
Journal Pre-proofs

Analysis of stress concentration phenomenon of cylinder laminated shells using
higher-order shear deformation Quasi-3D theory

Tran Ngoc Doan, Do Van Thom, Nguyen Truong Thanh, Phan Van Chuong,
Nguyen Chi Tho, Nguyen Tri Ta, Hoang Nam Nguyen

PII: S0263-8223(19)33089-2
DOI: https://doi.org/10.1016/j.compstruct.2019.111526
Reference: COST 111526

To appear in: Composite Structures

Received Date: 16 August 2019
Revised Date: 27 September 2019
Accepted Date: 4 October 2019

Please cite this article as: Doan, T.N., Van Thom, D., Thanh, N.T., Van Chuong, P., Tho, N.C., Ta, N.T., Nguyen,
H.N., Analysis of stress concentration phenomenon of cylinder laminated shells using higher-order shear
deformation Quasi-3D theory, Composite Structures (2019), doi: https://doi.org/10.1016/j.compstruct.2019.111526

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will
undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing
this version to give early visibility of the article. Please note that, during the production process, errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.compstruct.2019.111526
https://doi.org/10.1016/j.compstruct.2019.111526


Analysis of stress concentration phenomenon of cylinder laminated 

shells using higher-order shear deformation Quasi-3D theory 

Tran Ngoc Doan1, Do Van Thom2*, Nguyen Truong Thanh3, Phan Van Chuong3, Nguyen Chi 

Tho4*, Nguyen Tri Ta4*, Hoang Nam Nguyen5 

1Falcuty of Aerospace Engineering, Le Quy Don Technical University, Hanoi City, Vietnam 
2Falcuty of Mechanical Engineering, Le Quy Don Technical University, Hanoi City, Vietnam 

3Institute of Military Science and Technology, Hanoi City, Vietnam 
4Institute of Techniques for Special Engineering, Le Quy Don Technical University, Hanoi City, 

Vietnam 
5Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & 

Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam 

 

*Corresponding author 

Email: thom.dovan.mta@gmail.com (D.V.T); chitho.mta@gmail.com (N.C.T); 

nguyentrita@gmail.com (N.T.T). 

Abstract  

This paper presents the stress concentration phenomenon at the points with force jumping, 

structural jumping and sudden changes of boundary conditions of cylinder laminated shells. The 

three-dimensional linear elastic equation is transformed into the two-dimensional linear elastic 

equation of the cylinder laminated shell by using the variational method and analyzing the 

displacement field into a polynomial function sequence according to the shell thickness. 

Equilibrium equations are achieved corresponding to the case of analyzing the displacement field 

into the cubic function. Based on established equations, we study the jumping zone phenomenon of 

the stress field in the structure. Effects of boundary conditions, the relative thickness and the 

relative length of the shell are investigated. Then, the application areas of each case based on the 

computed results are figured out when using these types of structures in engineering practice. 

Keywords: Stress concentration, structural jumping, force jumping, variational method, cylindrical 

laminated shells. 



1. Introduction  

Thin shell structures are used widely in engineering applications such as automotive 

engineering, aerospace, submarine, nuclear plant, etc., due to their many advantages like high- 

strength, light-weight, high-impact strength, durable and so on. One of the well-known types is 

the laminated composite shell. Nowadays, because of the development of science and 

technology, the durability and rigidity of composite materials are much higher than those of 

metals, therefore, they account for a large proportion of actual applications. For example, in the 

aerospace industry, 50 percent of the details of a commercial aircraft are made from composite 

materials, and the using of these new type materials in order to manufacture the main body and 

the wings of Boeing 787 can reduce up to 20 percent of its total weigh when comparing with 

employing aluminum alloys [1]. Besides, when we control the proposition of each component in 

composite materials, then, the manufacturers can easily customize the mechanical properties of 

composites according to the working conditions of structures. For instance, for multi-layer 

composites, based on the response of each layer when changing some parameters such as 

material and geometrical properties, angle ply, thickness, etc., designers can adjust the properties 

of each material layer so that they match the particular requirements. 

For thin plate and shell structure analyses, based on the assumptions of Kirchhoff–Love, 

numerous scientists developed linear two-dimensional (2D) plate and shell theories such as 

Timoshenko and Woinowsky-Krieger [2], Flügge [3], Gol’denveizer [4], Novozhilov [5], Leissa 

[6] and so on. The mentioned theories are different types of classical deformation theory (CDT). 

In general, classical deformation theories for plate and shell structures are not suitable when 

analyzing the mechanical behaviors of thick plate and shell structures. To overcome the 

disadvantages of these classical theories, Reissner proposed the first-order shear deformation 

theory (FSDT) [7]. Then, based on FSDT, Kraus [8] and Gould [9] expanded the researches for 



elastic homogeneous plates and shells. However, similar to CDT, using FSDT requires a shear 

correction factor to take higher accuracy. As a result, higher-order shear deformation theory 

(HSDT) has overcome the disadvantages of CDT and FSDT by using the nonlinear polynomial 

function to describe the shear stress distribution. Reddy [10] used third-order shear deformation 

theory to analyze mechanical responses of plate and shell structures. However, note that the 

assumptions proposed by Reddy are not satisfied boundary conditions at the top and bottom 

surfaces of the structure. Hence, in this work, it is necessary to carry out the process of 

redefining stress and deformation fields. 

In recent years, the number of studies on the third-order shear deformation theory for 

laminated composite plate and shell structures has been published more and more. Many 

researchers have introduced the results of the studies on laminated composite plates and shells 

using the first and higher-order shear deformation theories [11-17]. Hoang Nam Nguyen et al 

[18] proposed a refined simple first-order shear deformation theory to investigate the static 

bending and free vibration of functionally graded materials (FGM) plate. The Navier method was 

applied to improve the cost of calculation time. Also, Hoang Nam Nguyen and colleagues [19] 

introduced the finite element modelling of a composite shell with shear connectors. In their 

work, they just used the first-order shear deformation Mindlin plate theory and finite element 

method (FEM) to establish the equation of motion of the mechanical system subjected to 

dynamic loads. Then, Hoang Nam Nguyen [20] developed an efficient beam element based on 

Quasi-3D theory for static bending analysis of functionally graded beams. Nam Vu Hoai and his 

co-workers [21] firstly used finite element method and phase-field model to carry out the 

buckling analysis of stiffened functionally graded (FG) plate with cracks. The finite formulation 

of the plate was derived by employing the first order shear deformation theory (FSDT). In the 



recent time, Pham Tien Dat at el. [22] published a work dealt with free vibration analysis of 

functionally graded shells using an edge-based smoothed finite element method (ES-FEM) 

combined with the mixed interpolation of tensorial components technique  for triangular shell 

element (MITC3), named ES-MITC3. 

However, in their studies, the stress concentration phenomenon has not mentioned much. 

To deal with this problem, we can list some works as follows. In [23], Lei Jiang et al. studied 

experimentally and numerically stress concentration factors for tiredness design purposes of the 

novel tubular joint of concrete-filled square hollow section chord welded to a brace. Yamamoto 

and colleagues [24] predicted the tensile strengths of unidirectional carbon fiber-reinforced 

plastic by using a spring element model that considers the surface stress concentration on fibers 

due to a fracture location in an adjacent fiber. They evaluated the surface stress concentration on 

the fibers by performing multi-fiber fragmentation tests combining with a spring element model 

simulation. Based on the obtained results, effects of matrix polymer properties on the surface 

stress concentration of the fibers were carried out. Özaslan and his co-workers [25] used finite 

element method to investigate the stress concentration factor for all specimen configurations of 

unidirectional carbon/epoxy composite specimens with central circular holes. The composite 

models with different width-to-diameter ratios were tested to investigate the effect of hole size 

on the stress concentration and strength of the structure. Then, Ahmed et al. [26] employed the 

traditional experimental and analytical methods to examine the pre damaged stress concentration 

factor for a composite laminate member with a central circular hole subjected to tensile loading. 

Next, to extend more comprehensively this important issue, we then have some remarkable 

works as follows. Fukada [27] presented the phenomenon that significantly affects the stress 

distribution in damaged laminate composite plates, in which he took into account the ply-to-ply 



interactions under non-uniform laminate stress fields induce interlaminar and in-plane stresses 

that are neglected in classical laminate theory. Ehsan Arshid and Ahmad Reza Khorshidvand 

[28] used Hamilton's variational principle and the classical plate theory (CPT) to derive the 

governing motion equations for a circular plate made up of a porous material integrated by 

piezoelectric actuator patches. Then, the free vibration analysis was carried out in order to 

evaluate the effect of some geometrical and material properties such as thickness ratio, porosity, 

piezoelectric actuators, variation of piezoelectric actuators-to-porous plate thickness ratio, pores 

distribution and pores compressibility on the natural vibration, radial and circumferential stresses 

of mechanical systems. Li [29] employed the extended finite element method (XFEM), layerwise 

theory (LWT), and develops an extended layerwise method (XLWM) to investigate the accurate 

description of the multiple delaminations and transverse cracks in double-curved laminated 

composite shells. Besides, he also used the level set method (LSM) to track the interfaces 

resulted from the transverse cracks. For the structures deal with elastic foundations, Bekir and 

Omer [30] carried out geometrically nonlinear free vibration analysis of thin laminated plates 

resting on non-linear elastic foundations, where they used Winkler-Pasternak type foundation 

model to describe the elastic foundation of the system. Then, governing equations of motions 

were derived using the von Karman type nonlinear theory. Omer and Mustafa [31] also presented 

the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. In 

[32], Omer presented linear vibration analysis of isotropic conical shells by discrete singular 

convolution (DSC). Then, he introduced a discrete singular convolution free vibration analysis of 

conical panels [33]. In his work, effects of boundary conditions, vertex and subtended angle on 

the frequencies of conical panel are numerically examined. Most recently, Patni et al. [34] 

proposed Variable Angle Tow (VAT) composites, which offered increased freedom for tailoring 



material properties compared to traditional straight-fibre composites. They employed a 

modelling method that builds upon the recently developed, hierarchical Serendipity Lagrange 

finite elements. Three-dimensional (3D) stress distribution was obtained using that modelling 

approach and verified against 3D finite element solutions. The highlight advantage of this 

approach was the ability to predict effectively accurate 3D stress fields with the minimum cost of 

calculation time. 

In this work, we use the theoretical model of higher order shear deformation theory when 

taking into account the effect of shear strain and horizontal normal stress [35] to investigate the 

jumping zone phenomenon when of cylinder laminated shells. The displacement field, in this 

case, satisfied the energy compatibility conditions proposed by Vasilev and Lurie [36]. Lagrange 

variational principle is employed to derive the equilibrium equations with the corresponding 

boundary conditions. The Laplace transform is used to analyze the stress field of cross-ply 

laminated composite cylindrical shells. The horizontal normal stress component is defined based 

on the equations of three-dimensional (3D) elasticity theory. Consequently, the displacement, 

strain, and stress fields are determined completely, then, computed results meet a very good 

agreement according to 3D elasticity theory. 

The structure of this paper is divided into five main sections. The governing equations 

are given in section 2. Section 3 introduces the characteristic equation and analysis of root 

forms. Numerical analysis and discussions are presented in section 4. Section 5 concludes some 

highlight results of this work. 

2. The governing equations 

2.1. The displacement model 



Consider a laminated composite cylindrical shell in the orthogonal curvilinear coordinate 

systems .O z  The structure includes n layers, the total thickness h, each layer is a 

homogeneous fiber-reinforced composite material with the geometrical parameters as shown in 

Figure 1. The neutral plane coincides with the middle plane of the shell. The distances from the 

neutral plane to the top surface and the bottom surface of layer k are 
1kh 
and

kh , respectively. 

The main direction of fiber reinforcement of each layer coincides with the direction of the local 

coordinate system 123,O correspondingly. The angle between the direction of fiber 

reinforcement and the vertical axis O  of the general coordinate system is .  
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Figure 1. The model of a laminated composite cylindrical shell and its coordinate systems 

The displacement field of the shell in the orthogonal curvilinear coordinate systems O z is 

analyzed as follows 
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where  , ,u z  ,  , ,v z   and  , ,w z   are 3D displacement components of the point 

 , ,P z   at the distance z from the neutral plane (z = 0) according to the coordinate axes. 0u , 

0v  and 0w  are 2D displacement components of the point  , ,0P    according to the coordinate 

axes. 
1u and 1v are transverse normal rotations corresponding to the  ,   axes. The other 

displacement components in the equation (1) are the 2D high-order displacements in the analysis 

according to Taylor series. 

2.2. The strain and stress fields 

The linear relation between the strain and stress fields of the laminated composite 

cylindrical shell in the orthogonal curvilinear coordinate systems O z  is defined as follows [6] 
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Substituting the expression of displacement components from equation (1) into equation 

(2), we obtain the expression of strain field as follows 
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- For the displacement model 2K    



2 2
0 * 0 * 01 1 1

, , ,
2 2

z z

z z
z z

R R z R
                

   
         

   
 

2 2
0 * 0 *1 1

,
2 2

z z
z z

R R z
            

   
        

   
 

2 2
0 * 0 *1 1

,
2 2

z z z z z z z z

z z
z z

R R z
              

   
        

   
 

(4) 

In the above equations, we use some of the following symbols 
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(5) 

The Hooke's law equation for layer k in the local coordinate system is expressed as 
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(6) 

The value of each element in the stiffness matrix 
 k

C 
 

 can be found in the Appendix. 

Equation (6) is re-written in the short form as follow 
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Equation (7) is the relationship between the stress field and the strain field of layer k in the 

local coordinate system 123.O  Because of the local coordinate system 123O  does not coincide 

with the general coordinate system O z  (see Figure 1), so we need to perform the coordinate 

transfer for equation (7). Then, the relationship between the stress field and the strain field of 

layer k in the general coordinate system now becomes 
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Equation (8) can be re-written as follow 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

55 56

65 66

0 0

0 0

0 0
.

0 0

0 0 0 0

0 0 0 0

z z

z z

z z

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q

Q Q

 

 

 

 

 

 

 

 

 

 

 

    
    
    
       

     
    
    
    
        

 
(9) 

The value of each element in the general stiffness matrix  Q  can be found in Appendix. 



2.3. Equilibrium equations and boundary conditions 

To establish the equilibrium equation we use the Lagrange variational principle, the total 

potential energy must be the minimum value, it means 

  0U A      
(10) 

where U  is the elastic potential energy, A is the work done by external forces. The variation of 

the elastic potential energy is defined in the following formula 
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We assume that the shell structure is impacted by the radial distributed load q on the outer 

surface and the radial distributed load q  on the inner surface.  
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Equilibrium equations are derived by integrating separately the expression (10) according 

to displacement components, then taking independently the possible displacement equals zero. 

From there, we get the following equilibrium equation system for each displacement model as 

follows 
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In equation (11), we use symbols for the extend internal forces as follows 
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The boundary condition of equation (11) has the following cases 
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The boundary conditions (13) and (14) cover all types of boundary conditions in the actual 

calculation and the number of boundary conditions equal to the number of steps of the 

differential equation system for the displacement field. 

In the case of structure is a full cylindrical shell, the boundary condition (14) is replaced by 

the cyclic boundary condition abided by the   coordinate. The boundary condition (13) for some 

common cases in practice is given as follows 

- For fully clamped supported boundary 
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- For fully free supported boundary 
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- For fully simply supported boundary 
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Equilibrium equation (11) gives us the 3 2K   differential-difference equation system for 

3 2K  displacement components ku , kv , kw  and its degree of freedom is  2 3 2 .K   Solving 

above equation we obtain the general roots  with the internal constants; these constants can be 

found by using boundary conditions (13) and (14). 

Substituting the root expression of the displacement into equations (3), (4) and (5) we get 

the deformation of the shell structure. To find the stresses ,    and , we use the Hooke’s 

principle equation (9) then integrating the equilibrium equation of the 3D elasticity theory. 
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3. Characteristic equation and analysis of root forms 

For the case the structure is made from cross-ply laminated composite, equation (11) is re-

written according to the displacement of the following form 
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(15) 

herein, the coefficients H are the constants, which depend on the number of layers. R is the 

radius; h is the relative thickness; Poisson’s ratio ij  and Young’s modulus ijE of the entire 

structure are defined through homogenizing the coefficients of two equations (11) and (15).  

In order to satisfy the cyclic boundary condition abided by the   coordinate, we need to 

expand the displacement field and the load according to the single trigonometric series as follows 

       

       

       

       

1 2

0

1

1 2

0

1

1 2

0

1

1 2

0

1

, cos sin ,

, sin cos ,

, cos sin ,

, cos sin .

i i im im

m

i i im im

m

j j jm jm

m

m m

m

u U U m U m

v V V m V m

w W W m W m

q Q Q m Q m

      

      

      

      














   



    

    

    

    









 
(16) 

Substituting equation (16) into equation (15) then perform some simple mathematical 

transformations, we obtain differential equations to determine  0iU  ,  0jW   functions as 

follows 
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In the case of the shell is subjected to symmetrical axial load, so the component  0 0iV    

For the functions  1

imU  ,  1

imV  ,  1

jmW   và  2

imU  ,  2

imV   and  2

jmW  , we obtain the 

system of differential equations with the same form as follows 
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(18) 

In equation (18) we neglect the superscript indexes 1 and 2 of the quantities imU , imV  and 

imW . 

In shell theories, the strain-stress field is divided into the fundamental strain-stress field 

and the boundary strain-stress field. In addition, the strain-stress field of the shell structure 

depends on root types of characteristic equation of systems (17) and (18). Therefore, to analyze 

the strain-stress field, we should study the solutions of the characteristic equation of systems (17) 

and (18) in some specific cases 2, 3.K K  The characteristic equation corresponding to each 



system of differential equations is replaced by differential operator d d  with variation p . Then 

let the right-hand factor determinant of the corresponding system of equations received equals to 

0. 

Firstly, we analyze the system of equations (17) as follows 

- For the model 2K   

The characteristic equation of (17) becomes 
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Besides the trivial roots, equation (19) also has the following roots 

+ Case 1: A pair of conjugate complexes 1 1p iq   and a pair of real roots 2 ,p 3p  with 

inequality 1 2 3,p p p . Thus, the general root of (17) is expressed as follow 
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+ Case 2: Two pairs of conjugate complexes 1 1,p iq   2 2p iq   with 

inequality 1 2 1 2,p p q q . In this case, the general root of (17) is written as follow 
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- For the model 3K    

The characteristic equation of (17) becomes 
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Besides the trivial roots, equation (20) also has the following roots 



+ Case 1: A pair of conjugate complexes 1 1p q   and three pairs of real roots 

3,p 4 ,p 5p  with inequality 1 2 3 4 5, , ,p p p p p . Herein, the general root of (17) is expressed 
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+ Case 2: Two pairs of conjugate complexes 1 1,p iq   2 2p iq   and two pairs of real 

roots 3p , 4p  with inequality 1 2 3 1 2, ,p p p q q . Thus, the general root of (17) is defined as 
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a q a q e a q a q e

a e a e a e a e

 

 

   

   

   





 

    

    

   

 
 

Next, we analyze the system of equations (18) as follows 

- For the model 2K   

The characteristic equation of (18) becomes 

 
8

3 2

3

0

1 0
n n

n

n

K p


     
(21) 

Equation (21) has the following roots 

+ Case 1: Two pairs of conjugate complexes 1 1,p iq   2 2p iq   and four pairs of real 

roots 3p , 4p , 5p , 6p  with inequality 1 2 3 4 5 6, , , ,p p p p p p . Herein, the general root of 

(18) is expressed as follow 

   

   

1 1

2 2

3 3 5 5 6 64 4

5 1 1 2 1 3 1 4 1

5 2 6 2 7 2 8 2

9 10 11 12 13 14 15 16

sin cos sin cos

sin cos sin cos

p p

p p

p p p p p pp p

F a q a q e a q a q e

a q a q e a q a q e

a e a e a e a e a e a e a e a e

 

 

      

   

   





  

    

    

       

 
 



+ Case 2: Three pairs of conjugate complexes 1 1,p iq   
2 2p iq  , 

3 3p iq   and two pairs 

of real roots  4p , 5p   with inequality 1 2 3 4 5, ,p p p p p . In this case, the general root of (18) 

is defined as follow 

   

   

   

1 1

2 2

3 3

5 54 4

6 1 1 2 1 3 1 4 1

5 2 6 2 7 2 8 2

9 3 10 3 11 3 12 3

13 14 15 16

sin cos sin cos

sin cos sin cos

sin cos sin cos

p p

p p

p p

p pp p

F a q a q e a q a q e

a q a q e a q a q e

a q a q e a q a q e

a e a e a e a e

 

 

 

  

   

   

   









    

    

    

   

 
 

- For the model 3K    

The characteristic equation of (18) becomes 

 
11

4 2

4

0

1 0
n n

n

n

K p


     
(22) 

Equation (22) has the following roots 

+ Case 1: Three pairs of conjugate complexes 1 1,p iq   2 2p iq  , 3 3p iq   and five pairs 

of real roots 4p , 5p , 6p , 7p , 8p  with inequality 1 2 3q q q , 

1 2 3 4 5 6 7 8, , , , ,p p p p p p p p . Herein, the general root of (18) is expressed as follow 

   

   

   

1 1

2 2

3 3

5 5 6 64 4

7 1 1 2 1 3 1 4 1

5 2 6 2 7 2 8 2

9 3 10 3 11 3 12 3

13 14 15 16 17 18

19

sin cos sin cos

sin cos sin cos

sin cos sin cos

p p

p p

p p

p p p pp p

F a q a q e a q a q e

a q a q e a q a q e

a q a q e a q a q e

a e a e a e a e a e a e

a e

 

 

 

    

   

   

   







 

    

    

    

      

 7 7 8 8

20 21 22

p p p p
a e a e a e

    
  

 

+ Case 2: Four pairs of conjugate complexes 1 1,p iq   2 2p iq  , 3 3p iq  , 4 4p iq   and 

three pairs of real roots 5p , 6p , 7p  with inequality 1 2 3 4,q q q q , 

1 2 3 4 5 6 7, , , ,p p p p p p p . In this case, the general root of (18) is defined as follow 



   

   

   

   

1 1

2 2

3 3

4 4

5

8 1 1 2 1 3 1 4 1

5 2 6 2 7 2 8 2

9 3 10 3 11 3 12 3

13 4 14 4 15 4 16 4

17

sin cos sin cos

sin cos sin cos

sin cos sin cos

sin cos sin cos

p p

p p

p p

p p

p

F a q a q e a q a q e

a q a q e a q a q e

a q a q e a q a q e

a q a q e a q a q e

a e

 

 

 

 

   

   

   

   









    

    

    

    

 5 6 6 7 7

18 19 20 21 22

p p p p p
a e a e a e a e a e

       
    

 

To illustrate the obtained results above, we consider the roots of the characteristic equation 

for a cylindrical laminated composite shell under symmetrical axial load. The geometric 

parameters include L/R=4, h=0.1 with the different relative thicknesses.  

The computed results of this work are compared with those of Mindlin [37] as listed in 

Table 1.  

Table 1 

The roots of the characteristic equation for cylindrical laminated composite shell [0/90/0]; material 

properties (Graphite-Epoxy (AS/3501) [10]) E1=137.9, E2= E3=9.0, G12=G13=7.1, G23=6.2, 

12 13 230.3, 0.49      

 S  10 20 30 40 50 100 

1p  

3K   3.31 4.43 5.33 6.09 6.777 9.46 

2K   3.56 4.83 5.83 6.69 7.45 10.44 

Mindlin [37] 3.61 4.89 5.91 6.70 7.54 10.57 

1q  

3K   2.56 3.91 4.90 5.72 6.44 9.23 

2K   2.95 4.42 5.50 6.40 7.19 10.26 

Mindlin [37] 2.98 4.47 5.56 6.47 7.27 10.38 

2p  
3K   31.06 62.1 93.19 124.3 155.32 310.65 

2K   31.08 62.1 93.20 124.3 155.33 310.65 

2q  
3K   8.12 16.2 24.34 32.5 40.56 81.13 

2K   8.09 16.2 24.33 32.4 40.56 81.12 

3p  3K   12.82 25.7 38.57 51.4 64.29 128.59 

4p  3K   102.34 204.6 306.89 409.2 511.47 1022.93 

 



Table 2 

The roots of the characteristic equation for cylindrical laminated isotropic shell; material properties [10] 

E2= E1/25, E1=172.4, G12=G13=0.5E2, G23=0.2E2, 12 13 23 0.25     . 

 S  10 20 30 40 50 100 

1p  

K = 3 2.07 2.66 3.14 3.56 3.94 5.44 

K = 2 2.16 2.85 3.40 3.88 4.30 5.98 

Mindlin [37] 2.21 2.91 3.46 3.95 4.30 6.08 

1q  

K = 3 1.20 2.06 2.66 3.15 3.57 5.18 

K = 2 1.47 2.38 3.02 3.54 4.00 5.77 

Mindlin [37] 1.49 2.41 3.06 3.59 4.06 5.86 

2p  
K = 3 5.10 10.3 15.5 20.6 25.8 51.6 

K = 2 6.93 13.9 20.8 27.7 34.7 69.3 

3p  
3K   6.93 13.9 20.8 27.7 34.7 99.3 

2K   79.7 159.4 239.1 318.8 398.5 797.0 

4p  3K   79.7 159.4 239.1 318.8 398.5 797.0 

5p  3K   178.9 357.8 536.7 715.5 894.4 1788.9 

 

Table 3 

The roots of the characteristic equation for cylindrical laminated composite shell [0/90/0]; material 

properties [10] E1=172.4, E2= E1/25, G12=G13=0.5E2, G23=0.2E2, 12 13 23 0.25     . 

 S  10 30 50 100 500 

1p  

K = 3 4.43 6.34 7.83 10.69 23.18 

K = 2 4.25 6.25 7.77 10.63 23.12 

Mindlin [37] 4.26 6.28 7.78 10.65 23.19 

1q  

K = 3 1.44 4.83 6.68 9.87 22.82 

K = 2 1.74 4.92 6.73 9.90 22.79 

Mindlin [37] 1.74 4.92 6.74 9.92 22.86 

2p  
K = 3 15.40 47.13 78.56 157.13 491.15 

K = 2 9.84 29.53 49.21 98.42 491.20 

3p  3K   15.72 47.36 78.56 158.02 789.55 



2K   76.90 230.51 384.15 768.28 3894.65 

4p  3K   48.15 144.36 240.59 481.17 2439.63 

5p  3K   129.70 388.70 647.78 1295.51 6575.43 

From Tables 1-3 we understand that the roots of the characteristic equation are divided into 

two groups: small roots and large roots. The small roots represent the fundamental strain-stress 

field of the shell structure, and the large roots describe the boundary phenomena of the shell 

structure. These phenomena only exist in the areas with sudden changes in structural parameters 

and external forces. When moving away from the jumping zone phenomena, they are quickly 

annihilated. 

4. Numerical analysis and discussion 

4.1. Verification examples  

Let us consider a fully simply supported cylinder laminated composite shell with the 

relative length L/R = 4, the relative thickness S = R/h can be varied. The thicknesses of each 

layer are equal; the material properties are [38] E1= 25E2, G23= 0.2E2, G13= G12 =0.5E2, 

Poisson’s ratio 12 0.25  ; the shell structure under the sinusoidal distributed load on the inner 

surface 0 sin cos .mm

m R
q Q n

L


 The shell structure is fully simply supported at two sides. The 

following computed results in this section correspond to the model 3K  . Non-dimensional 

deflection and stress are calculated as follows 

   
 

1

4 2

0 0 0

10 . 1
, , , , ,

/ 2, / 2

z z
z z

E w
w

Q HS Q S Q S



    



 
     

  
     

(22) 

The non-dimensional deflection results in the middle of the laminated composite shell are 

compared with those of exact solution of Varadan-Bhaskar [38] are presented in Table 4. 

Table 4 



Non-dimensional deflection w  at the middle of the laminated composite shell for different relative 

thicknesses; 4; ; 1; 4L R R hS m n    

S 
[90] [90/0] [90/0/90] [90/0/90/0/90]2 

Present V&B [38] Present V&B [38] Present V&B [38] Present V&B [38] 

4 2.7723 2.7830 7.3555 6.1000 3.8021 4.0090 3.9979 4.2060 

10 0.9172 0.9189 3.6490 3.3300 1.0971 1.2230 1.3437 1.3800 

50 0.5384 0.5385 2.2516 2.2420 0.5436 0.5495 0.7609 0.7622 

100 0.5169 0.5170 1.3682 1.3670 0.4703 0.4715 0.6259 0.6261 

500 0.3060 0.3060 0.1005 0.1005 0.1027 0.1027 0.1006 0.1006 

The non-dimensional deflection and stress results at the middle  point of single layer [90o] 

of the laminated composite shell are compared with those of exact solution of Varadan-Bhaskar 

[38] are presented in Table 5. 

Table 5 

Non-dimensional deflection w  and non-dimensional stress , , ,z z       at the middle  point of single-

layer [90o] of the laminated composite shell 4; ; 1; 4L R R hS m n    

 ,   

 z  

w  

,
2 2

  
 
 

 

 0  

  

,
2 2

  
 
 

 

 / 2h  

  

,
2 2

  
 
 

 

 / 2h  

  

,
2 2

  
 
 

 

 / 2h  

  

,
2 2

  
 
 

 

 / 2h  

z  

,
2 2

  
 
 

 

 / 2h  

z  

,
2 2

  
 
 

 

 / 2h  

z  

,
2



 
 
 

 

 0  

S=2 

Varadan [38] 7.503 -14.883 5.163 -0.7839 0.1332 -0.1761 0.1430 0.00619 

Present 7.367 -13.668 3.643 -0.7939 0.1707 -0.1744 0.1291 0.00405 

S=4 

Varadan [38] 2.783 -6.969 4.859 -0.2295 0.0981 -0.0840 0.0925 0.00619 

Present 2.772 -7.076 4.577 -0.2840 0.0892 -0.0831 0.0914 0.00514 

S=10 

Varadan [38] 0.9189 -4.509 4.051 -0.0656 0.0663 -0.0412 0.0436 0.00304 

Present 0.9172 -4.529 4.016 -0.0867 0.0553 -0.0411 0.0436 0.00266 

S=50 



Varadan [38] 0.5385 -3.979 3.902 -0.0086 0.0845 -0.0383 0.0243 0.00054 

Present 0.5384 -3.982 3.897 -0.1220 0.0812 -0.0383 0.0243 0.00044 

S=100 

Varadan [38] 0.5170 -3.876 3.843 0.0288 0.1190 -0.0447 0.0161 0.00026 

Present 0.5169 -3.878 3.840 0.0270 0.1173 -0.0447 0.0161 0.00024 

S=500 

Varadan [38] 0.3060 -2.293 2.306 0.1924 0.2459 -0.0611 -0.0249 0.00005 

Present 0.3060 -2.293 2.305 0.1922 0.2457 -0.0611 -0.0249 0.00004 

From Tables 4 and 5, in comparison with 3D elastic theory [38], we have some discussions 

as follows 

 - For [90/0] shell with large thickness, when S = 4 and 20.6%, the maximum error is 

20.6%; for other cases, the maximum error is approximately 5%. 

- The relative horizontal normal stresses z at the middle point of the shell are much 

smaller than the maximum deflection. 

- For thin shell structures, the computed results are almost exact. 

-  Besides, the appropriateness of calculation results between different theories in the 

middle of the shell can be explained based on the roots of the characteristic equation (16) and 

(19). Far away from boundary area, the stress field is determined mainly by the small roots of the 

characteristic equation (16) and (19), the other large roots only have a big impact in the 

surrounding areas of jumping stress zone. The values of small roots according to both models 

2K  and 3K   are quite close to each other and they are similar to those of Mindlin. 

We can ensure that the proposed model and calculation program is verified. 

4.2. Effect of boundary conditions  



In this section, to evaluate effects of boundary conditions, we consider a laminated composite 

[0/90] shell made from Graphite-Epoxy (AS/3501) [10] with the thickness h = 0.1 under the distributed 

load on the inner surface. Boundary conditions include: clamped support - clamped support (C-C), 

clamped support - simple support (C-S), simple support - simple support (S-S), clamped support - free 

(C-F), simple support - free (S-F). Non-dimensional deflection and stress are calculated as follows 

   1

4 2

0 0 0 0

10 . 1
, , , , ,

z z
z z

E w
w

Q HS Q S Q S Q



    

 
          

(23) 

Tables 6-8 present non-dimensional deflection w  and stress , , ,z z     
 
with different

 

relative thickness and boundary conditions for the laminated composite [0/90] shell. 

Table 6 

Effect of boundary condition on non-dimensional deflection w  and stress , , ,z z       of laminated 

composite [0/90] shell with parameters  L/R=4, S=10 

Boundary 

conditions 

w  

,
2 2

  
 
 

 

 0  

  

,
2 2

  
 
 

 

 / 2h  

  

,
2 2

  
 
 

 

 / 2h  

z  

,
2 2

  
 
 

 

 / 4h  

  

,
2



 
 
 

 

 / 2h  

  

,
2



 
 
 

 

 / 2h  

z  

,
2



 
 
 

 

 / 3h  

z  

,
2



 
 
 

 

 / 4h  

C-C 0.190656 
-0.02656 

0.01780 

-1.7555 

-0.0779 

-1.3210 

3.7998 

0.7720 

-2.9086 

0.3472 

-0.1117 

-2.6158 

3.7355 

-1.3210 

3.7998 

C-S 0.190688 
-0.02616 

0.02401 

-1.7557 

-0.0778 

0.7441 

1.5500 

0.0000 

0.0000 

0.0000 

0.0000 

-2.6184 

2.1405 

0.7441 

1.5500 

S-S 0.190688 
-0.02615 

0.02397 

-1.7557 

-0.0778 

0.7441 

1.5500 

0.0000 

0.0000 

0.0000 

0.0000 

-2.6184 

2.1405 

0.7441 

1.5500 

C-F 0.190688 
-0.02616 

0.02400 

-1.7557 

-0.0778 

0.5432 

0.0973 

0.0059 

0.0137 

-1.7978 

-0.0824 

-0.3876 

-0.0023 

0.5432 

0.0973 

S-F 0.190688 
-0.02615 

0.02396 

-1.7557 

-0.0778 

0.5432 

0.0973 

0.0059 

0.0137 

-1.7978 

-0.0823 

-0.3876 

-0.0023 

0.5432 

0.0973 

 

Table 7 



Effect of boundary condition on non-dimensional deflection w  and stress , , ,z z       of laminated 

composite [0/90] shell with parameters L/R=4, S=50 

Boundary 

conditions 

w  

,
2 2

  
 
 

 

 0  

  

,
2 2

  
 
 

 

 / 2h  

  

,
2 2

  
 
 

 

 / 2h  

z  

,
2 2

  
 
 

 

 / 4h  

  

,
2



 
 
 

 

 / 2h  

  

,
2



 
 
 

 

 / 2h  

z  

,
2



 
 
 

 

 / 3h  

z  

,
2



 
 
 

 

 / 4h  

C-C 0.07491 
-0.00701 

-0.00455 

-0.37100 

-0.02236 

0.52238 

0.02846 

0.15687 

-0.62963 

0.07054 

-0.02417 

2.23979 

1.78478 

-10.75519 

13.88313 

C-S 0.07502 
-0.00632 

0.00628 

-0.37122 

-0.02216 

0.52213 

0.02822 

0.00000 

0.00000 

0.00000 

0.00000 

0.17850 

0.84992 

0.79540 

1.58523 

S-S 0.07502 
-0.00632 

0.00628 

-0.37122 

-0.02216 

0.52213 

0.02822 

0.00000 

0.00000 

0.00000 

0.00000 

0.17850 

0.84992 

0.79540 

1.58523 

C-F 0.07502 
-0.00517 

-0.00521 

-0.02382 

-0.37486 

0.95545 

0.46924 

0.01008 

0.00196 

-0.02401 

-0.35948 

-0.00050 

-0.00452 

2.11643 

0.57941 

S-F 0.07502 
-0.00632 

0.00628 

-0.37122 

-0.02216 

0.52213 

0.02822 

0.00225 

0.01069 

-0.38425 

-0.02417 

-0.00638 

-0.00041 

0.72798 

1.26673 

 

Table 8 

 Effect of boundary condition on non-dimensional deflection w  and stress , , ,z z       of laminated 

composite [0/90] shell with parameters L/R=0.5, R/h=10 

Boundary 

conditions 

w  

,
2 2

  
 
 

 

 0  

  

,
2 2

  
 
 

 

 / 2h  

  

,
2 2

  
 
 

 

 / 2h  

z  

,
2 2

  
 
 

 

 / 4h  

  

,
2



 
 
 

 

 / 2h  

  

,
2



 
 
 

 

 / 2h  

z  

,
2



 
 
 

 

 / 3h  

z  

,
2



 
 
 

 

 / 4h  

C-C 0.09408 
-0.17384 

0.86730 

-0.88418 

-0.00180 

0.67648 

0.16437 

0.69751 

-2.45690 

0.31363 

-0.09432 

-2.46575 

3.77383 

-1.0457 

3.4797 

C-S 0.12056 
-0.20824 

1.08111 

-1.12769 

-0.00141 

0.62488 

0.12285 

0.0000 

0.0000 

0.0000 

0.0000 

-2.71752 

2.45399 

0.7441 

1.5500 

S-S 0.15686 
-0.25336 

1.40930 

-1.46169 

-0.03018 

0.55413 

0.06589 

0.0000 

0.0000 

0.0000 

0.0000 

-0.45488 

2.47173 

0.7441 

1.5500 

C-F 0.13912 
-0.06826 

0.22571 

-1.28814 

-0.04203 

0.59083 

0.09834 

0.00655 

0.01810 

-2.12321 

-0.10488 

-2.55159 

-0.00148 

0.45643 

0.06165 



S-F 0.13912 
-0.06836 

0.22571 

-1.28814 

-0.04203 

0.59083 

0.09834 

0.00655 

0.01810 

-2.12321 

-0.10488 

-2.55159 

-0.00148 

0.45643 

0.06165 

Analyzing the obtained results, we have some comments as follows 

- For shell structures, which have the length is larger than the average value, at the area far 

from the boundary zone, boundary conditions have a light effect on the deflection and stress. 

- The area near boundary zone, the maximum stress of the shell structure depends on the 

type of boundary conditions. There is a big stress jumping zone for the case of C-C type. 

- The shorter the length of the shell structure is, the more boundary conditions affect to the 

deflection and stress at the center of the structure. 

Now, the following figures present the non-dimensional stress distribution by the thickness 

of the composite isotropic shell (R/h=10, L/R= 4, h=0.1) at the surrounding C-C boundary 

condition. The structure is impacted by the distributed load on the inner surface. 

  

a)   stress at the boundary position b)   stress is at 5h distance from the boundary 



  

c)   stress at the boundary position d)
   stress is at 5h distance from the boundary 

  

e)
 z  stress at the boundary position f) z  stress is at 5h distance from the boundary 

 

 

 

 

) z  stress at the boundary position h) z  stress is at 5h distance from the boundary 

Figure 3. Non-dimensional stress distribution by the thickness of composite isotropic shell; 

R/h=10, L/R= 4, h=0.1 



From the computed results of the stress distribution at a distance h from the boundary, we 

can see that the proposed theory and calculation program meet a very good agreement. This can 

be explained as follows: the stress at the far points from the boundary is determined by the small 

roots 1 1p iq   of characteristic equations (16) and (19). Also, these roots are quite similar to one 

another and to those of Mindlin theory (see Tables 1-3). In the boundary zone, the stress field is 

strongly influenced by the large roots; the size of the affected area of this stress jumping zone is 

approximately equal to the shell thickness. The above analysis shows that for thin composite 

cylindrical shells, using higher-order shear deformation shell theory give higher results at the 

surrounding boundary condition in comparison with the classical theory. 

4.3. Effect of the relative length L/R 

Next, let us consider a C-C laminated composite [0/90] shell made from Graphite-Epoxy 

(AS/3501) [10] with the thickness h = 0.1, and the relative length L/R=4; the shell is under the 

distributed load on the inner surface. Non-dimensional deflection w  and stresses , , ,z z     
 

are listed in Table 9. 

Table 9 

Effect of the relative length L/R on non-dimensional deflection w  and stresses , , ,z z     
 
of C-C 

laminated composite [0/90] shell; S=10 

L R  

w  

,
2 2

  
 
 

 

 0  

  

,
2 2

  
 
 

 

 / 2h  

  

,
2 2

  
 
 

 

 / 2h  

z  

,
2 2

  
 
 

 

 / 4h  

  

,
2



 
 
 

 

 / 2h  

  

,
2



 
 
 

 

 / 2h  

z  

,
2



 
 
 

 

 / 3h  

z  

,
2



 
 
 

 

 / 4h  

0.5 0.09408 
-0.17384 

0.86730 

-0.88418 

-0.00180 

0.67648 

0.16437 

0.69751 

-2.45690 

0.31363 

-0.09432 

2.46575 

3.77383 

-1.0457 

3.47971 

1 0.195613 
-0.09866 

0.49533 

-1.80544 

-0.07171 

0.48135 

0.01118 

0.78419 

-2.93721 

0.35260 

-0.11276 

2.65129 

3.75136 

-1.35804 

3.83021 



2 0.191839 
-0.02264 

0.00083 

-1.76608 

-0.07893 

0.48962 

0.01903 

0.77257 

-2.90430 

0.34738 

-0.11150 

2.61771 

3.73391 

-1.32292 

3.79870 

4 0.190656 
-0.02656 

0.01780 

-1.7555 

-0.0779 

0.49186 

0.02076 

0.7720 

-2.9086 

0.34720 

-0.11167 

2.61578 

3.73551 

-1.32101 

3.79982 

10 0.190642 
-0.02672 

0.01505 

-1.75539 

-0.07793 

0.49189 

0.02078 

0.77165 

-2.91124 

0.34697 

-0.11177 

2.61465 

3.73652 

-1.31986 

3.80050 

Table 9 shows that for the short shell structure ( 2L R  ), the relative has a small effect on 

the strain and stress fields of the structure. When the relative length 4,L R  deflection and stress 

in similar locations do not have an obvious difference. Besides, from Tables 6 and 8 we 

understand that when 1L R  , boundary conditions affect strongly to the deflection and stress; 

when 4,L R   boundary condition does not affect much to the maximum stress. 

4.4. Effect of relative thickness S=R/h 

Table 10 presents the non-dimensional deflection w and stress , , ,z z     
 

of C-C 

laminated composite [0/90] shell with different relative thickness S. 

Table 10 

 Effect of relative thickness S on non-dimensional deflection w  and stresses , , ,z z     
 
of C-

C laminated composite [0/90] shell; L/R=4, h=0.1 

S 

w  

,
2 2

  
 
 

 

 0  

  

,
2 2

  
 
 

 

 / 2h  

  

,
2 2

  
 
 

 

 / 2h  

z  

,
2 2

  
 
 

 

 / 4h  

  

,
2



 
 
 

 

 / 2h  

  

,
2



 
 
 

 

 / 2h  

z  

,
2



 
 
 

 

 / 3h  

z  

,
2



 
 
 

 

 / 4h  

10 0.190656 
-0.02656 

0.01780 

-1.7555 

-0.0779 

0.49186 

0.02076 

0.7720 

-2.9086 

0.34720 

-0.11167 

2.61578 

3.73551 

-1.32101 

3.79982 

20 0.0471 
-0.01577 

-0.00333 

-0.9094 

-0.0490 

0.5105 

0.0254 

0.3987 

-1.5234 

0.1793 

-0.0585 

-2.4826 

2.7022 

-3.6805 

6.3566 



30 0.02087 
-0.01115 

0.00513 

-0.6130 

-0.0352 

0.5170 

0.0271 

0.2652 

-1.0341 

0.1193 

-0.0397 

-2.3768 

2.2443 

-6.0489 

8.8834 

40 0.01172 
-0.00861 

-0.00500 

-0.4623 

-0.0274 

0.5204 

0.0279 

0.1975 

-0.7828 

0.0888 

-0.0300 

-2.2992 

1.9711 

-8.4071 

11.3903 

50 0.00750 
-0.00701 

-0.00455 

-0.3710 

-0.0234 

0.5224 

0.0285 

0.1569 

-0.6296 

0.0705 

-0.0241 

-2.2398 

1.7848 

-10.7555 

13.8831 

The stress distribution by the thickness at several points of the [0/90/0] shell structure 

with different relative thicknesses is shown in the following figure. 

  

a1)
   stress at the boundary position a2)   stress  is at 5h distance from the boundary 

 

a3)
   stress at 0 / 2   



  

b1)
   stress at the boundary position b2)

   stress  is at 5h distance from the boundary 

 

b3)
   stress at 0 / 2   

  

c1)
 z  stress at the boundary position c2)

 z  stress  is at 5h distance from the boundary 



 

c3)
 z  stress at 0 / 2   

  

d1)
 z  stress at the boundary position d2)

 z  stress  is at 5h distance from the boundary 

Figure 5. The stress distribution of the [0/90/0] shell structure; L/R=4; h=0.1; material type Gr.Ep_AS 

From the above figure, we have some discussions as follows 

- The thickness of shell effects strongly on the deflection and stress of shell structure. 

- Boundary phenomenon occurs for both thin and thick shell, and it is approximately 1.4 

time of maximum stress. 

- The thicker the thickness is, the larger the jumping zone phenomenon gets. 

5. Conclusion 

Based on the proposed theory and computed results presented in this work, we have some 

highlight conclusions as follows 



- The equations for analyzing the cylindrical shell according to the high-order shear 

deformation theory of quasi-3D type are established; in which the displacement field is analyzed 

into polynomials according to the shell thickness. The mathematical model and computed results 

are compared with those according to 3D elastic theory, thereby confirming the reliability of the 

results obtained in this work. The models presented in this paper take into account the effects of 

the horizontal normal stress (which are neglected in terms of first-order shear deformation theory 

and high-order deformation theory), thus, we can expand the area of application for these 

models. 

- The roots of the characteristic equation are divided into a small root group and a large 

root group. The small one characterizes the stress field far from the region of metamorphic stress 

field (the boundary area, structural jumping, force jumping and so on), while the other one has a 

great influence on the stress field of the metamorphic stress field 

- Effects of boundary conditions, lamination sequence, relative thickness  R h , and 

relative length of the shell structure  L R  on deflection and stress are investigated. The 

parameter studies show that the thickness of shell as well as boundary conditions and lamination 

sequence effect strongly on the deflection and stress of shell structure. 

- In the boundary zone, the stress field is influenced by the marginal effects, corresponding 

to the large roots of the characteristic equation, so when determining the stress field in the 

boundary region, it is necessary to use the higher-order shear deformation shell theory. 

- In the region far from boundary area, the obtained results based on 3D elastic theory, 

Mindlin’s theory and this work are approximately equal. 
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Appendix 

The value of each element in the matrix 
 k

C 
 

  

 

      
 

1 23 32

11

1
,

k k k

k

k

E
C

 




  

 

        
 

1 21 31 23

12 ,

k k k k

k

k

E
C

  




   

 

        
 

1 31 21 32

13 ,

k k k k

k

k

E
C

  




  

 

      
 

2 13 31

22

1
,

k k k

k

k

E
C

 




   

 

        
 

2 32 12 31

23 ,

k k k k

k

k

E
C

  




  

 

      
 

3 12 21

33

1
,

k k k

k

k

E
C

 




   

   
44 12 ,

k k
C G  

   
55 13 ,

k k
C G  

   
66 23 ,

k k
C G  

                    12 21 23 32 13 31 13 32 211 2 .
k k k k k k k k k k

               

where E is Young’s modulus, G is shear modulus, and   is Poisson’s ratio of layer; they have 

relations as follows  

 

 

 

 
12 21

1 2

,
k k

k k
E E

 
  

 

 

 

 
13 31

1 3

,

k k

k k
E E

 
  

 

 

 

 
23 32

2 3

.

k k

k k
E E

 
  



The value of each element in the matrix ( )kQ     

     ( ) ( ) 4 ( ) ( ) 2 2 ( ) 4 ( ) ( ) 4 4 ( ) ( ) ( ) 2 2

11 11 12 44 22 12 12 11 22 442 2 , 4 ,k k k k k k k k k kQ C c C C s c C s Q C c s C C C s c          

   ( ) ( ) 2 ( ) 2 ( ) ( ) ( ) ( ) 3 ( ) ( ) ( ) 3

13 13 23 14 11 12 44 12 22 44, 2 2 ,k k k k k k k k k kQ C c C s C C C C sc C C C cs          

 ( ) ( ) 4 ( ) 4 ( ) ( ) 2 2 ( ) ( ) 2 ( ) 2

22 11 22 12 44 23 13 232 2 , ,k k k k k k k kQ C s C c C C s c Q C s C c        

     ( ) ( ) ( ) ( ) 3 ( ) ( ) ( ) 3 ( ) ( ) ( ) ( ) ( )

24 11 12 44 12 22 44 33 33 34 13 232 2 , , ,k k k k k k k k k k k kQ C C C cs C C C sc Q C Q C C sc           

   ( ) ( ) ( ) ( ) ( ) 2 2 ( ) 4 4 ( ) ( ) 2 ( ) 2

44 11 12 22 44 44 55 55 662 2 , ,k k k k k k k k kQ C C C C c s C c s Q C c C s          

 ( ) ( ) ( ) ( ) ( ) 2 ( ) 2

56 66 55 66 55 66, ,k k k k k kQ C C cs Q C s C c      

Also we have equations ( ) ( )k k

ij jiQ Q  for , 1...6i j   and cosc  , sins  . 

 


