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Abstract. In recent years, neural networks based algorithms have been widely 
applied in computer vision applications. FPGA technology emerges as a 
promising choice for hardware acceleration owing to high-performance and 
flexibility; energy-efficiency compared to CPU and GPU; fast development 
round. FPGA recently has gradually become a viable alternative to the 
GPU/CPU platform. 

This work conducts a study on the practical implementation of neural 
network accelerators based-on reconfigurable hardware (FPGA). This 
systematically analyzes utilization-accuracy-performance trade-offs in the 
hardware implementations of neural networks using FPGAs and discusses the 
feasibility of applying those designs in reality.  

We have developed a highly generic architecture for implementing a single 
neural network layer, which eventually permits further construct arbitrary 
networks. As a case study, we implemented a neural network accelerator on 
FPGA for MNIST and CIFAR-10 dataset. The major results indicate that the 
hardware design outperforms by at least 1500 times when the parallel 
coefficient 𝑝 is 1 and maybe faster up to 20,000 times when that is 16 compared 
to the implementation on the software while the accuracy degradations in all 
cases are negligible, i.e., about 0.1% lower. Regarding resource utilization, 
modern FPGA undoubtedly can accommodate those designs, e.g., 2-layer 
design with 𝑝 equals 4 for MNIST and CIFAR occupied 26% and 32% of LUT 
on Kintex-7 XC7K325T respectively. 
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1 Introduction 

The development of the Neural Network is the motivation to improve computing 
capability on different platforms 
In recent years, researches on the neural network have shown a significant advantage 
in machine learning over traditional algorithms based on handcrafted models. There 
has been a growing interest in the study of neural networks, inspired by the nervous 
system in the human brain. Owing to the high accuracy and good performance, neural 
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networks have been widely adopted in many applications such as image classification 
[1], face recognition [2], smart digital video surveillance [3], and speech recognition 
[4], etc. In general, neural network features a high fitting ability to a wide range of 
pattern recognition problems, which makes the neural network a promising candidate 
for many artificial intelligence applications. 

Recent research on the neural network is showing great improvement over 
traditional algorithms, various neural network models, like Convolutional Neural 
Network (CNN), Recurrent Neural Network (RNN), have been proposed. CNN [5] 
improves the Top-5 image classification accuracy on ImageNet [6] dataset from 
73.8% to 84.7% in 2012 and further helps improve object detection [7] with its 
outstanding ability in feature extraction. RNN [8] achieves state-of-the-art word error 
rate on speech recognition.    

As neural network models become larger and deeper, numerous operations and 
data accesses are demanded in neural network-based implementations while higher 
accuracy typically demands more complex models. For example, Krizhevsky et al. [9] 
achieved 84.7% Top-5 accuracy in Take ImageNet Large-Scale Vision Recognition 
Challenge (ILSVRC) with a model including 5 convolution layers and 3 fully-
connected layers, they get a recognition accuracy [10] of 95.1% surpassing human-
level classification (94.9% [11]) with a 22-layer model and won the ILSVRC-2015 
competition for achieving an accuracy of 96.4% with a model depth of 152 [12]. Such 
a model can take over 11.3 billion floating-point operations (GFLOPs) for the 
inference procedure, and even more for training.  

The operations in CNNs are computationally intensive with over billion operations 
per input image [13], thus requiring high-performance hardware platforms. The 
rapidly changing field of deep learning makes it even more difficult for a generic 
accelerator to match for a wide range of neural network algorithms. In this context, 
there is a timely need to reform the mapping strategy of neural networks to the 
hardware platform and to support modular and scalable hardware customization for 
specific applications without losing design flexibility. Choosing an appropriate 
computing platform for neural network-based applications is extremely essential. 

FPGA, GPU, and ASIC are the widely-applied selections in addition to using the 
traditional CPU usage for accelerators available in the market today. For FPGAs, 
recently there have been major efforts from technology leaders to better integrate 
FPGA accelerators. There is also a growing number of GPU and ASIC accelerator 
solutions offered commercially, such as NVIDIA GPU and IBM PowerEN processor 
with edge network accelerators.    

Application-Specific Standard Processor (ASSP) based approaches for Neural 
Network accelerators.  

Neural networks are implemented on CPU and GPU platforms, i.e., currently 
widely adopted ASSPs; however, they are not efficient either in terms of 
implementation speed (CPU) or energy consumption (GPU) [14]. Indeed, a typical 
CNN architecture has multiple convolutional layers that extract features from the 
input data, followed by classification layers. This essentially requires massive parallel 
calculations. General-purpose processors (CPUs) rely on a few processing elements 
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and operate sequentially, hence they are not efficient for CNN implementation and 
can hardly meet the performance requirement. In contrast to CPU, GPUs can offer 
Giga to Tetra FLOPs [15] per second’s computing speed due to their single-
instruction-multiple-data (SIMD) architecture and high clock frequency, therefore 
they are good choices for high-performance neural network applications. However, 
the power consumption of typical GPUs is exceedingly high - for an NVIDIA Tesla 
K40 GPU, the thermal design power (TDP) is 235 W [16], thus GPUs are not suitable 
for embedded systems such as mobile devices, robots, etc., which are mostly powered 
by batteries and low power consumption becomes essential to them. Besides, both 
CPU and GPU have the disadvantage of poor integration capability, neither the CPU 
nor the GPU is specifically designed for neural network calculations so they are not 
optimized for neural networks, resulting in poor energy efficiency, especially in the 
real-time applications that require large bandwidth.  

Application-Specific IC (ASIC), which is rigorously optimized for neural networks, 
could solve both poor performance and high energy consumption of CPU and GPU 
[17]. This hardware solution undoubtedly is superior to any other platform when 
performing calculations on the same neural network. Nonetheless, the ASIC design 
cycle is relatively long due to high complexity and very costly for low volume 
production. More important, ASIC is non-hardware-reconfigurable technology, thus, 
no single ASIC platform could meet the rapid improvements and the diversity of 
problems on the neural network application. Therefore, the implementation of ASIC 
for neural network accelerators, in reality, needs to be carefully considered. 

Reconfigurable hardware-based approaches for Neural Network accelerators  
 
As a balancing approach among the mentioned ASSP platforms and ASIC, along with 
distinct features, FPGAs present as promising platforms for the hardware acceleration 
of CNNs [18]. FPGA-based neural network accelerators have become increasingly 
popular thanks to their high reconfigurability, fast turn-around time (compared to 
ASICs), high-performance, and better energy efficiency (compared to GPUs) [19].  

In a particular study, Marco Bettoni et al. [20] implemented a CNN design on 
FPGA and obtained results showing that the proposed implementation is as efficient 
as a general-purpose 16-core CPU, and almost 15 times faster than an SoC GPU for 
mobile application. Research by Eriko Nurvitadhi et.al [21, 22] implemented on BNN 
and RNN networks showed that in comparison to 14-nm ASIC, GPU, and multi-core 
CPU, FPGA provides superior performance/watt over CPU and GPU because 
FPGA’s on-chip BRAMs, hard DSPs, and reconfigurable fabric allow for efficiently 
extracting fine-grained parallelisms. Moreover, newer FPGAs with more DSPs, on-
chip BRAMs, integrated hard accelerators IP cores, and higher frequency have the 
potential to narrow the FPGA-ASIC efficiency gap.  

Nonetheless, those prior works are targeted at either high accuracy or high 
performance for specific architecture [20-22] and ignore the intrinsical trade-offs 
between resource utilization, performance, accuracy, and network architecture. 
Therefore, the scalability and the integrability of the neural network design has not 
fully explored and studied.  
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In this work, we developed fundamental and highly generic building blocks that 
allow constructing virtually any neural networks. These base components allow us to 
systematically study the feasibility of using FPGAs as an accelerator for neural 
network applications. The design trade-offs on aspects including network architecture, 
resource utilization, accuracy, and performance for a wide range of devices to 
understand the real power and limitation of the FPGAs as the reconfigurable platform 
for neural network implementation. These assessments will be the basis for the 
application of FPGAs as hardware accelerators for practical neural network 
applications.  

The main contributions of this work are summarized as follows 

 A high-performance generic design of neural network accelerator combining 
software (for parameters training) with the powerful capability of hardware 
computation (on matrix additions and multiplications). In particular, we analyze 
the design by theoretically deriving performance metrics including the memory 
size and processing latency of the FPGA-based neural network accelerator. To 
support the design analysis, a numerical format selection method based on trained 
parameter values domain on two considered datasets.  

 A methodology is proposed on how to optimize parallelism strategy with different 
parallel coefficients for each layer to achieve high throughput. 

 An in-depth discussion on the design tradeoffs between resource utilization, model 
accuracy, and performance of the image classification models with different 
parameters including numerical formats, parallel coefficients, and network 
architectures through the practical accelerators (for the most representative datasets 
(MNIST and CIFAR-10).  

 On-board demonstrations of FPGA implementation using single or multilayer 
neural networks and CNN that achieve mostly the same accuracy as the software 
implementation. 

The remaining of this paper is organized as follows: Section II introduces the basic 
background of neural networks. Section III presents the results of data recognition 
performed on the software. Section IV proposes a generic design for the data 
recognition problem on the hardware and describes our FPGA-based implementation 
details upon this proposed design. Section V concludes the paper. 

2 Background 

2.1 Neural Network 

Generally, a fully-connected neural network consists of three consecutive layers: 
input, hidden, and output layers as shown in Fig.1. First, input features (e.g., image 
data) are collected and fed into the input layer. Then, input features are fully 
connected to hidden layers that learn the underlying patterns of input data. Finally, 
hidden features are progressively propagated to the output layer which provides 
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predicted discrete labels (for classification models) or continuous values (for 
regression models).  

Input 
layer

Hidden 
layer 1

Hidden 
layer 2

Output 
layer  

Fig. 1. The basic structure of the neural networks. 

This work considers the case study of image recognition tasks on MNIST [23] and 
CIFAR-10 datasets [24]. In the case of the MNIST set, we aim to construct a neural 
network-based classifier that can understand the handwritten digits. Specifically, the 
classification model should output the most likely digit among 10 possible single 
digits with a given input image of 28x28 pixels.  

However, with large and high-resolution image inputs, the fully-connected neural 
networks suffer from a complex network architecture, which requires a large memory 
size to store training parameters and high-performance computing units. Therefore, a 
more effective network architecture should be designed to overcome the drawback of 
fully-connected neural networks, and convolutional neural networks (CNN) were 
invented for achieving superhuman performance on complex visual tasks. 

2.2 Convolutional Neural Network 

Emerged from the study of the brain's visual cortex, CNNs have been widely 
applied in image recognition. Typically, CNNs are composed of three types of layers: 
convolutional layers, pooling layers, and fully-connected layers. Multiple 
convolutional and pooling layers are stacked one after another followed by a series of 
fully-connected layers. Each neuron in the convolutional layer corresponds to learn a 
specific pattern of a limited area by only connecting to features related to that area. 
The pooling layer then simply performs downsampling on activation units of the 
previous convolutional layer for further reducing the number of training parameters. 
Finally, the fully-connected layers conduct the same duties found in traditional neural 
networks and produce class scores from the extracted features provided by the 
convolutional and pooling layers. 

A CNN model consists of two components: the feature extraction part and the 
classification part. The convolution layers and pooling layers perform feature 
extraction. For example, given an image, the convolution layer detects features such 
as two eyes, long ears, four legs, a short tail, and so on. The fully connected layers 
then act as a classifier on top of these features and assign a probability for the input 
image being a dog. 
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In our study, the popular CIFAR-10 dataset was selected as the case study to 
evaluate the implementation of the image classification task on the hardware, using 
the CNNs. The 32x32 pixel RGB images in the CIFAR-10 dataset are sent to the 
feature extraction layer to filter out the most basic characteristics of the object.  

32x32x3 32x32x16 16x16x16 16x16x32 8x8x32 8x8x64 4x4x64 1024 256 10

Fully connected 
layerFeature extraction layer

 

Fig. 2. Block diagram of the image recognition model on the CIFAR-10 dataset. 

As shown in Fig. 2, the featured extraction layer consists of 7 component layers 
and the output of the feature extraction layer will be transformed into a one-
dimensional vector, which will be the input of the fully connected layer. This input 
through a multi-layer perceptual algorithm is used to calculate the probability and 
draw conclusions: the input data belongs to which of the 10 labels of the CIFAR-10 
dataset. 

3 Performance Evaluation of Neural Network-based Classifier 
on a Software Tool  

Although this work will eventually focus on hardware implementation, implementing 
the neural network-based classification model on a software platform is needed for 
the parameter learning process and architectural optimization. Parameter training 
should be conducted using a software tool since this phase is generally performed 
only once using the offline training data, we can perform parameter training on any 
powerful computing units. Also, this process runs highly sophisticated learning 
algorithms and complex activation functions that are not efficient for implementation 
on the FPGA. Then, the inference phase, which requires much less computational 
resources, can be conducted on the FPGA board for the real-time data. Therefore, to 
compare the neural network-based classifier performance between the software 
platform and an FPGA board, this section constructs an optimal neural network-based 
image classification model and evaluates the neural network-based classifier 
performance on a software platform using a variety of network hyper-parameters. 

3.1 Software platform  

There are many software-based approaches for modeling the neural network. Among 
those, Python is the most popular and widely-used programming language for 
evaluating neural network-based models. Most data scientists and machine learning 
developers (57% [25]) are currently using a variety of Python-based libraries such as 
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TensorFlow, Keras, Theano, Scikit-learn, PyTorch [26]. In this work, we conduct 
modeling neural networks using the programming language Python and TensorFlow 
library running on the Ubuntu 16.04 64 bit operating system (Intel Core i5 5200U, 
RAM 12GB, SSD 256GB) as a software platform to conduct model training and 
evaluation of the entire image recognition result.  

3.2 Analysis of the Recognition Accuracy 

Using the above-mentioned software platform, we first conduct the study on the 
impacts of design parameters on the accuracy of the model. We consider the 
following four cases to calculate the accuracy: 1 layer, 2 layers, 3 layers, and 4 layers. 
In these cases, the parameters to be adjusted include the learning rate, epoch, and 
batch size. The learning rate shows the degree of adjustment of the weight matrix 
value 𝑊 after each learning to reduce the value of the loss function. The greater the 
learning rate, the faster the loss function decreases. Epoch is the number of times a 
model is learned in the training session. Batch size is the amount of data to be 
included in a training session. The image recognition results on the two sets of 
MNIST and CIFAR-10 databases with the presented software settings are shown in 
the following figure. 

 
(a)                                                                      (b) 

Fig. 3. Software-based recognition accuracy for the (a) MNIST dataset and the (b) CIFAR-10 
dataset corresponding to different numbers of layers.  

Based on the results obtained on the graph, it can be seen that image recognition 
accuracy in the MNIST dataset is relatively high (at least 92.1%) compared to object 
classification accuracy in the CIFAR-10 dataset (maximum up to 75.4%). The higher 
prediction accuracy on the MNIST dataset than CIFAR-10 is expected since CIFAR-
10 images are undoubtedly more complex than MNIST ones. Also, the average time 
to recognize MNIST images is relatively lower (9.75ms) compared to CIFAR-10 
images (10.45ms).  This can be explained by the neural network structure for CIFAR-
10 image recognition much larger than that of MNIST, therefore the average 
inference time for CIFAR-10 should be longer than that for MNIST pictures. 

3.3 Analysis of the Number Format 

Most software tools for machine learning techniques by default support floating-point 
arithmetic operations and floating-point training parameters, which achieves mostly 

92.1% 97.1% 97.7% 97.7%

6.0

8.0

11.5

13.5

0

2

4

6

8

10

12

14

0%

20%

40%

60%

80%

100%

Ti
m

e 
(m

s)

Ac
cu

ra
cy

 (%
)

Number of layers

Accuracy Time

1 2 3 4

65.7% 68.4% 72.7% 75.4%

6.7

8.9

12.2

14.0

0

2

4

6

8

10

12

14

0%

20%

40%

60%

80%

100%

Ti
m

e 
(m

s)

Ac
cu

ra
cy

 (%
)

Number of layers

Accuracy Time

1 2 3 4



8 

absolute calculation accuracy. However, implementing floating-point arithmetic 
operations on hardware is inherently complicated and area-inefficient. Therefore, we 
need to look for an alternative way to implement a neural network-based 
classification model on hardware. First, we analyze the range domain of input data 
and weight matrix elements values extracted from the software implementation. Then, 
an appropriate number format for parameters and unit values of the neural network is 
selected. For both MNIST and CIFAR-10 datasets, as shown in Fig.4, the weight 
matrix elements values are fundamentally concentrated in the range (-0.25 ÷ 0.25).  

Based on the statistical analysis, an 8-bit fixed-point for numerical representation, 
accuracy can be up to 2-6 (i.e., using 6 bits for representing the fraction) could be 
enough for representing the value domain of the parameters we have calculated. 
Compared to the floating-point number (single precision), an 8-bit fixed-point number 
would drastically reduce the design complexity and resource usage. Nonetheless, to 
evaluate the proposed numerical domain selection and the impacts of the number 
format on recognition accuracy, we still need to conduct the performance assessment 
of the neural network on the actual hardware design. This will be presented and 
discussed in Section 5.2. 

 
(a)                                                                     (b) 

Fig. 4. The weight matrix value domain of the (a) MNIST and the (b) CIFAR-10 image 
recognition model. 

4 Design of Neural Network Accelerator on FPGA 

In this section, we first introduce a standard and fully-parameterized hardware 
architecture design for a single neural network layer as shown in Fig. 5. Then, this 
fundamental design can be used to construct the whole complex neural network with 
an arbitrary number of hidden layers. The generic hyperparameters of a single layer 
are 𝑛௜ and 𝑛௜ାଵ, where 𝑛௜ is the number of input units and 𝑛௜ାଵ is the number of output 
units at layer 𝑖 (or the number of input units at the layer i+1), respectively. For each 
layer, there are multiple processing units including multiplier-accumulator (MAC), 
adder, and activation and memory buffer for input, output, and training parameters. 
Note that the higher number of hidden layers results in more resource utilization on 
the hardware. To reduce the computational complexity of hardware architecture, the 
training parameters including weights and biases matrices are learned using the neural 
network software tool and are restored in the memory of the hardware. The detailed 
design of these processing elements and memory buffer is presented in the following 
subsections. 
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Fig. 5. Block diagram of neural network accelerator implemented on reconfigurable hardware. 

4.1 Design of processing units 

Multiplier-Accumulators (MACs) 
Assume that each MAC unit corresponds to multiplication between two binary 
numbers: an input feature and a weight value. During a clock cycle, an input feature 
and a column of weight matrix are multiplied in parallel using 𝑛௜ାଵ MACs. To 
complete multiplication between the input vector and the weight matrix, 𝑛௜  clock 
cycles corresponding to 𝑛௜  input features are required. 
Taking inputs from the input data buffer and the weight matrix, MACs are the main 
processing element used to perform multiplication between input features 𝑋 of 1 × 𝑛௜  
and the weighted matrix 𝑊 of 𝑛௜ × 𝑛௜ାଵ. The MAC output, called vector 𝑐௞ , is 
calculated as below. 

 𝑐௞ = ෍ 𝑥௝𝑤௝௞

௡೔

௝ୀଵ

, 1 ≤ 𝑘 ≤ 𝑛௜ାଵ (1) 

Where 𝑐௞ is the kth element of the output vector, 𝑥௝ is the jth element of the input 
vector, and 𝑤௝௞  is the weight element at column 𝑗 and row 𝑘. Thus, the number of 
cumulative adders used is 𝑛௜ାଵ and the number of multiplier-accumulators used is 𝑛௜ାଵ. 

. 
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Input 
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buffer
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Output register
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An
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POUT
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Fig. 6. Hardware design of the Multiplier-Accumulator. 
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Parallel coefficient 
To reduce the number of clock cycles needed for matrix multiplication, it is possible 
to read 𝑗 input units and 𝑗 columns of the weight matrix at the same time. Then the 
required number of clock periods for the matrix multiplication can be reduced by a 
factor of 𝑗; however, the number of MACs in a clock cycle will increase accordingly 
by 𝑝 = 𝑛௜/𝑗 times. Herein, the value of parameter 𝑝 is called a parallel coefficient. 
The number of multipliers, accumulators, and clock cycles are estimated as follows: 

 𝑁ெ஺஼ = 𝑝𝑛௜ାଵ;  𝑁௔ௗௗ = 𝑝𝑛௜ାଵ + 1; 𝑁௜
௖௟௢௖௞௦ =

𝑛௜

𝑝
 (2) 

where 𝑁ெ஺஼  is the number of multipliers, 𝑁௔ௗௗ  is the number of adders, and 𝑁௜
௖௟௢௖௞௦ 

is the number of clocks. 
 

 

Fig. 7. Common activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU, and (d) LeakyReLU. 

Activation function 
Among the most commonly used activation functions for neural networks, there are 
some options, including Sigmod, Tanh, ReLU, or leak ReLU as shown in Fig. 7. 
From the hardware design point of view, we essentially selected the Rectified Linear 
Unit (ReLU) function because of its simplicity and feasibility for hardware 
implementation. As we can see in Fig. 7, the ReLU activation function is a piecewise 
linear function that outputs the input directly in case of the positive input value and 
returns zero otherwise. Using the ReLU function can accelerate the training process 
thanks to the fast calculation of the loss function’s gradient concerning parameters. 
ReLU is also proven to be good enough for achieving an adequate level of accuracy 
for different neural network problems [27-29]. 

4.2 Design of data buffer 

Input data buffer 
The input data buffer has memory cells arranged in rows and operates under the FIFO 
mechanism. The FIFO width is equal to the number of bits for input representation 
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multiplied by the parallel coefficient 𝑝. This permits 𝑝 elements that can be read or 
written at the same time by issuing a FIFO read and write, respectively. Regardless of 
the value of the parallel coefficient, the total memory required for the ith layer with 𝑛௜  
elements, each represented by 𝑘 bits, is equal to 

 𝑀𝑒𝑚௜
ூ௡௣௨௧

= 𝑘𝑛௜ (𝑏𝑖𝑡𝑠) (3) 

Weight matrix memory.  
Recall that the weight matrix is optimized during the training process implemented by 
the software tool since parameter learning consumes a lot of hardware resources. The 
values of the weight matrix can be represented by the 𝑘 bits binary number. Similar to 
the organization of the input buffer memory, the data width of the weight memory has 
to be matched the designed parallel coefficient. The size of the weight matrix 𝑊 is 
𝑛௜  ×  𝑛௜ାଵ. To represent the address for the 𝑛௜  registers we need to take up to the 
following hardware resources: 

 𝑀𝑒𝑚௜
ௐ௘௜௚௛௧

=  𝑘𝑛௜𝑛௜ାଵ (𝑏𝑖𝑡𝑠) (4) 

Considering the analysis of number format in subsection 3.3, which shows that 
trained weight values are real numbers with a limited value range, we design the 
format of weight values as follows. Those values in the actual hardware design if 
remapped to convenient fixed-point representation values, in turn, can be treated as 
the equally scaled-down of the integer values. This can be done first by multiplied by 
a scale-up factor 𝑚 (𝑚 is a non-negative number) and then is rounded to a signed 
integer number. Therefore, the actual hardware multiplier eventually is the just an 
integer multiplier, which is much simpler than the real-number multiplier as can be 
shown in Fig. 8. 
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W11 ... W1 ni+1

Wni ni+1

.........

Wni 1 ...
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SOFTWARE COMPUTING HARDWARE COMPUTING

Row ni-1
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… …

Row 2
ni+1 x k bit
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Fig. 8. Hardware design of the weight matrix. 

Bias vector memory 
The bias matrix extracted from the training phase of the classification model is a 

vector with 𝑛௜ାଵ elements. Similarly to weight values, each bias-element needs 𝑘 bits 
to represent. The resource occupied by the hardware for the bias vector is estimated as 
below: 
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 𝑀𝑒𝑚௜
஻௜௔௦ = 𝑘𝑛௜ାଵ (𝑏𝑖𝑡𝑠) (5) 

Output data buffer 
The output data buffer with the FIFO mechanism is designed to store the results of the 
multiplier-accumulator (vector of 𝑛௜ାଵ). To overcome the overflow phenomenon 
when performing the scalar product between 𝑛௜-element vectors (each element 
occupies 𝑘 bits), the output result should be represented by (logଶ 𝑛௜ + 2𝑘) (𝑏𝑖𝑡𝑠). 
Theoretically, the number of bits for an output unit is at least 2 times higher than that 
for an input unit, which can cause the memory shortage especially in case of a large 
number of hidden layers. Therefore, we can reduce the number of bits occupied by 
each output value by 𝑚 bits. More specifically, before storing in the buffer, the output 
value is divided by 2୫. Dividing the real-number output value by 2୫ can be simply 
implemented in the case of binary numbers by removing the 𝑚 lowest bits of the 
binary data. The output data buffer consists of 𝑛௜ାଵ registers for 𝑛௜ାଵ output features 
and each register is represented by (logଶ 𝑛௜ + 2𝑘 − 𝑚) (𝑏𝑖𝑡𝑠) and requires 
𝑎𝑑𝑑௕_௢௨௧ = logଶ 𝑛௜ (𝑏𝑖𝑡𝑠) to specify a register address. Finally, the amount of 
memory resources on the hardware for the output data buffer at layer 𝑖 + 1 equals: 

 𝑀𝑒𝑚௜
ை௨௧௣௨௧

= 𝑛௜ାଵ(logଶ 𝑛௜ + 2𝑘 − 𝑚) (𝑏𝑖𝑡𝑠) (6) 

4.3  Hardware Utilization and Processing Latency  

We have derived the resource utilization on hardware for the hidden layer 𝑖 + 1 
including input data buffer, weight matrix, bias vector, output data buffer. If there are 
𝐿 consecutive hidden layers, the number of matrix multiplication blocks are 𝐿 + 1. 
Then, the total amount of memory occupied is estimated as below: 

 𝑀𝑒𝑚௧௢௧௔௟ = ෍(𝑀𝑒𝑚௜
ூ௡௣௨௧

+ 𝑀𝑒𝑚௜
ௐ௘௜௚௛௧

+ 𝑀𝑒𝑚௜
஻௜௔௦)

௅ାଵ

௜ୀଵ

 + 𝑀𝑒𝑚௟ାଵ
ை௨௧௣௨௧

  (𝑏𝑖𝑡𝑠) (7) 

Given the parallel coefficient p, the total number of MACs is equal to 𝑁ெ஺஼ =
∑ 𝑁௜

ெ஺஼௅ାଵ
௜ୀଵ = 𝑝 ∑ 𝑛௜ାଵ 

௅ାଵ
௜ୀଵ and similarly, the total number of adders is 𝑁஺ௗௗ =

∑ 𝑁௜
஺ௗௗ୐ାଵ

୧ୀଵ = 𝑝 ∑ 𝑛௜ାଵ 
୐ାଵ
୧ୀଵ . The processing latency (or the number of clock cycles) 

𝑁௖௟௢௖௞௦  for the neural network with parallel coefficient, 𝑝 is calculated as: 

 𝑁௖௟௢௖௞௦ = ෍ 𝑁௜
௖௟௢௖௞௦

௅ାଵ

௜ୀଵ

= ෍
𝑛௜

𝑝

௅ାଵ

௜ୀଵ

  (8) 
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We can infer from hardware consumption and processing delay that the neural 
network-based hardware architecture requires hardware resource that is linearly 
proportional to the parallel coefficient. Meanwhile, the processing delay is linearly 
reduced by a factor of 𝑝. The selection of parallel coefficients should be considered 
based on the FPGA memory, the number of given processing units, and the required 
delay of a specific application. The actual performance metrics and resource 
utilization will be presented and discussed in the subsequent section. 

5 Performance Evaluation of Neural Network Accelerator on 
FPGA 

5.1 Experimental Setup 

In this subsection, we introduce two considered datasets and describe the neural 
network architecture for each data. Then, the performance metrics and network 
parameters are also presented. Based on the generic model described in the previous 
section, we have implemented the hardware models targeted for MNIST and CIFAR-
10 datasets. Those models are fully described using synthesizable VHDL optimized 
for FPGA. Those case studies will be further used for evaluating the performance and 
other design aspects. 

For the MNIST dataset, each input image will be converted to a 1 × 784 binary 
matrix. Input matrix and the network parameters (i.e., weights and biases values) 
obtained from the training phase are fed into the Xilinx Vivado Simulator [30] to 
collect performance metrics including computational speed and recognition accuracy.  
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Fig. 9. Design model of image recognition on hardware for the (a) MNIST dataset and the (b) 
CIFAR-10 dataset. 

 

Fig. 10. Experiments on the FPGA board. 

In cases of the CIFAR-10 dataset, images are larger and more complex than those 
in the MNIST database. To temporarily simplify the hardware design, we only 
implement fully-connected layers on the hardware while feature extraction layers are 
pre-processed. Note that the implementation of those layers follows the classical 
image classifier and does not cost much in cases of the small filter kernel [31]. In the 
first fully-connected layer, the number of input units is 1024, the number of output 
features is 256; in the second fully-connected layer, the number of output neurons is 
10. Therefore, the size of the weight matrix for the first layer is 1024x256, for the 
second layer is 256x10; the size of the bias vectors for the first layer is 256x1, for the 
second layer is 10x1. 

To examine the performance of the hardware design of the neural network 
accelerator, we have collected the performance of the image classification model on a 
real FPGA board as can be seen in Fig. 10.  



15 

5.2 Experimental Results of Neural Network Accelerator on FPGA 

Our entire generic design presented in section 4 has been described by a hardware 
description language (HDL), where the number format and parallel coefficient are 
considered as design parameters and can be set to desired values. The hardware 
architecture of NN is evaluated on the Vivado Simulator. The parameters are 
converted into a fixed-point number format (with 2, 4, 8, or 16 bits) by an in-house 
software on C++. The featured parameters of the built neural networks are trained and 
extracted using TensorFlow. The performance evaluation is conducted on 1,000 
samples in the MNIST dataset.  

After designing the image recognition model on the hardware, experiments are 
conducted to evaluate the hardware architecture. First, the extracted image data from 
the text files are put into the designed block and processed by the hardware simulator 
Xilinx Vivado. The classified label which is the output of the image classification 
model is then compared with the true label and the number of correctly recognized 
images will be recorded in the counter. When the last image in the test set is 
classified, the classification accuracy is obtained. 
The impacts of the number formats and network architectures 

Table 1. Accuracy of MNIST image recognition implemented on the hardware with different 
hidden layers and number formats for 1,000 samples. 

Number of hidden layers 2-bit  4-bit 8-bit 16-bit 

1 16.8% 88.6% 89% 89% 

2 16% 96.8% 96.9% 96.9% 

 
In this subsection, we focus on analyzing the dependence of recognition accuracy 

on two main parameters: the number of hidden layers and number format to represent 
the values of the weight matrix. The results of MNIST image recognition accuracy 
with different parameters are shown in Table 1. It can be seen that the classification 
accuracy depends more on the number format than the number of hidden layers. 
When the number of bits used to represent the weight matrix is too small, the 
recognition accuracy is very low (e.g., 16% accuracy for 2-bit number format). 
Meanwhile, the accuracy sharply improves if the number of bits changes from 2 to 4 
or more. However, there is no significant improvement in cases of using more than 4 
bits for each training parameter. E.g., the accuracy converges to 89% and 96.9% with 
1 and 2 hidden layers, respectively. From Table 1, we observe that the 8-bit format 
can be used to save hardware resources while ensuring accurate performance on image 
classification. 

Hardware utilization on different chips and with different parallel coefficients 
Recall that we have derived the hardware resources required for MACs, adders, 

and memory in Eq. (2). The number of MACs, the number of adders, and memory 
size increase proportionally to the parallel coefficient and the number of hidden 
layers. Indeed, using a higher parallel coefficient 𝑝 results in short prediction time but 
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a significant increase in the system resources demand. At the same time, multilayer 
neural networks can produce higher accuracy while demanding more computing 
resources. Therefore, it is necessary to study the relationship between these two 
factors (recognition time and resource demand) for a better selection of neural 
network architectures in reality. 

To understand the feasibility of FPGA for the neural network application, we first 
implemented and compared the designs on some representative FPGA devices from 
Xilinx. Then, with the HDL designed and fully logical verified, we have implemented 
on the actual FPGAs. The main results are presented in Fig. 11. 

                                                                          
(a)                                                                         (b) 

  
(c)                                                                         (d) 

Fig. 11. Hardware utilization and corresponding maximum clock frequency (a) 1-layer MNIST, 
(b) 2-layer MNIST, (c) 1-layer CIFAR, and (d) 2-layer CIFAR implementations using an 8-bit 
fix-point number format targeted for different Xilinx FPGA devices. 

In this work, we have chosen some representative and active FPGA families from 
Xilin [32], including the low-cost (Artix-7), the best price/performance (Kintex-7), 
the performance-optimized (Virtex-7) solutions with different resource capabilities. In 
terms of resources, except for the Artix XC7A100T  FPGA, where all DSP is fully 
utilized, the remaining FPGA devices are considered large enough for 
accommodating 2-layer neural networks in either CIFAR or MNIST. The actual 
resource utilization of slice registers, LUT, RAM only accounts for a small proportion 
of the total availability (e.g., less than 15% LUT for Kintex 7 XC7K325T, or less than 
5% LUT for Virtex 7 XC7V980). This is the strong validation for the feasibility of the 
implementation of the more sophisticated recognition and classification engines (e.g., 
up to 5 hidden layers with more complex activation functions) on the next generation 
FPGA. The other high-end devices such as Ultra-scale [33] and Ultra-scale plus [34] 
with their extremely large logic and computing resource are essentially capable not 
only for neural networks but complete AI system implementations. In terms of 
performance, the achievable clock frequencies are technically dependent mainly on 
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the latency of MAC (i.e., FPGA DSP macro). Therefore, the reported clock 
frequencies range from 153MHz (Artix 7) to ~200 MHz (Virtex 7).  

Furthermore, we evaluated the impacts of the parallel coefficient on the resource 
utilization and bandwidth of the hardware architecture. Fig. 12 presents the resource 
utilization for the case of MNIST implementation on the Xilinx Kintex-7 FPGA series 
XC7K325T.  

 

  
(a)                                                                     (b) 

  
(c)                                                                     (d) 

Fig. 12. Resource utilization and recognition speed on Xilinx Kintex-7 FPGA series 
XC7K325T of 2-layer neural network for (a) MNIST, (b) CIFAR implementations with 
different parallel coefficients and images depicting physical layout on the FPGA chip for (c) 
MNIST, (d) CIFAR implementations when parallel coefficient equals 4. 

Based on the results obtained, we found that the image recognition speed also 
increases almost proportionally to the parallel coefficient 𝑝. Specifically, when the 
parallel computing is not applied (i.e., 𝑝 =  1), the implemented network can process 
250,000 images image recognition per second, and when this coefficient increases to 
8, the image recognition speed reaches 1,762,000 images per second for the MNIST 
dataset. Similarly, for the CIFAR-10 dataset, the recognition speed is 153,000 and 
1,084,000 images per second, respectively. The practical performance hence increases 
by more than 7X in either implementation when changing 𝑝 from 1 to 8. This is 
explained by a slight degradation in maximum clock frequencies when the design 
becomes larger. There is an inevitable trade-off between increasing image recognition 
speed and the cost in logical resource, and this is explicitly shown by the dependency 
of the growth rate of the resource utilization and the parallelism level. 

Performance comparison between FPGA-based neural network accelerator and 
neural network using the software tool 
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From the simulation results of the software design and the implementation results 
of the design on the hardware, we can see that the achievable accuracy of the image 
recognition on the hardware as good as achievable accuracy by software. Meanwhile, 
hardware implementation is more beneficial in terms of detection speed than that on 
software.  

Table 2. Comparison of software and hardware performance in MNIST image recognition. 

Platform Software Hardware 

Number  
of layers 

1 2 1 1 1 1 1 2 2 2 2 2 

𝑝 (*) N/A N/A 1 2 4 8 16 1 2 4 8 16 

𝑇(**)(µs) 6000 8000 4 2 1.1 0.6 0.3 5.3 2.7 1.4 0.8 0.4 

(*) Parallel coefficient, (**) Recognition time 

Full comparative figures between image recognition on hardware and software are 
given in Tables 2. From this table, we observe that the time to recognize images when 
performing on hardware is faster than image recognition on software at least 1500 
times when the parallel coefficient equals 1 (6000 µs vs 4 µs, using one hidden layer 
for recognition), and maybe faster up to 20,000 times when the parallel coefficient is 
16 (8000 µs vs 0.4 µs with two hidden layers).   

6 Conclusion  

In this work, we have proposed a generic design for neuromorphic computing upon 
one layer, that allows us to construct any other sophisticated neural networks. Along 
with the generic design, a systematic study has been conducted on the resource 
utilization, performance, and accuracy of the neural network models and their 
dependencies on the design hyper-parameters. From the statistical study, we have 
practically proven that using a fixed-point number for hardware implementation could 
greatly reduce the complexity and resource for the hardware implementation while 
still maintaining mostly the same level of accuracy compared to the software 
implementation. 

As a case study, we implemented the hardware models for MNIST and CIFAR-10 
datasets on a reconfigurable hardware platform. Regarding the resource utilization, a 
Xilin Virtex 7 device (XC7VX980) can handle the 2-layer CIFAR-10 implementation 
with spending less than 5% of LUT and 15% in DSP. Furthermore, at iso-accuracy, 
the FPGA-based neural network implementations are notably faster in recognition 
speed. If no parallel computing is considered, the proposed hardware accelerator is 
1,500 times quicker than the baseline software implementation and could reach 
20,000 with a higher degree of parallelism. Though our initial design in this work is 
limited for the neural networks, the impressive results proved the potential of 
reconfigurable devices and FPGA as the flexible and powerful platform for 
neuromorphic computing and AI applications in general. 
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