tem’’ describes the vibration characteristic of the
Powertrain mount system and simulation results of
application HNSGA-III&MOPSO method to optimi-
zation of the Powertrain mount system stiffness

Figure 2. Flow chart of NSGA-III.
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parameter. The final section ‘‘Conclusion’’ concludes
the article.

Structure

Genetic algorithm NSGA-III

This algorithm was published by Deb and Jain12 in
2014 with a number of change mechanisms selected.
NSGA-III algorithm is based on the steps described in
Figure 2.

PSO (MOPSO)

Kennedy et al.34 published an algorithm based on the
basis of PSO algorithm for optimization. They
improved the PSO algorithm to find the Pareto optimal
front. Therefore, the improved PSO algorithm is suit-
able to optimize many goals with high convergence
speed, allowing each individual to benefit from the
experience. A diagram of MOPSO is shown in Figure 3.

Hybrid NSGA-III and MOPSO (HNSGA-III&MOPSO)

Each evolutionary algorithm has different strengths
and characteristics. Therefore, it is only natural to
think of integrating different algorithms to handle a
complex problem. In the field of research, the evolution
algorithm integrates two or more optimization algo-
rithms into a single frame. The results show that hybrid
algorithms have higher efficiency because they can
exchange characteristics to improve the disadvantages
and enhance their advantages. Parallel hybridization
can improve exploration and exploitation which can
yield higher performance and more favorable condi-
tions than any single algorithm. These population-
based approaches use different techniques to explore
the search space and, when they are combined, will
improve the trade-off between exploration and exploi-
tation tasks to converge around. The best solution was
possible.

HNSGA-III&MOPSO hybrid approach. HNSGA-III&MOPSO
is implemented in parallel breeding; that is, the initial
population will be generated in both NSGA-III and
MOPSO. After that, two separate populations will be
mixed together. The new population after combining
will be both algorithms used as their own population to
perform fitness function calculations that evaluate the
evolution of each algorithm. By the next generation,
the new population created by the two algorithms is
mixed together to form a common population. The
process repeats until the end of evolution condition is
completed. The process of parallel operation is to cre-
ate an extremely diverse and widespread population.
This makes the algorithm have a wide search strategy
across the regions, besides making the process more
convergent. Therefore, the analysis time is reduced and
the results are more accurate.

Figure 3. Flow chart of MOPSO.

The pseudo code of the proposed algorithm:
Parameter initialization for NSGA-III and MOPSO algorithms.

MOPSO algorithms: Swarm population initialization.
NSGA-III algorithms: GA population initialization.

While travel not completed.
Combination the two populations.

MOPSO algorithm.
While sub-travel not completed.

Determined fitness function.
Set Pbest and Gbest.

Update particle velocity vi
k + 1 and position xi

k.
Proceed non-dominated sorting and crowding distance.

End while.
NSGA-III algorithm.

While evolution not completed.
Choose two parents P1 and P2 using the tournament

method.

(continued)
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A flow chart of HNSGA-III&MOPSO is shown in
Figure 4.

Computational experimentation with several
benchmark functions

Numerical results. In this section, the performance of
HNSGA-III& MOPSO is evaluated using five

benchmarks that are published in CEC 2009,35–38 listed
in Table 1. The results are compared to algorithms of
NSGA-III and MOPSO. For the performance metric,22

Inverted Generational Distance (IGD),39 Spacing (SP),
and Maximum Spread (MS)40 criteria are employed to
measure convergence, quantity, and coverage, respec-
tively. The mathematical formulation of IGD is as
follows

IGD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i= 1

d2
i

s

N
ð1Þ

where N is the number of true Pareto optimal solutions
and di indicates the Euclidean distance between the ith
true Pareto optimal solution and the closet obtained
Pareto optimal solutions in the reference set. It should
be noted that IGD=0 indicates that all members of the
non-dominated solutions are in the true Pareto Front

Proceed the crossover between P1 and P2 with a
probability Pc.

Recognize the non-dominated population sorting.
Normalize the population members.
Associate the population member with the reference

Points.
Apply the niche preservation (counter).

Keep the appropriate solutions obtained for the next
generation.

End while.
End while.

Figure 4. Flow chart of HNSGA-III&MOPSO.
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SP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN�1

i= 1

(�d � di)
2

vuut ð2Þ

where �d is the average of all di, N is the number of
Pareto optimal solutions obtained, and

di =min (jf i
1(x)� f

j
1(x)j+ jf i

1(x)� f2
j(x)j)

for all i, j= 1, 2, 3, . . . N

MS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i= 1

max d(ai, bi)½ �

vuut ð3Þ

where d is a function to calculate the Euclidean dis-
tance, bi is the minimum in the ith objective, and M is
the number of objectives.

In addition to using performance metrics, the best
Pareto optimization set that HNSGA-III&MOPSO
obtained on both parameter space and search space is
shown in Figures 5 and 6. These figures show the

performance of HNSGA-III&MOPSO compared to the
real Pareto front. To evaluate comparisons, all algo-
rithms are run 20 times for test problems and the statis-
tical results of 20 runs and algorithm parameters are
provided in Tables 2–4. Statistical results of the algo-
rithm for IGD, SP, and MS are provided, respectively,

Figure 5. Pareto front of bi-objective benchmark functions: Pareto front of (a) UF2 functions, (b) UF4 functions, and (c) UF5
functions.

Figure 6. Pareto front of tri-objective benchmark functions: Pareto front of (a) UF8 functions and (b) UF10 functions.

Table 2. NSGA-III algorithm parameters.

Maximum number
of iterations

MaxIt = 10,000

Population size nPop = 100
Crossover percentage pCrossover = 0.5
Mutation percentage pMutation = 0.5
Mutation rate = 0.02 mu = 0.02
Number of
parnets (offsprings)

nCrossover = 2*round
(pCrossover*nPop/2)

Number of mutants nMutation = round(pMutation*nPop)
Mutation step size sigma = 0.1*(VarMax 2 VarMin)
Generating
reference points

nDivision = 10
Zr = GenerateReferencePoints
(nObj, nDivision)

Tr ng and Dao 7



in Tables 5–7. IGD shows that the proposed hybrid
algorithm (HNSGA-III&MOPSO) can provide the best
results on all statistics for issues that test two goals.
IGD is a performance indicator that shows the accuracy
and convergence of the algorithm. Therefore, it can be
said that the proposed HNSGA-III&MOPSO algorithm
can provide outstanding convergence on benchmarking
two or three optimal goals. Pareto optimal solution

results of HNSGA-III&MOPSO on each benchmark
are also described in Figures 5 and 6.

The resulting Pareto front is shown in Figures 6
and 7.

The numerical results prove that HNSGA-
III&MOPSO having good performance for optimal
objects is two objects; it relates to the convergence and
scope of the search. However, HNSGA-III&MOPSO

Table 3. MOPSO algorithm parameters.

Maximum number of iterations MaxIt = 10,000 Inertia weight damping rate wdamp = 0.99
Population size nPop = 100 Personal learning coefficient c1 = 1
Deletion selection pressure gamma = 2 Global learning coefficient c2 = 2
Mutation rate mu = 0.1 Number of grids per dimension nGrid = 7
Leader selection pressure beta = 2 Inflation rate alpha = 0.1
Repository size nRep = nPop/2 Inertia weight w = 0.5

Table 4. HNSGA-III&MOPSO algorithm parameters.

Maximum number of iterations MaxIt = 10,000 Inertia weight damping rate wdamp = 0.99
Population size nPop = 100 Personal learning coefficient c1 = 1
Mutation percentage pMutation = 0.5 Global learning coefficient c2 = 2
Mutation rate = 0.02 mu = 0.02 Number of grids per dimension nGrid = 7
Crossover percentage pCrossover = 0.5 Inflation rate alpha = 0.1
Repository size nRep = nPop/2 Leader selection pressure beta = 2
Inertia weight w = 0.5 Deletion Selection Pressure gamma = 2
Generating reference points nDivision = 10 Mutation rate mu = 0.1

Table 5. Results for IGD.

IGD UF2 UF4

Average Median Std. dev. Worst Best Average Median Std. dev. Worst Best

MOPO 0.0714 0.04536 0.03752 0.14551 0.03632 0.13453 0.14432 0.00636 0.15485 0.12335
NSGA-III 0.12244 0.1242 0.01243 0.14485 0.10454 0.06823 0.06835 0.00254 0.07078 0.06424
HNSGA-III&
MOPSO

0.01362 0.01555 0.00269 0.01445 0.01260 0.02634 0.02815 0.00168 0.02777 0.02289

IGD UF5 UF8

Average Median Std. dev. Worst Best Average Median Std. dev. Worst Best

MOPSO 2.50638 2.42504 0.57004 3.03533 1.48659
NSGA-III 1.26755 1.33741 0.13839 1.46735 0.12145 0.56681 0.53667 0.28667 0.69647 0.28530
HNSGA-III&
MOPSO

0.47889 0.45400 0.08469 0.53541 0.22341 0.19659 0.27840 0.06717 0.33488 0.17553

IGD UF10

Average Median Std. dev. Worst Best

MOPSO
NSGA-III 1.63529 1.59123 0.29349 2.16232 1.22048
HNSGA-III&
MOPSO

1.70324 1.54323 0.55133 3.03835 1.13806

IGD: Inverted Generational Distance; MOPSO: multi-objective particle swarm optimization.
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having good performance for optimal objects is three
objects; the proposed algorithm shows high conver-
gence and better coverage of many MOPSO and
NSGA-III algorithms. From here, we can say that the

main advantages of the algorithm HNSGA-
III&MOPSO proposed compared to NSGA-III and
MOPSO are the convergence characteristics and the
ability to search more broadly. In addition, the results

Table 6. Results for SP.

SP UF2 UF4

Average Median Std. dev. Worst Best Average Median Std. dev. Worst Best

MOPSO 0.00849 0.00834 0.00168 0.01245 0.00624 0.00666 0.00672 0.00081 0.00819 0.00557
NSGA-III 0.00866 0.00879 0.00096 0.01042 0.00797 0.00780 0.00758 0.00066 0.00876 0.00617
HNSGA-III&
MOPSO

0.02730 0.02624 0.01259 0.06499 0.01740 0.02843 0.02886 0.00465 0.03784 0.02038

SP UF5 UF8

Average Median Std. dev. Worst Best Average Median Std. dev. Worst Best

MOPSO 0.00456 0.00487 0.00408 0.01206 0.00006
NSGA-III 0.00278 0.00007 0.00553 0.01665 0.00001 0.02692 0.02737 0.00867 0.04453 0.01731
HNSGA-III&
MOPSO

0.12545 0.12738 0.03505 0.16826 0.7467 0.24374 0.23799 0.03889 0.28492 0.16359

SP UF10

Average Median Std. dev. Worst Best

MOPSO
NSGA-III 0.01984 0.02064 0.00378 0.02645 0.01538
HNSGA-III&
MOPSO

1.06778 0.89534 0.41961 1.81768 0.67319

SP: Spacing; MOPSO: multi-objective particle swarm optimization.

Table 7. Results for MS.

MS UF2 UF4

Average Median Std. dev. Worst Best Average Median Std. dev. Worst Best

MOPSO 0.91505 0.91836 0.02460 0.86676 0.95651 0.81545 0.81344 0.01557 0.75441 0.83449
NSGA-III 0.87501 0.87337 0.00580 0.85436 0.87884 0.88564 0.88431 0.01866 0.84324 0.91394
HNSGA-III&
MOPSO

0.89262 0.88368 0.05465 0.82235 0.93863 0.95766 0.96653 0.01532 0.92242 0.95666

MS UF5 UF8

Average Median Std. dev. Worst Best Average Median Std. dev. Worst Best

MOPSO 0.23923 0.28663 0.09845 0.15784 0.43677
NSGA-III 0.29341 0.29565 0.3560 0.23544 0.34550 0.55310 0.54401 0.16736 0.26523 0.71676
HNSGA-III&
MOPSO

0.82346 0.83676 0.06766 0.64314 0.95436 0.34398 0.36783 0.47428 0.27879 0.77412

MS UF10

Average Median Std. dev. Worst Best

MOPSO
NSGA-III 0.13435 0.10433 0.06253 0.06679 0.25414
HNSGA-III&
MOPSO

0.24643 0.14474 0.38569 0.03383 0.96133

MS: Maximum Spread; MOPSO: multi-objective particle swarm optimization.
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of HNSGA-III&MOPSO are proposed in most cases
better than MOPSO and NSGA-III. Therefore, the
results show that HNSGA-III&MOPSO is proposed to
outperform MOPSO and NSGA-III because it uses a
combination of search operators of both algorithms to
create a new population. In addition, the MOPSO
algorithm updates the gBest in each iteration.
Therefore, all particles are attracted by the same or a
similar gBest (i) group in each iteration, while individu-
als of HNSGA-III&MOPSO are updated for each gen-
eration, thus supporting assist search agents to explore
a wider search space. This proves that the hybrid
method has actually been successful. It gives more
accurate results and less search time than the other two
algorithms.

Vibration characteristic of the Powertrain
mount system

Mathematical model: Full car model with 10 degrees of
freedom (DOF) is shown in Figure 1. Suspension and
tires are considered spring and damping systems.
Where the masses m2.1, m2.2, m2.3, and m2.4 denote the
weight of four wheels (the mass does not burst). The
masses mcg1 and mcab represent the mass (unburnt
mass) of the frame and electric motor, respectively.
Z3.1, Z3.2, Z3.3, Z3.4 are the vertical displacements of
the wheel; Z1, Z2 are, respectively, the vertical displa-
cement of the frame and the transmission system. And,
Roll and Altitude are vibrations that rotate around the
corresponding X and Y axes. Next, the symbol F and
C represent the pitch and roll of the frame. The inertia
of the transmission system on the y-axis and the x-axis
are Iyy and Ixx, respectively; the inertial moment for
the chassis on axes X1 and Y1 are Iyy1 and Ixx1,
respectively. The stiffness and damping parameters of
the wheels are K3.1, K3.2, K3.3, K3.4 and C3.1, C3.2,
C3.3, C3.4, respectively. Similarly, the hardness and
damping parameters of primary suspension are K2.1,
K2.2, K2.3, K2.4 and C2.1, C2.2, C2.3, C2.4, respec-
tively, while the hardness and damping parameters of

the drive system are K1.1, K1.2, K1.3 and C1.1, C1.2,
C1.3, respectively. The distance of the front and rear
support from the center (CG) of the transmission sys-
tem is a and b, respectively; the right and left mounting
distances from the CG of the transmission system are c
and d, respectively. a1, b1 and c1, d1 are the distances
for the chassis.

Using Newton’s law, the mathematical model of
Figure 1 can be written as follows

M€xi +K _xi +Cxi =Q(t) ð4Þ

where the symbols are shown in Table 8.

Multi-objective optimization functions

There are many indicators to evaluate the vibration of
the Powertrain. In particular, mean square acceleration
oscillates at the front and rear of the Powertrain mount,
the mean square displacement difference between the
Powertrain and vehicle chassis at the front and rear
Powertrain mount. These are two important parameters
that determine the decisive influence of unit Powertrain
vibration on chassis. In order to optimally reduce the
vibration of the unit Powertrain, we need to simultane-
ously optimize the parameters of mean square accelera-
tion and mean square displacement at the front and
rear, right and left of the Powertrain mounts.

The average square value of the vibration accelera-
tion of any points can be determined by the following
formula

€z =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘
�‘

S€z(v)dv

vuuut =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘
�‘

v4 Wz(jv)j j2Sq(v)

vuuut ð5Þ

where v is the frequency, jWz(jv)j2 is the squared modu-
lus of amplitude and phase characteristics, and Sq(v) is
the spectral density of exposure.

Figure 7. Road surface profiles.

Table 8. Parameters of the mathematical model.

Symbol Parameters of the mathematical
model

Xi Vector column of displacements
and angular oscillations of masses

M The matrix of inertial coefficients of
car parts

C The matrix of coefficients of
stiffnesses and torsional rigidity

K The matrix of damping coefficients
Q(t) Column vector of the perturbing

forces and moments
q1, q2 Universal road
surface amplitude
at front and rear wheels

q2(t)= q1(t+ t) with t: time
interval, va: vehicle speed
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The modules of the amplitude and phase characteris-
tics of the vibratory displacement of the Powertrain and
the car body in the place of the front mount are

W
o1

k (jv)=W0(jv)+W
f
0 (jv) � l3 ð6Þ

W O1

ca (jv)=W f
ca(jv)+Wca(jv) � l6 ð7Þ

where W0(jv) is the module amplitude–phase character-
istics in the center of the car body, W

f
0 (jv) is the mod-

ule amplitude–phase characteristics of the longitudinal-
angular body of the car, W O1

k (jv) is the module of the
amplitude and phase characteristics of the body in
place of the front mount of the Powertrain, Wca(jv) is
the module amplitude–phase characteristics in the cen-
ter of the Powertrain of the car, W f

ca(jv) is the module
amplitude–phase characteristics of the longitudinal-
angular Powertrain of the car, and W O1

ca (jv) is the mod-
ulus of amplitude–phase characteristics in place of the
front mount of the Powertrain.

The modules of the amplitude–phase characteristics
of the vibration displacement of the Powertrain and the
car body in the place of the rear mount are

W
O2

k (jv)=W0(jv)+W
f
0 (jv) � l4 ð8Þ

W O2

ca (jv)=Wca(jv)�W f
ca(jv) � l7 ð9Þ

where W O2

k (jv) is the module of the amplitude–phase
characteristics of the body in the place of the rear
mount of the Powertrain and W O2

ca (jv) is the module of
amplitude–phase characteristics in the place of the rear
mount of the Powertrain.

The difference of the module frequency response of
the vibration of the Powertrain and the car body in
place of the front mount of the Powertrain is

W O1

ca-k(jv)=W O1

ca (jv)�W O1

k (jv) ð10Þ

The difference of the frequency response module of
the vibration displacement of the Powertrain and the
car body at the rear mount is

W O2

ca-k(jv)=W O2

ca (jv)�W O2

k (jv) ð11Þ

Simulated input parameters

Road surface profiles. When the vehicle moves, there are
many factors that cause the vibration:: the internal
force in the car; external forces that appear in the pro-
cess of using acceleration, braking, and revolving; exter-
ior conditions such as wind and storm; and boring face
street. Among the factors on the bumpy side of the road
is the oscillation cause of the vehicle. To simulate the
most general calculation, we use the road surface profile
as a random function as in Figure 7 and simulated
parameters as shown in Table 9.

Simulation results of application HNSGA-III&MOPSO
method to optimization of the Powertrain mount
system stiffness parameter

Through Matlab, we calculated six functions of accel-
eration and displacement according to the stiffnesses of
the front left, front right, and rear Powertrain mount
(K1.1, K1.2, K1.3) value as shown in Figure 8 (Figures
8–10 show the results in the form of 4D—four-dimen-
sional space via the Isosurfaces function in Matlab).

Figure 8. Values of six-objective optimization functions.

Table 9. Model parameters.

No. Parameter Value Unit

1 m2.1, m2.2, m2.3, m2.4 60 kg
2 mcab, mcg1 1000, 1200 kg
3 K2.1, K2.2, K2.3, K2.4 37,000 N m
4 C2.1, C2.2, C2.3, C2.4 700 N s/m
5 K3.1, K3.2, K3.3, K3.4 55,000 N m
6 C3.1, C3.2, C3.3, C3.4 4000 N s/m
7 K1.1, K1.2, K1.3 670,000 N m
8 C1.1, C1.2, C1.3 6000 N s/m
9 a, b, c = d 0.187, 0.623, 0.3 m
10 a1 = b1, c1 = d1 1.5, 1 m
11 Ixx, Iyy 320, 80 Kg m2

12 Ixx1, Iyy1 4000, 950 Kg m2
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Values of six-objective optimization functions
according to the stiffnesses (K1.1, K1.2, K1.3): f1 is
MSD at the front left Powertrain mount, f2 is MSA at
the front left Powertrain mount, f3 is MSD at the front
right Powertrain mount, f4 is MSA at the front right
Powertrain mount, f5 is MSD at the rear Powertrain
mount, and f6 is MSA at the rear Powertrain mount.

It is well known that the results of multi-objective
optimization would be a set of non-dominated opti-
mized points called Pareto set. These points offer a
wide range of parameters to the designer to choose the
optimum point depending on his designing conditions.
There are always conflicting objective functions in vehi-
cle designing where improvement in one function may
have an unfavorable influence on other functions. In
this article, multi-objective optimization for all six-
objective functions is done simultaneously. Application
of HNSGA-III&MOPSO optimization algorithm: we
obtain results as shown in Figures 9 and 10:

The average square of the Pareto front of MSD at the
front left Powertrain mount: f1=4.1258e205 (m).
The average square of the Pareto front of MSA at
the front left Powertrain mount: f2=1.5962 (m/s2).
The average square of the Pareto front of MSD at
the front right Powertrain mount: f3=5.5557e205 (m).

The average square of the Pareto front of MSA at the
front right Powertrain mount: f4=1.8014 (m/s2).
The average square of the Pareto front of MSD at the
front right Powertrain mount: f5=2.2680e205 (m).
The average square of the Pareto front of MSA at the
front right Powertrain mount: f6=1.3224 (m/s2).

In which f1 is the Pareto front of MSD at the front
left Powertrain mount, f2 is the Pareto front of MSA at
the front left Powertrain mount, f3 is the Pareto front
of MSD at the front right Powertrain mount, f4 is the
Pareto front of MSA at the front right Powertrain e
mount, f5 is the Pareto front of MSD at the rear
Powertrain mount, and f6 is the Pareto front of MSA
at the rear Powertrain mount.

Application of HNSGA-III&MOPSO optimization
algorithm with 6- objective functions (f1, f2, f3, f4, f5,
f6): the red dots on f2, f3, f5, f6 and the blue dots on
f1, f4 are the result set of the Pareto front that the
HNSGA-III&MOPSO algorithm has found.

HNSGA-III&MOPSO has been applied in the prob-
lem of Powertrain mount system stiffness parameters
optimization. Simulation results comparing one of the
results in the set of the Pareto front from the HNSGA-
III&MOPSO algorithm with different stiffness values
(K1.1, K1.2, K1.3) are shown in Figures 11 and 12.

Figure 11 shows the acceleration of the vehicle frame
corresponding to the different stiffness values. Symbol
A corresponds to the optimal stiffness value in a set of
the Pareto front. Symbol B corresponds to
K1.1=290,000, K1.2=350,000, K1.3=550,000.
Symbol C corresponds to K1.1=790,000, K1.2=
750,000, K1.3=350,000. From the graph, we see that
the smallest acceleration is at the optimal stiffness
value.

Similarly, Figure 12 shows the displacement of the
vehicle frame corresponding to the different stiffness
values. Symbol A1 corresponds to the optimal stiffness
value in a set of the Pareto front. Symbol A2 corre-
sponds to K1.1=290,000, K1.2=350,000, K1.3=
750,000. Symbol A3 corresponds to K1.1=790,000,
K1.2=750,000, K1.3=650,000. From the graph, we
see that the smallest displacement is at the optimal stiff-
ness value in a set of the Pareto front.

Figure 9. Pareto front of the solutions after 1000 generations,
200 population.

Figure 10. Global Pareto front of six-objective optimization functions.
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Conclusion

The combination of the MOPSO algorithm and the
genetic algorithm NSGA-III has been implemented in
this article. The results of this technique find the glob-
ally optimal set of multi-object problems. The hybrid
method HNSGA-III&MOPSO has been rated high
performance, which has been assessed through a series
of comparative testing methods for benchmarking two
goals or three goals. In addition, these results are com-
pared with other multi-purpose optimization methods
such as MOPSO and NSGA-III. The numerical results
demonstrate that this new hybrid algorithm is more
effective in solving multi-objective optimization prob-
lems with many possibilities for convergence and
search.

The amplitude of the acceleration of the vehicle
frame decreased by 22.8%, and the amplitude of the
displacement of the vehicle frame reduced by 12.4%
compared to the normal design case. The calculation
time of the algorithm HNSGA-III&MOPSO is less
than the algorithm NSGA-III, that is, 5 and 6 h, respec-
tively, compared to the algorithm MOPSO.
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