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Abstract
In this paper, we study the performance of a full-duplex (FD) relay system in vehicle-to-vehicle (V2V) communication.
In this relay communication system, the communication link from the source node to the relay node can be modeled by
Rayleigh fading or double (cascaded) Rayleigh fading distributions while the link from the relay node to the destination
node is modeled by double Rayleigh fading distribution. Through the numerical calculation, we obtain the exact analytical
expressions for the outage probabilities (OPs) and symbol error rates (SERs) in two cases, i.e. case A (the first hop
is the Rayleigh fading channel and the second hop is double Rayleigh fading channel) and case B (two hops are the
double Rayleigh fading channels). From these obtained mathematical expressions, the impacts of the distances between
the communication nodes and the residual self-interference caused by the imperfect self-interference cancellation at the
FD relay are studied. In addition, the effects of path loss exponent and the transmission power at the FD relay are also
investigated. Numerical results show that the system performance in terms of OP and SER in the case of double Rayleigh
fading channels is significant lower than the case of Rayleigh fading channels. Monte-Carlo simulations are conducted to
validate the correctness of these numerical results.

Keywords In-band full-duplex relay · Self-interference cancellation · Decode-and-forward ·
Vehicle-to-vehicle communication · Outage probability · Symbol error rate

1 Introduction

Today, with the development of the science and technology,
many smart devices appear to improve the world. To per-
form their functions, almost smart devices have to connect
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to the Internet and exchange the information, leading to
the big data for communication operation. The demand
for big data in the fifth generation (5G) of mobile com-
munications and the Internet of Things (IoT) with limited
spectrum makes the wireless researchers and designers
improve the current wireless systems. In that context, many
solutions such as full-duplex (FD) or in-band full-duplex
(IBFD), non-orthogonal multiple access (NOMA), massive
multiple-input multiple-output (MIMO) are derived to solve
the problem of finite spectrum [1]. Due to the potential
of doubling the theory capacity, the FD communications
have become the hot research in recent years, especially
when the self-interference can be suppressed up to 110 dB
in both theory and practice [2, 3].

In the literature, many researches such as [4–11] have
focused on the performance of FD relay networks. In these
works, the authors successfully derived the mathematical
expressions of the system performance, i.e. the outage
probability (OP), the ergodic capacity, and the symbol error
rate. Based on these equations, the system performance
was analyzed and evaluated under the impact of the
residual self-interference (RSI) due to the imperfect self-
interference cancellation (SIC) and other parameters. Their
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results showed that under the impact of the RSI, the system
performance reached the error floor in high signal-to-noise
ratio (SNR) regime. Furthermore, using the optimal power
for the FD mode could improve the system performance. To
consider the FD communication in the protecting scenarios,
authors in [12] investigated a system where a FD massive-
array cyber-weapon is used. The authors successfully
derived the exact closed-form, tight approximation, and
asymptotic expressions of the ergodic secrecy rate in the
case of perfect and imperfect channel estimation at the
cyber-weapon. On the other hand, in the case of imperfect
channel state information (CSI), the system performance
will be decreased strongly [8, 12]. In order to employ
the spectral efficiency of the FD mode and investigate
the impacts of the RSI on the system performance, the
authors in [13–16] considered networks which use FD
multi-antenna spectrum-sharing wiretap [13], cooperative
cyclic prefix-single carrier spectrum sharing FD relay [14],
multiple FD small-cell base stations [15], cognitive FD relay
[16]. The exact closed-form and asymptotic expressions
of the OP of the considered systems were successfully
derived. These studies are useful for the next researches
on the FD communications. To combine FD mode with
new techniques, such as energy harvesting (EH), many
studies have analyzed the performance of full-duplex energy
harvesting (FD-EH) system [9, 11, 17–20]. Their results
demonstrated that the FD-EH communications can be
applied in the realistic conditions when the advantages of
SIC technique are exploited.

Meanwhile, the vehicle-to-vehicle (V2V) communica-
tions, where all nodes in the system move while exchanging
the information, have attracted attention from both educa-
tion and industry due to the fact that they can be used for
the intelligent transportation systems (ITS) [21, 22]. In addi-
tion, V2V communications are considered as key roles for
future autonomous transport systems [21–23]. Since they
can provide many applications for the traffic safety and
efficiency, a lot of research works have focused on the
applications, architectures, protocols, and channel models
of V2V communications.

Recently, the performance of V2V communications
under the impact of double Rayleigh fading channels has
been analyzed. Specially, in [21], the average secrecy capac-
ity (ASC) of V2V communications is investigated. Based
on the instantaneous SNR, the closed-form expression and
the asymptotic analysis of ASC are derived. Their results
showed that the impact of SNR on the ASC performance
is insignificant in high SNR regime. In [23], the V2V
communication for enhancing highway traffic safety is pre-
sented. Through the experiments, the authors demonstrated
the importance of the network data prioritization for safety-
critical applications. In [24], the authors studied a cognitive
cooperative inter-vehicular system. The OP of this system

is obtained for both best partial and full relay selection in
two distinct fading scenarios (Rayleigh and double Rayleigh
fading channels). Furthermore, the system performance in
terms of the ergodic capacity [25], the error performance
[26], and the OP [27, 28] of V2V communications has been
investigated in the literature.

Employing the FD technique into V2V communications
has been studied in some recent research works such
as [22, 29, 30]. In [22], the potential of FD-V2V was
considered. The advantages and disadvantages of the FD-
V2V communication were presented and the guidelines
for medium access control design and deployment were
also given. A novel dual-band full-duplex antenna array for
V2V communication was proposed in [29]. It is shown that
with two-port antenna, the isolation between the transmitted
signal and received signal is highly increased. On the other
hand, the authors combined the filtering, duplexing, and
radiation in a single device to reduce the size, weight,
and manufacturing cost of antenna. The authors of [30]
investigated the FD vehicular access networks without CSI
at the transmitter in a V2V communication system. The
optimal blind interference alignment scheme was proposed
to improve the sum rate of the system.

Today, most of IoT devices are connected to personal
mobile for transmitting/receiving the data. Furthermore,
people use the personal mobile phone to administrate the
IoT devices such as the security cameras, automatic water-
ing system, smart home, etc. when they are moving on the
road. In this context, the FD communications can provide
the high data rate for information exchange between the
vehicles. Therefore, the combination between the FD and
V2V communications is necessary for the future wireless
networks. However, when the FD and V2V communica-
tions are combined in a system, the OP and SER will be
decreased due to the impact of the RSI in the FD mode
and under the double Rayleigh fading channels. On the
other hand, due to the complexity of the channels in V2V
communications, there are lacks of the studies on the
FD-V2V communications. It is obvious that almost the
researches on FD-V2V communication systems in the lit-
erature have focused on the safety applications and MAC
design [22], array antenna design [29], analysis the sum
degrees of freedom [30]. However, they did not derive the
exact expressions of OP and SER. Therefore, the impacts
of both the RSI and V2V channels on the OP and SER
of the system were not investigated. Motivated by this
issue, in this paper, we propose the FD-V2V system where
the source node transmits the signal to the destination
node via the relay node. To the best of our knowledge,
this is the first work studying the system performance of
FD-V2V communication system in the aspect of mathe-
matical analysis. In this system, the source and destination
nodes operate in the half-duplex (HD) mode while the
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relay operates in FD mode with decode-and-forward (DF)
protocol. Through the mathematical analysis, we derive
the OP and SER expressions of the system over double
Rayleigh fading channels. The contributions of this paper
can be summarized as follows:

– We investigate the system where the FD technique
and V2V communication are combined. Unlike the
previous works, we consider two cases: i) Case A: the
channel from the source to the relay is the Rayleigh
fading channel and from the relay to the destination
is double Rayleigh fading channels; ii) Case B: two
links are double Rayleigh fading channels. These two
cases of the channel models are particularly suitable
for characterizing the practical V2V communication
systems [21, 31, 32].

– We derive the exact expressions for the outage
probability and symbol error rate of the system in
the case of imperfect self-interference cancellation at
the FD relay node for two cases A and B. Then, the
throughput of the system is also investigated.

– We analyze the system performance in terms of OP,
SER, and throughput of two considered cases. The
numerical results show that the system performance
in both cases are decreased strongly compared with
the system over Rayleigh fading channel. Furthermore,
the system performance is significantly affected by
the RSI due to the FD mode. On the other hand, the
influences of the far distances between the vehicles and
the path loss exponent are also investigate. The Monte-
Carlo simulations are conducted to verify the numerical
results.

The rest of this paper is organized as follows. Section 2
describes the systemmodel and the signal propagation while
Section 3 presents the system performance in terms of the
OP and SER. Section 4 gives the numerical results and
discussions. Finally, Section 5 concludes the paper.

2 Systemmodel

We consider a FD-V2V communication system as illus-
trated in Fig. 1. There are three nodes in this system, i.e.
source node (S), the relay node (R), and the destination node

(D). S and D are equipped with single antenna and operate
in the HD mode while R uses two antennas for transmitting
and receiving and operates in the FD mode. It is also noted
that in this paper R uses two antennas to achieve good SIC
in the FD mode [3, 33]. In the practical system, the R can
use one shared-antenna for transmitting/receiving the sig-
nal. The signal is transmitted from S to D via R by using
decode-and-forward protocol. We assume that the direct
link between S and D is not available due to deep fading
and shadowing. On the other hand, the CSI is available for
all nodes in the system. To investigate the system perfor-
mance in the realistic scenarios, we consider two cases: i)
the first fading scenario, S is stationary such as base sta-
tion while R and D are mobile. In other words, source node
S is located at fixed location, relay node R and destination
node D are moving (case A). Therefore, the channel from S
to R is Rayleigh fading channel and the channels from R to
D are double Rayleigh channels; ii) the second fading sce-
nario, all nodes are mobile (case B). Consequently, all the
channels in the system can be represented as independent
and identically distributed (iid) double Rayleigh random
variables (RVs).

At the time slot t , the received signal at R is given by

yR =
√

d−α
SR PShSRxS + h̃RR

√
d−α
RRPRxR + nR, (1)

where hSR, h̃RR are respectively the fading coefficients of
the channels from S to R, and from the transmitting antenna
to the receiving antenna of R; dSR and dRR are respec-
tively the distance from S to R and the distance between
the transmitting antenna and the receiving antenna of R;
α is the path loss exponent with α ∈ [2; 6]; xS and xR
are the transmitted signals at S and R, respectively. nR
is the Additive White Gaussian Noise (AWGN) with zero
mean and variance σ 2, i.e. nR ∼ CN (0, σ 2). Due to the
fact that the distance between the transmitting and receiv-
ing antennas of R are very small and the self-interference
is strong, SIC techniques play a key role for the FD com-
munications in the realistic scenarios. With the assumption
that R can combine all the techniques of SIC including the
antenna domain cancellation, the analog suppression, and
the digital cancellation [2, 33–35]. After deploying all SIC
techniques, the RSI denotes by I can be modeled as the

Fig. 1 System model of the
FD-V2V communication system

TX RX RXTX

S R D

SR
h

RD
h
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h
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Gaussian distribution [2, 33, 34] with zero mean and vari-
ance γRSI. It should be noted that γRSI = Ω̃PR, where
Ω̃ represents the SIC capability at the FD node. There-
fore, after applying SIC, the received signal at the R can be
rewritten as

yR =
√

d−α
SR PShSRxS + I + nR. (2)

According to the DF scheme, the relay R decodes the
received signal and then forwards the decoded signal.
Therefore, the received signal at the destination D is given
by

yD =
√

d−α
RDPRhRDxR + nD, (3)

where hRD is the fading coefficient of the link from R to D;
dRD is the distance of the link R → D; nD is the AWGN at
the destination D, nD ∼ CN (0, σ 2).

From Eqs. 2 and 3, the signal-to-interference-plus-noise
ratios (SINRs) at R and D in two considered scenarios can
be respectively calculated as

γR = PS|hSR|2
dα
SR(γRSI + σ 2)

· (4)

γD = PR|hRD|2
dα
RDσ 2

· (5)

It is also noted that for the DF relay system, the end-to-
end SINR of the system is the minimum value of the SINR
of two hops S → R and R → D, i.e.,

γe2e = min(γR, γD)· (6)

3 System performance

3.1 Outage probability

In this section, the outage probabilities (OPs) of the
considered system are derived in two aforementioned cases.
The OP is defined as the probability that the transmission
rate of the system falls below a minimum required data rate.
Let R1 and R2 (bit/s/Hz) be the minimum required data
rates from S → R and R → D, respectively. For simplicity,
we set R1 = R2 = R. Thus, the OP of the system is
computed as

Pout = Pr{log2(1 + γe2e) < R} = Pr{γe2e < 2R − 1}. (7)

Let us consider the threshold x = 2R − 1, then Eq. 7 can
be rewritten as

Pout = Pr{γe2e < x}. (8)

Theorem 1 The OPs of the FD-V2V communication system
under the impact of the RSI and double fading Rayleigh
channels in the case A (PA

out) and the case B (PB
out) are

determined as

PA
out = 1 − 2 exp(−XAx)

√
YAxK1(2

√
YAx), (9)

PB
out = 1 − 4

√
XBYBx2K1(2

√
XBx)K1(2

√
YBx), (10)

where

XA = dα
SR(γRSI + σ 2)

Ω1PS
; YA = dα

RDσ 2

Ω3Ω4PR
;

XB = XA

Ω2
; YB = YA;

Ωi = E{|hi |2} is the average channel gain of the link i

with E represents the expectation operator; K1(.) denotes
the first order modified Bessel function of the second
kind.

Proof From the definition of the OP in Eq. 8, we have

Pout = Pr{γe2e < x} = Pr{min(γR, γD) < x}
= Pr{(γR < x) ∪ (γD < x)}. (11)

Using the probability law of two independent events in
[36], we have

Pr{(γR<x) ∪ (γD<x)} = Pr{γR<x} + Pr{γD<x}
−Pr{γR<x}Pr{γD<x}. (12)

From Eq. 12, we can obtain the expressions of OP for the
two considered cases as in Eqs. 9 and 10. For further details,
please refer to Appendix A.

3.2 Symbol error rate

For the wireless system, the SER is calculated as [37]

SER = aE{Q(
√

bγ )} = a√
2π

∞∫

0

F

(
t2

b

)
e− t2

2 dt, (13)

where a and b are constants and depends on the modulation
types, e.g. a = 1, b = 2 for the binary phase-shift keying
(BPSK) modulation and a = 2, b = 1 for quadrature
phase shift keying (QPSK) and 4-quadrature amplitude

modulation (4-QAM) [37]; Q(x) = 1√
2π

∞∫
x

e−t2/2dt is

the Gaussian function; γ is the end-to-end SINR of the
considered system; F(x) is the CDF of the end-to-end
SINR. From the definition of CDF, we can replace F(x) by
Pout of the system, wherein Pout are determined by Eqs. 9
and 10 for the two considered cases.
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Theorem 2 The SERs of the FD-V2V communication
system are given by

SERA= a
√

b

2
√
2π

⎡
⎢⎣
√
2π

b
−

Γ
(
3
2

)
Γ

(
1
2

)
√

X0+ b
2

exp

(
YA

2(XA + b
2 )

)

×W− 1
2 , 12

(
YA

XA + b
2

)⎤
⎥⎦ , (14)

SERB = a
√

b

2
√
2π

[√
2π

b
− 4π

Mb

M∑
n=1

√
1−φ2

n

√
−2XBYB ln y

b

× K1

(
2

√
−2XB ln y

b

)
K1

(
2

√
−2YB ln y

b

)]
,

(15)

where Γ and W are respectively the Gamma and Whittaker
functions [38]; M is the complexity-accuracy trade-off

parameter; y = 1
2 + 1

2φn; φn = cos
(

(2n−1)π
2M

)
.

Proof From Eq. 13, applying the change of variable

technique x = t2

b
, we can rewrite the SER as

SER = a
√

b

2
√
2π

∞∫

0

e−bx/2

√
x

F(x)dx. (16)

Substituting F(x) in Eq. 16 by the expressions of OP
in Eqs. 9 and 10, and then using [38, 6643.3] for the case
A and the Gaussian-Chebyshev quadrature method for the
case B, we can obtain the SERs of the considered system
as in Eqs. 14 and 15. For further details, please refer to
Appendix B.

4 Numerical results and discussion

In this section, the system performance in terms of OP,
SER, and throughput is analyzed through the mathematical
expressions in Section 3. To validate the correctness of
the derived expressions, we also use the Monte-Carlo
simulations and plot the analysis and simulation results on
same figures. It is noted that the average SNR in this paper is
defined as the ratio of the transmission power (PS and PR) to
the variance of AWGN (σ 2), i.e. SNR = PS/σ

2 = PR/σ 2.
The average channel gains Ωi = 1 with i = 1, 2, 3, 4. The
path loss exponent ranges from 2 to 6. The SIC capability Ω̃

is varied to evaluate its impact on the system performance.
Figure 2 illustrates the outage performance of the

considered FD-V2V communication system versus the
average SNR for various distances. We investigate two
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Fig. 2 The outage probability of the considered FD-V2V communica-
tion system versus the average SNR for α = 2, Ω̃ = −30 dB, and
R = 1 bit/s/Hz

distance scenarios, i.e. dSR = dRD = 1 and dSR =
dRD = 2 with α = 2. The SIC capability Ω̃ =
−30 dB. The minimum required data rate R = 1 bit/s/Hz,
corresponding to the threshold x = 2R − 1 = 1. To better
show the performance degradation in the double Rayleigh
fading channels, we also plot the simulation results of the
performance of this system over Rayleigh fading channel.
In Fig. 2, the analysis results are plotted by using Eqs. 9
and 10 in the Theorem 1 and the markers denote the Monte-
Carlo simulation results. As can be seen in Fig. 2, when
all nodes in the system are located in fixed locations (the
case of Rayleigh fading channel), the system performance is
significantly better than that of the scenario where all nodes
are mobile vehicles (Case B). Specifically, the gain in the
SNR of case A is about 5 dB at OP = 10−2 compared to
case B. Furthermore, the impact of the RSI is remarkably
higher in high SNR region. When SNR > 35 dB, the
OP of the considered system decreases slowly and reaches
the outage floor. On the other hand, the degradation of the
system performance over double Rayleigh fading channels
compared with that over Rayleigh fading channel in our
results are matched with the results in [32].

Figure 3 shows the OPs of the considered FD-V2V
communication system under the influence of path loss
exponent α for α ∈ {2, 3, 4, 5, 6}, R = 1 bit/s/Hz, Ω̃ =
−30 dB, and dSR = dRD = 1.5. As observed from Fig. 3,
the path loss exponent α has significant effect on the outage
performance of the system. Then, increasing the distance
d between two vehicles results in higher performance
degradation, especially in the case of α = 6, due to the fact
that the system performance is inverse proportional to dα .
Therefore, when the system operates in the high path-loss
condition, the system performance is decreased strongly.
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Fig. 3 The impact of path loss exponent on the outage probability of
the considered FD-V2V communication system for Ω̃ = −30 dB;
R = 1 bit/s/Hz

Figure 4 plots the OP performance versus the average
SNR for different values of SIC capability Ω̃ . We consider
dSR = dRD = 1, α = 2, and Ω̃ = −50,−30, −10 dB. We
can see in Fig. 4 that SIC capability is the crucial key for
the FD system. When Ω̃ is very small, i.e. Ω̃ = −50 dB,
its impact on the system performance is trivial and can be
ignored. It is also noted that γRSI = Ω̃PR. Therefore, in
the case of Ω̃ = −50 dB, the maximal γRSI is 0.1 W at
SNR = 40 dB. This value of γRSI is smaller than the AWGN
power. Hence, the outage probability of the FD system is
similar to that of HD system. When the RSI becomes larger,
i.e. Ω̃ = −10 dB, the outage probabilities decrease slowly
when SNR increases. In addition, the OPs reach the outage
floor at SNR = 25 dB for both case A and B.
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Fig. 4 The outage probability of the considered FD-V2V communica-
tion system under the impact of the RSI for dSR = dRD = 1 and α = 2

Figure 5 presents the throughput of the considered
FD-V2V communication system with Ω̃ = −30 dB in
comparison with the Rayleigh fading system. It should be
noted that the throughput is defined as T = R(1 − Pout).
As can be seen in Fig. 5, for the system with low data
transmission rates, i.e.R = 1 and 2 bit/s/Hz, the throughput
reaches the maximal value of 1 bit/s/Hz and 2 bit/s/Hz at
SNR ≈ 30 dB. When the data transmission rate increases,
i.e. R = 4 bit/s/Hz, the throughput values of both the
case A and case B nearly reach the maximal value of 4
bit/s/Hz at SNR = 40 dB. For R = 1 and 2 bit/s/Hz,
the maximal throughput values of case A, case B, and the
Rayleigh fading system are almost similar. However, when
R = 4 bit/s/Hz, these three cases have noticeably different
maximal throughput values at SNR = 40 dB. Moreover,
when SNR > 10 dB, the differences in the throughput of
these three cases with R = 4 bit/s/Hz are more significant
compared with R = 1 and 2 bit/s/Hz. These observations
confirm the influence of the double Rayleigh fading
channels on the system throughput.

Figure 6 shows the SER of the considered FD-V2V
communication system versus the average SNR for BPSK
(a = 1, b = 2), and 4QAM (a = 2, b = 1) modulations. In
Fig. 6, we use dSR = dRD = 1, α = 2, and Ω̃ = −30 dB.
It is easy to see that in the low SNR region, the SERs of
case A and case B have small differences. However, in the
high SNR region, a remarkably higher degradation in SER
of case B in comparison with case A can be observed. In
particular, when SER = 10−2, the gains in the average
SER of case A compared with case B are about 5 dB for
BPSK and 10 dB for 4QAM, respectively. On the other
hand, the SER of case B nearly goes to the saturated value
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Fig. 5 The throughput of the considered FD-V2V communication
system versus the average SNR for different transmission rates. Ω̃ =
−30 dB, dSR = dRD = 1, α = 2
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at SNR = 40 dB while the SER of case A continuously
decreases.

Finally, Fig. 7 shows the SER of the considered FD-
V2V communication system using BPSK modulation with
Ω̃ = −30 dB. We compare the SER of the system in the
case of PR = PS with the case of fixed transmission power
PR = 50 dBm at the relay node. As shown in Fig. 7,
using high transmission power at the relay node is not a
good solution for the FD system because increasing the
transmission power at the relay node leads to the increase in
the RSI, i.e. γRSI = Ω̃PR. Therefore, to improve the system
performance, the wireless designers and researchers need
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Fig. 7 Comparison of SER of the considered FD-V2V communication
system versus the average SNR for different values of transmission
power at the relay node. dSR = dRD = 1, α = 2, Ω̃ = −30 dB

to choose a suitable transmission power at the FD node to
mitigate the effect of the RSI.

5 Conclusion

In this paper, we have analyzed the performance of the
FD-V2V communication system over double Rayleigh
fading channels. The system performance in terms of
outage probability, throughput, and symbol error rate in
two scenarios, i.e. only destination node is mobile and all
nodes are mobile, is investigated and compared with those
of the system over Rayleigh fading channel. From these
two realistic scenarios, we thoroughly consider the system
performance under the impact of many parameters such
as the distances, path loss exponent, and RSI based on
the derived the exact expressions of the outage probability
and symbol error rate of the system with the impacts of
residual self-interference and double Rayleigh fading are
taken into consideration. The numerical results show that
the outage probability, throughput, and symbol error rate
in the case when all nodes are mobile is significantly
reduced compared with the case when only one node is
fixed. Especially, compared with the system over Rayleigh
fading channel, the system performance over the double
Rayleigh fading channels is strongly degraded. Thus, this
paper provides an important guideline for the wireless
designers and researchers in the deployment of FD-V2V
communication system in practice. Specifically, instead of
using high transmission power at the relay node, we need
to choose power at the relay node adaptively to improve the
system performance while saving the energy at the same
time.

Appendix A

This appendix gives detailed derivations of the outage
probability of FD-V2V communication system in case A
and case B corresponding to one and two communication
links are double Rayleigh fading channels, respectively.

Let us start with the Rayleigh fading channel, the prob-
ability density function (PDF) and cumulative distribution
function (CDF) of the instantaneous channel gain |g|2 are
given by

f|g|2(z) = 1

Ω
exp

(
− z

Ω

)
, (17)

F|g|2(z) = 1 − exp
(
− z

Ω

)
. (18)

where Ω = E{|g|2}.
In the case of double Rayleigh fading channels, the

instantaneous channel gain |h|2 is the multiplication of two
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independent variables |g1|2 and |g2|2, where |g1|2 and |g2|2
are the instantaneous channel gains of the Rayleigh fading
channels between two vehicles [32]. Thus, we have the CDF
of |h|2 as
F|h|2(z) = Pr(|g1|2|g2|2 ≤ z)

=
∫ ∞

0
Pr

(
|g2|2 ≤ z

|g1|2
)

f|g1|2(t)dt

= 1 − 1

Ω1

∫ ∞

0
exp

(
− t

Ω1
− z

tΩ2

)
dt

= 1 −
√

4z

Ω1Ω2
K1

(√
4z

Ω1Ω2

)
. (19)

From Eq. 19, we can obtain the PDF of |h|2 as

f|h|2(z) = 2

Ω1Ω2
K0

(√
4z

Ω1Ω2

)
, (20)

where Ω1 = E{|g1|2}, Ω2 = E{|g2|2}.
From the PDF and CDF functions of the instantaneous

channel gains given in Eqs. 18, 17, 19, and 20, we can derive
the OP in the case A and B as follows.

Case A

To derive the OP of the system in this case, we firstly derive
the CDF of γR and γD. Since the S → R link is Rayleigh
fading channel, its instantaneous channel gain is defined as
|hSR|2 = |g1|2 and the average channel gainΩ1 = E{|g1|2}.
Then, the CDF of γR can be given by

Pr{γR < x} = Pr

{
PS|hSR|2

dα
SR(γRSI + σ 2)

< x

}

= Pr

{
PS|g1|2

dα
SR(γRSI + σ 2)

< x

}

= 1 − exp

(
−dα

SR(γRSI + σ 2)x

Ω1PS

)

= 1 − exp(−XAx). (21)

Meanwhile, the R → D link is double Rayleigh fading
channels, thus |hRD|2 = |g3|2|g4|2 and Ω3 = E{|g3|2},
Ω4 = E{|g4|2}. Consequently, the CDF of γD can be
calculated as

Pr{γD < x} = Pr

{
PR|hRD|2
dα
RDσ 2

< x

}

= Pr

{
PR|g3|2|g4|2

dα
RDσ 2

< x

}

= 1 −
√
4dα

RDσ 2x

Ω3Ω4PR
K1

⎛
⎝

√
4dα

RDσ 2x

Ω3Ω4PR

⎞
⎠

= 1 − √
4YAxK1(

√
4YAx). (22)

Based on Eq. 12, we have the OP of the FD-V2V
communication system in the case A as in Eq. 9.

Case B

Similar to case A, we have

Pr{γR < x} = Pr

{
PS|hSR|2

dα
SR(γRSI + σ 2)

< x

}

= Pr

{
PS|g1|2|g2|2

dα
SR(γRSI + σ 2)

< x

}

= 1 −
√
4dα

SR(γRSI + σ 2)x

Ω1Ω2PS

K1

⎛
⎝

√
4dα

SR(γRSI + σ 2)x

Ω1Ω2PS

⎞
⎠

= 1 − √
4XBxK1(

√
4XBx), (23)

where |hSR|2 = |g1|2|g2|2, Ω1 = E{|g1|2} and Ω2 =
E{|g2|2}. Based on the similar calculations as in Eq. 22, we
have

Pr{γD < x} = 1 − √
4YBxK1(

√
4YBx). (24)

Using Eq. 12, the OP of the FD-V2V communication
system in the case B is derived as in Eq. 10. The proof is
completed.

Appendix B

The section gives detailed derivations of the SER of the
FD-V2V communication system in case A and case B.

Case A

From Eq. 16, substituting F(x) by OP in Eq. 9, we have

SERA = a
√

b

2
√
2π

⎡
⎣

∞∫

0

e−bx/2

√
x

dx

− 2

∞∫

0

exp(−x(XA + b
2 ))

√
YAxK1(2

√
YAx)√

x
dx

⎤
⎦

(25)

For the first integral in Eq. 25, using [38, Eq.3.361.2], we
have

∞∫

0

e−bx/2

√
x

dx =
√
2π

b
. (26)
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For the second integral in Eq. 25, using [38, Eq.6.643.3],
we have

∞∫

0

exp

(
−x(XA + b

2

))√
YAK1(2

√
YAx)dx

=
Γ

(
3
2

)
Γ

(
1
2

)

2
√

XA + b
2

exp

(
YA

2(XA + b
2 )

)
W− 1

2 , 12

(
YA

XA + b
2

)

(27)

Substituting (26) and (27) into Eq. 25, we obtain the SER
in case A as Eq. 14.

Case B

Similar to case A, we have

SERB = a
√

b

2
√
2π

⎡
⎣

∞∫

0

e−bx/2

√
x

dx

− 4

∞∫

0

e−bx/2
√

XBYBx2K1(2
√

XBx)K1(2
√

YBx)√
x

dx

⎤
⎦

(28)

The first integral in Eq. 28 can be easily obtained as in
Eq. 26. For the second integral, setting z = e−bx/2 results
in x = − 2

b
ln z. Hence, we can rewrite the second integral

as

∞∫

0

e−bx/2
√

XBYBxK1(2
√

XBx)K1(2
√

YBx)dx

=
1∫

0

z

√
XBYB

(
−2

b
ln z

)
K1

(
2

√
XB

(
−2

b
ln z

))

×K1

(
2

√
YB

(
−2

b
ln z

))
2

bz
dz = J . (29)

Using the Gaussian-Chebyshev quadrature method in
[39], we can obtain J as

J = π

Mb

M∑
n=1

√
1 − φ2

n

√
−2XBYB ln y

b

×K1

(
2

√
−2XB ln y

b

)
K1

(
2

√
−2YB ln y

b

)
. (30)

Then, the SER in case B can be obtained as in Eq. 15.
The proof is completed.
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