
Feasibility and Design Trade-offs of Neural Network
Accelerators Implemented on Reconfigurable Hardware

Quang-Kien Trinh1*, Quang-Manh Duong1**
, Van-Thanh Nguyen2, Thi-Nga Dao1,

and Hong-Phong Nguyen1

1 Le Quy Don Technical University, Hanoi, Vietnam
2 Posts and Telecommunications Institute of Technology

kien.trinh@lqdtu.edu.vn*, Corresponding author: manhdq@lqdtu.edu.vn**

Abstract. In recent years, neural networks based algorithms have been widely
applied in computer vision applications. FPGA technology emerges as a
promising choice for hardware acceleration owing to high-performance and
flexibility; energy-efficiency compared to CPU and GPU; fast development
round. FPGA recently has gradually become a viable alternative to the
GPU/CPU platform.

This work conducts a study on the practical implementation of neural
network accelerators based-on reconfigurable hardware (FPGA). This
systematically analyzes utilization-accuracy-performance trade-offs in the
hardware implementations of neural networks using FPGAs and discusses the
feasibility of applying those designs in reality.

We have developed a highly generic architecture for implementing a single
neural network layer, which eventually permits further construct arbitrary
networks. As a case study, we implemented a neural network accelerator on
FPGA for MNIST and CIFAR-10 dataset. The major results indicate that the
hardware design outperforms by at least 1500 times when the parallel
coefficient 𝑝 is 1 and maybe faster up to 20,000 times when that is 16 compared
to the implementation on the software while the accuracy degradations in all
cases are negligible, i.e., about 0.1% lower. Regarding resource utilization,
modern FPGA undoubtedly can accommodate those designs, e.g., 2-layer
design with 𝑝 equals 4 for MNIST and CIFAR occupied 26% and 32% of LUT
on Kintex-7 XC7K325T respectively.

Keywords: Neural Network, FPGA accelerator, Data recognition.

1 Introduction

The development of the Neural Network is the motivation to improve computing
capability on different platforms
In recent years, researches on the neural network have shown a significant advantage
in machine learning over traditional algorithms based on handcrafted models. There
has been a growing interest in the study of neural networks, inspired by the nervous
system in the human brain. Owing to the high accuracy and good performance, neural

2

networks have been widely adopted in many applications such as image classification
[1], face recognition [2], smart digital video surveillance [3], and speech recognition
[4], etc. In general, neural network features a high fitting ability to a wide range of
pattern recognition problems, which makes the neural network a promising candidate
for many artificial intelligence applications.

Recent research on the neural network is showing great improvement over
traditional algorithms, various neural network models, like Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), have been proposed. CNN [5]
improves the Top-5 image classification accuracy on ImageNet [6] dataset from
73.8% to 84.7% in 2012 and further helps improve object detection [7] with its
outstanding ability in feature extraction. RNN [8] achieves state-of-the-art word error
rate on speech recognition.

As neural network models become larger and deeper, numerous operations and
data accesses are demanded in neural network-based implementations while higher
accuracy typically demands more complex models. For example, Krizhevsky et al. [9]
achieved 84.7% Top-5 accuracy in Take ImageNet Large-Scale Vision Recognition
Challenge (ILSVRC) with a model including 5 convolution layers and 3 fully-
connected layers, they get a recognition accuracy [10] of 95.1% surpassing human-
level classification (94.9% [11]) with a 22-layer model and won the ILSVRC-2015
competition for achieving an accuracy of 96.4% with a model depth of 152 [12]. Such
a model can take over 11.3 billion floating-point operations (GFLOPs) for the
inference procedure, and even more for training.

The operations in CNNs are computationally intensive with over billion operations
per input image [13], thus requiring high-performance hardware platforms. The
rapidly changing field of deep learning makes it even more difficult for a generic
accelerator to match for a wide range of neural network algorithms. In this context,
there is a timely need to reform the mapping strategy of neural networks to the
hardware platform and to support modular and scalable hardware customization for
specific applications without losing design flexibility. Choosing an appropriate
computing platform for neural network-based applications is extremely essential.

FPGA, GPU, and ASIC are the widely-applied selections in addition to using the
traditional CPU usage for accelerators available in the market today. For FPGAs,
recently there have been major efforts from technology leaders to better integrate
FPGA accelerators. There is also a growing number of GPU and ASIC accelerator
solutions offered commercially, such as NVIDIA GPU and IBM PowerEN processor
with edge network accelerators.

Application-Specific Standard Processor (ASSP) based approaches for Neural
Network accelerators.

Neural networks are implemented on CPU and GPU platforms, i.e., currently
widely adopted ASSPs; however, they are not efficient either in terms of
implementation speed (CPU) or energy consumption (GPU) [14]. Indeed, a typical
CNN architecture has multiple convolutional layers that extract features from the
input data, followed by classification layers. This essentially requires massive parallel
calculations. General-purpose processors (CPUs) rely on a few processing elements

3

and operate sequentially, hence they are not efficient for CNN implementation and
can hardly meet the performance requirement. In contrast to CPU, GPUs can offer
Giga to Tetra FLOPs [15] per second’s computing speed due to their single-
instruction-multiple-data (SIMD) architecture and high clock frequency, therefore
they are good choices for high-performance neural network applications. However,
the power consumption of typical GPUs is exceedingly high - for an NVIDIA Tesla
K40 GPU, the thermal design power (TDP) is 235 W [16], thus GPUs are not suitable
for embedded systems such as mobile devices, robots, etc., which are mostly powered
by batteries and low power consumption becomes essential to them. Besides, both
CPU and GPU have the disadvantage of poor integration capability, neither the CPU
nor the GPU is specifically designed for neural network calculations so they are not
optimized for neural networks, resulting in poor energy efficiency, especially in the
real-time applications that require large bandwidth.

Application-Specific IC (ASIC), which is rigorously optimized for neural networks,
could solve both poor performance and high energy consumption of CPU and GPU
[17]. This hardware solution undoubtedly is superior to any other platform when
performing calculations on the same neural network. Nonetheless, the ASIC design
cycle is relatively long due to high complexity and very costly for low volume
production. More important, ASIC is non-hardware-reconfigurable technology, thus,
no single ASIC platform could meet the rapid improvements and the diversity of
problems on the neural network application. Therefore, the implementation of ASIC
for neural network accelerators, in reality, needs to be carefully considered.

Reconfigurable hardware-based approaches for Neural Network accelerators

As a balancing approach among the mentioned ASSP platforms and ASIC, along with
distinct features, FPGAs present as promising platforms for the hardware acceleration
of CNNs [18]. FPGA-based neural network accelerators have become increasingly
popular thanks to their high reconfigurability, fast turn-around time (compared to
ASICs), high-performance, and better energy efficiency (compared to GPUs) [19].

In a particular study, Marco Bettoni et al. [20] implemented a CNN design on
FPGA and obtained results showing that the proposed implementation is as efficient
as a general-purpose 16-core CPU, and almost 15 times faster than an SoC GPU for
mobile application. Research by Eriko Nurvitadhi et.al [21, 22] implemented on BNN
and RNN networks showed that in comparison to 14-nm ASIC, GPU, and multi-core
CPU, FPGA provides superior performance/watt over CPU and GPU because
FPGA’s on-chip BRAMs, hard DSPs, and reconfigurable fabric allow for efficiently
extracting fine-grained parallelisms. Moreover, newer FPGAs with more DSPs, on-
chip BRAMs, integrated hard accelerators IP cores, and higher frequency have the
potential to narrow the FPGA-ASIC efficiency gap.

Nonetheless, those prior works are targeted at either high accuracy or high
performance for specific architecture [20-22] and ignore the intrinsical trade-offs
between resource utilization, performance, accuracy, and network architecture.
Therefore, the scalability and the integrability of the neural network design has not
fully explored and studied.

4

In this work, we developed fundamental and highly generic building blocks that
allow constructing virtually any neural networks. These base components allow us to
systematically study the feasibility of using FPGAs as an accelerator for neural
network applications. The design trade-offs on aspects including network architecture,
resource utilization, accuracy, and performance for a wide range of devices to
understand the real power and limitation of the FPGAs as the reconfigurable platform
for neural network implementation. These assessments will be the basis for the
application of FPGAs as hardware accelerators for practical neural network
applications.

The main contributions of this work are summarized as follows

 A high-performance generic design of neural network accelerator combining
software (for parameters training) with the powerful capability of hardware
computation (on matrix additions and multiplications). In particular, we analyze
the design by theoretically deriving performance metrics including the memory
size and processing latency of the FPGA-based neural network accelerator. To
support the design analysis, a numerical format selection method based on trained
parameter values domain on two considered datasets.

 A methodology is proposed on how to optimize parallelism strategy with different
parallel coefficients for each layer to achieve high throughput.

 An in-depth discussion on the design tradeoffs between resource utilization, model
accuracy, and performance of the image classification models with different
parameters including numerical formats, parallel coefficients, and network
architectures through the practical accelerators (for the most representative datasets
(MNIST and CIFAR-10).

 On-board demonstrations of FPGA implementation using single or multilayer
neural networks and CNN that achieve mostly the same accuracy as the software
implementation.

The remaining of this paper is organized as follows: Section II introduces the basic
background of neural networks. Section III presents the results of data recognition
performed on the software. Section IV proposes a generic design for the data
recognition problem on the hardware and describes our FPGA-based implementation
details upon this proposed design. Section V concludes the paper.

2 Background

2.1 Neural Network

Generally, a fully-connected neural network consists of three consecutive layers:
input, hidden, and output layers as shown in Fig.1. First, input features (e.g., image
data) are collected and fed into the input layer. Then, input features are fully
connected to hidden layers that learn the underlying patterns of input data. Finally,
hidden features are progressively propagated to the output layer which provides

5

predicted discrete labels (for classification models) or continuous values (for
regression models).

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Fig. 1. The basic structure of the neural networks.

This work considers the case study of image recognition tasks on MNIST [23] and
CIFAR-10 datasets [24]. In the case of the MNIST set, we aim to construct a neural
network-based classifier that can understand the handwritten digits. Specifically, the
classification model should output the most likely digit among 10 possible single
digits with a given input image of 28x28 pixels.

However, with large and high-resolution image inputs, the fully-connected neural
networks suffer from a complex network architecture, which requires a large memory
size to store training parameters and high-performance computing units. Therefore, a
more effective network architecture should be designed to overcome the drawback of
fully-connected neural networks, and convolutional neural networks (CNN) were
invented for achieving superhuman performance on complex visual tasks.

2.2 Convolutional Neural Network

Emerged from the study of the brain's visual cortex, CNNs have been widely
applied in image recognition. Typically, CNNs are composed of three types of layers:
convolutional layers, pooling layers, and fully-connected layers. Multiple
convolutional and pooling layers are stacked one after another followed by a series of
fully-connected layers. Each neuron in the convolutional layer corresponds to learn a
specific pattern of a limited area by only connecting to features related to that area.
The pooling layer then simply performs downsampling on activation units of the
previous convolutional layer for further reducing the number of training parameters.
Finally, the fully-connected layers conduct the same duties found in traditional neural
networks and produce class scores from the extracted features provided by the
convolutional and pooling layers.

A CNN model consists of two components: the feature extraction part and the
classification part. The convolution layers and pooling layers perform feature
extraction. For example, given an image, the convolution layer detects features such
as two eyes, long ears, four legs, a short tail, and so on. The fully connected layers
then act as a classifier on top of these features and assign a probability for the input
image being a dog.

6

In our study, the popular CIFAR-10 dataset was selected as the case study to
evaluate the implementation of the image classification task on the hardware, using
the CNNs. The 32x32 pixel RGB images in the CIFAR-10 dataset are sent to the
feature extraction layer to filter out the most basic characteristics of the object.

32x32x3 32x32x16 16x16x16 16x16x32 8x8x32 8x8x64 4x4x64 1024 256 10

Fully connected
layerFeature extraction layer

Fig. 2. Block diagram of the image recognition model on the CIFAR-10 dataset.

As shown in Fig. 2, the featured extraction layer consists of 7 component layers
and the output of the feature extraction layer will be transformed into a one-
dimensional vector, which will be the input of the fully connected layer. This input
through a multi-layer perceptual algorithm is used to calculate the probability and
draw conclusions: the input data belongs to which of the 10 labels of the CIFAR-10
dataset.

3 Performance Evaluation of Neural Network-based Classifier
on a Software Tool

Although this work will eventually focus on hardware implementation, implementing
the neural network-based classification model on a software platform is needed for
the parameter learning process and architectural optimization. Parameter training
should be conducted using a software tool since this phase is generally performed
only once using the offline training data, we can perform parameter training on any
powerful computing units. Also, this process runs highly sophisticated learning
algorithms and complex activation functions that are not efficient for implementation
on the FPGA. Then, the inference phase, which requires much less computational
resources, can be conducted on the FPGA board for the real-time data. Therefore, to
compare the neural network-based classifier performance between the software
platform and an FPGA board, this section constructs an optimal neural network-based
image classification model and evaluates the neural network-based classifier
performance on a software platform using a variety of network hyper-parameters.

3.1 Software platform

There are many software-based approaches for modeling the neural network. Among
those, Python is the most popular and widely-used programming language for
evaluating neural network-based models. Most data scientists and machine learning
developers (57% [25]) are currently using a variety of Python-based libraries such as

7

TensorFlow, Keras, Theano, Scikit-learn, PyTorch [26]. In this work, we conduct
modeling neural networks using the programming language Python and TensorFlow
library running on the Ubuntu 16.04 64 bit operating system (Intel Core i5 5200U,
RAM 12GB, SSD 256GB) as a software platform to conduct model training and
evaluation of the entire image recognition result.

3.2 Analysis of the Recognition Accuracy

Using the above-mentioned software platform, we first conduct the study on the
impacts of design parameters on the accuracy of the model. We consider the
following four cases to calculate the accuracy: 1 layer, 2 layers, 3 layers, and 4 layers.
In these cases, the parameters to be adjusted include the learning rate, epoch, and
batch size. The learning rate shows the degree of adjustment of the weight matrix
value 𝑊 after each learning to reduce the value of the loss function. The greater the
learning rate, the faster the loss function decreases. Epoch is the number of times a
model is learned in the training session. Batch size is the amount of data to be
included in a training session. The image recognition results on the two sets of
MNIST and CIFAR-10 databases with the presented software settings are shown in
the following figure.

(a) (b)

Fig. 3. Software-based recognition accuracy for the (a) MNIST dataset and the (b) CIFAR-10
dataset corresponding to different numbers of layers.

Based on the results obtained on the graph, it can be seen that image recognition
accuracy in the MNIST dataset is relatively high (at least 92.1%) compared to object
classification accuracy in the CIFAR-10 dataset (maximum up to 75.4%). The higher
prediction accuracy on the MNIST dataset than CIFAR-10 is expected since CIFAR-
10 images are undoubtedly more complex than MNIST ones. Also, the average time
to recognize MNIST images is relatively lower (9.75ms) compared to CIFAR-10
images (10.45ms). This can be explained by the neural network structure for CIFAR-
10 image recognition much larger than that of MNIST, therefore the average
inference time for CIFAR-10 should be longer than that for MNIST pictures.

3.3 Analysis of the Number Format

Most software tools for machine learning techniques by default support floating-point
arithmetic operations and floating-point training parameters, which achieves mostly

92.1% 97.1% 97.7% 97.7%

6.0

8.0

11.5

13.5

0

2

4

6

8

10

12

14

0%

20%

40%

60%

80%

100%

Ti
m

e
(m

s)

Ac
cu

ra
cy

 (%
)

Number of layers

Accuracy Time

1 2 3 4

65.7% 68.4% 72.7% 75.4%

6.7

8.9

12.2

14.0

0

2

4

6

8

10

12

14

0%

20%

40%

60%

80%

100%

Ti
m

e
(m

s)

Ac
cu

ra
cy

 (%
)

Number of layers

Accuracy Time

1 2 3 4

8

absolute calculation accuracy. However, implementing floating-point arithmetic
operations on hardware is inherently complicated and area-inefficient. Therefore, we
need to look for an alternative way to implement a neural network-based
classification model on hardware. First, we analyze the range domain of input data
and weight matrix elements values extracted from the software implementation. Then,
an appropriate number format for parameters and unit values of the neural network is
selected. For both MNIST and CIFAR-10 datasets, as shown in Fig.4, the weight
matrix elements values are fundamentally concentrated in the range (-0.25 ÷ 0.25).

Based on the statistical analysis, an 8-bit fixed-point for numerical representation,
accuracy can be up to 2-6 (i.e., using 6 bits for representing the fraction) could be
enough for representing the value domain of the parameters we have calculated.
Compared to the floating-point number (single precision), an 8-bit fixed-point number
would drastically reduce the design complexity and resource usage. Nonetheless, to
evaluate the proposed numerical domain selection and the impacts of the number
format on recognition accuracy, we still need to conduct the performance assessment
of the neural network on the actual hardware design. This will be presented and
discussed in Section 5.2.

(a) (b)

Fig. 4. The weight matrix value domain of the (a) MNIST and the (b) CIFAR-10 image
recognition model.

4 Design of Neural Network Accelerator on FPGA

In this section, we first introduce a standard and fully-parameterized hardware
architecture design for a single neural network layer as shown in Fig. 5. Then, this
fundamental design can be used to construct the whole complex neural network with
an arbitrary number of hidden layers. The generic hyperparameters of a single layer
are 𝑛௜ and 𝑛௜ାଵ, where 𝑛௜ is the number of input units and 𝑛௜ାଵ is the number of output
units at layer 𝑖 (or the number of input units at the layer i+1), respectively. For each
layer, there are multiple processing units including multiplier-accumulator (MAC),
adder, and activation and memory buffer for input, output, and training parameters.
Note that the higher number of hidden layers results in more resource utilization on
the hardware. To reduce the computational complexity of hardware architecture, the
training parameters including weights and biases matrices are learned using the neural
network software tool and are restored in the memory of the hardware. The detailed
design of these processing elements and memory buffer is presented in the following
subsections.

9

Input
data

buffer
Weight matrix

W

Multiplier-
Accumulator Adder

Activation
function

Bias
matrix

Layer
i

Input
data

Layer
1

Layer
i

Layer
n

Predicted
results

Output
data

buffer

Fig. 5. Block diagram of neural network accelerator implemented on reconfigurable hardware.

4.1 Design of processing units

Multiplier-Accumulators (MACs)
Assume that each MAC unit corresponds to multiplication between two binary
numbers: an input feature and a weight value. During a clock cycle, an input feature
and a column of weight matrix are multiplied in parallel using 𝑛௜ାଵ MACs. To
complete multiplication between the input vector and the weight matrix, 𝑛௜ clock
cycles corresponding to 𝑛௜ input features are required.
Taking inputs from the input data buffer and the weight matrix, MACs are the main
processing element used to perform multiplication between input features 𝑋 of 1 × 𝑛௜
and the weighted matrix 𝑊 of 𝑛௜ × 𝑛௜ାଵ. The MAC output, called vector 𝑐௞ , is
calculated as below.

 𝑐௞ = ෍ 𝑥௝𝑤௝௞

௡೔

௝ୀଵ

, 1 ≤ 𝑘 ≤ 𝑛௜ାଵ (1)

Where 𝑐௞ is the kth element of the output vector, 𝑥௝ is the jth element of the input
vector, and 𝑤௝௞ is the weight element at column 𝑗 and row 𝑘. Thus, the number of
cumulative adders used is 𝑛௜ାଵ and the number of multiplier-accumulators used is 𝑛௜ାଵ.

.

Multiplier-
Accumulator

Input
data

buffer

Weight
matrix

memory

Σ

Output register

Buffer register

A1

k bit
B1

k bit
An

k bit
Bn

k bit

POUT

t bit

… ...

Fig. 6. Hardware design of the Multiplier-Accumulator.

10

Parallel coefficient
To reduce the number of clock cycles needed for matrix multiplication, it is possible
to read 𝑗 input units and 𝑗 columns of the weight matrix at the same time. Then the
required number of clock periods for the matrix multiplication can be reduced by a
factor of 𝑗; however, the number of MACs in a clock cycle will increase accordingly
by 𝑝 = 𝑛௜/𝑗 times. Herein, the value of parameter 𝑝 is called a parallel coefficient.
The number of multipliers, accumulators, and clock cycles are estimated as follows:

 𝑁ெ஺஼ = 𝑝𝑛௜ାଵ; 𝑁௔ௗௗ = 𝑝𝑛௜ାଵ + 1; 𝑁௜
௖௟௢௖௞௦ =

𝑛௜

𝑝
 (2)

where 𝑁ெ஺஼ is the number of multipliers, 𝑁௔ௗௗ is the number of adders, and 𝑁௜
௖௟௢௖௞௦

is the number of clocks.

Fig. 7. Common activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU, and (d) LeakyReLU.

Activation function
Among the most commonly used activation functions for neural networks, there are
some options, including Sigmod, Tanh, ReLU, or leak ReLU as shown in Fig. 7.
From the hardware design point of view, we essentially selected the Rectified Linear
Unit (ReLU) function because of its simplicity and feasibility for hardware
implementation. As we can see in Fig. 7, the ReLU activation function is a piecewise
linear function that outputs the input directly in case of the positive input value and
returns zero otherwise. Using the ReLU function can accelerate the training process
thanks to the fast calculation of the loss function’s gradient concerning parameters.
ReLU is also proven to be good enough for achieving an adequate level of accuracy
for different neural network problems [27-29].

4.2 Design of data buffer

Input data buffer
The input data buffer has memory cells arranged in rows and operates under the FIFO
mechanism. The FIFO width is equal to the number of bits for input representation

11

multiplied by the parallel coefficient 𝑝. This permits 𝑝 elements that can be read or
written at the same time by issuing a FIFO read and write, respectively. Regardless of
the value of the parallel coefficient, the total memory required for the ith layer with 𝑛௜
elements, each represented by 𝑘 bits, is equal to

 𝑀𝑒𝑚௜
ூ௡௣௨௧

= 𝑘𝑛௜ (𝑏𝑖𝑡𝑠) (3)

Weight matrix memory.
Recall that the weight matrix is optimized during the training process implemented by
the software tool since parameter learning consumes a lot of hardware resources. The
values of the weight matrix can be represented by the 𝑘 bits binary number. Similar to
the organization of the input buffer memory, the data width of the weight memory has
to be matched the designed parallel coefficient. The size of the weight matrix 𝑊 is
𝑛௜ × 𝑛௜ାଵ. To represent the address for the 𝑛௜ registers we need to take up to the
following hardware resources:

 𝑀𝑒𝑚௜
ௐ௘௜௚௛௧

= 𝑘𝑛௜𝑛௜ାଵ (𝑏𝑖𝑡𝑠) (4)

Considering the analysis of number format in subsection 3.3, which shows that
trained weight values are real numbers with a limited value range, we design the
format of weight values as follows. Those values in the actual hardware design if
remapped to convenient fixed-point representation values, in turn, can be treated as
the equally scaled-down of the integer values. This can be done first by multiplied by
a scale-up factor 𝑚 (𝑚 is a non-negative number) and then is rounded to a signed
integer number. Therefore, the actual hardware multiplier eventually is the just an
integer multiplier, which is much simpler than the real-number multiplier as can be
shown in Fig. 8.

Extracted
weight
matrix

Signed
binary

number
conversion

Training
phase

Weight
matrix

memory

W11 ... W1 ni+1

...

Wni 1 ... Wni ni+1

W11 ... W1 ni+1

Wni ni+1

.........

Wni 1 ...
Row ni

ni+1 x k bit

SOFTWARE COMPUTING HARDWARE COMPUTING

Row ni-1
ni+1 x k bit

… …

Row 2
ni+1 x k bit

Row 1
ni+1 x k bit

Fig. 8. Hardware design of the weight matrix.

Bias vector memory
The bias matrix extracted from the training phase of the classification model is a

vector with 𝑛௜ାଵ elements. Similarly to weight values, each bias-element needs 𝑘 bits
to represent. The resource occupied by the hardware for the bias vector is estimated as
below:

12

 𝑀𝑒𝑚௜
஻௜௔௦ = 𝑘𝑛௜ାଵ (𝑏𝑖𝑡𝑠) (5)

Output data buffer
The output data buffer with the FIFO mechanism is designed to store the results of the
multiplier-accumulator (vector of 𝑛௜ାଵ). To overcome the overflow phenomenon
when performing the scalar product between 𝑛௜-element vectors (each element
occupies 𝑘 bits), the output result should be represented by (logଶ 𝑛௜ + 2𝑘) (𝑏𝑖𝑡𝑠).
Theoretically, the number of bits for an output unit is at least 2 times higher than that
for an input unit, which can cause the memory shortage especially in case of a large
number of hidden layers. Therefore, we can reduce the number of bits occupied by
each output value by 𝑚 bits. More specifically, before storing in the buffer, the output
value is divided by 2୫. Dividing the real-number output value by 2୫ can be simply
implemented in the case of binary numbers by removing the 𝑚 lowest bits of the
binary data. The output data buffer consists of 𝑛௜ାଵ registers for 𝑛௜ାଵ output features
and each register is represented by (logଶ 𝑛௜ + 2𝑘 − 𝑚) (𝑏𝑖𝑡𝑠) and requires
𝑎𝑑𝑑௕_௢௨௧ = logଶ 𝑛௜ (𝑏𝑖𝑡𝑠) to specify a register address. Finally, the amount of
memory resources on the hardware for the output data buffer at layer 𝑖 + 1 equals:

 𝑀𝑒𝑚௜
ை௨௧௣௨௧

= 𝑛௜ାଵ(logଶ 𝑛௜ + 2𝑘 − 𝑚) (𝑏𝑖𝑡𝑠) (6)

4.3 Hardware Utilization and Processing Latency

We have derived the resource utilization on hardware for the hidden layer 𝑖 + 1
including input data buffer, weight matrix, bias vector, output data buffer. If there are
𝐿 consecutive hidden layers, the number of matrix multiplication blocks are 𝐿 + 1.
Then, the total amount of memory occupied is estimated as below:

 𝑀𝑒𝑚௧௢௧௔௟ = ෍(𝑀𝑒𝑚௜
ூ௡௣௨௧

+ 𝑀𝑒𝑚௜
ௐ௘௜௚௛௧

+ 𝑀𝑒𝑚௜
஻௜௔௦)

௅ାଵ

௜ୀଵ

 + 𝑀𝑒𝑚௟ାଵ
ை௨௧௣௨௧

 (𝑏𝑖𝑡𝑠) (7)

Given the parallel coefficient p, the total number of MACs is equal to 𝑁ெ஺஼ =
∑ 𝑁௜

ெ஺஼௅ାଵ
௜ୀଵ = 𝑝 ∑ 𝑛௜ାଵ

௅ାଵ
௜ୀଵ and similarly, the total number of adders is 𝑁஺ௗௗ =

∑ 𝑁௜
஺ௗௗ୐ାଵ

୧ୀଵ = 𝑝 ∑ 𝑛௜ାଵ
୐ାଵ
୧ୀଵ . The processing latency (or the number of clock cycles)

𝑁௖௟௢௖௞௦ for the neural network with parallel coefficient, 𝑝 is calculated as:

 𝑁௖௟௢௖௞௦ = ෍ 𝑁௜
௖௟௢௖௞௦

௅ାଵ

௜ୀଵ

= ෍
𝑛௜

𝑝

௅ାଵ

௜ୀଵ

 (8)

13

We can infer from hardware consumption and processing delay that the neural
network-based hardware architecture requires hardware resource that is linearly
proportional to the parallel coefficient. Meanwhile, the processing delay is linearly
reduced by a factor of 𝑝. The selection of parallel coefficients should be considered
based on the FPGA memory, the number of given processing units, and the required
delay of a specific application. The actual performance metrics and resource
utilization will be presented and discussed in the subsequent section.

5 Performance Evaluation of Neural Network Accelerator on
FPGA

5.1 Experimental Setup

In this subsection, we introduce two considered datasets and describe the neural
network architecture for each data. Then, the performance metrics and network
parameters are also presented. Based on the generic model described in the previous
section, we have implemented the hardware models targeted for MNIST and CIFAR-
10 datasets. Those models are fully described using synthesizable VHDL optimized
for FPGA. Those case studies will be further used for evaluating the performance and
other design aspects.

For the MNIST dataset, each input image will be converted to a 1 × 784 binary
matrix. Input matrix and the network parameters (i.e., weights and biases values)
obtained from the training phase are fed into the Xilinx Vivado Simulator [30] to
collect performance metrics including computational speed and recognition accuracy.

SOFTWARE
COMPUTING

HARDWARE
DESIGN

SIMULATION
ON VIVADO

00 ab

10

Binary
number

conversion

1

…

28

 1 … 28

Writing
data

to file

Recognition
character

image

100

28

784

...
ab
...
10

Training
phase

Weight &
bias

matrices

Writing
data

to file

28

28

(a)

14

SOFTWARE
COMPUTING

HARDWARE
DESIGN

SIMULATION
ON VIVADO

Recognition
object image

32x32x3

1024
1023

...
2
1

32x32x16 4x4x64

...

32

32

Writing
data

to file

Training
phase

100

32

1024

...
ab
...
10

Weight &
bias

matrices

Writing
data

to file

Feature
extraction

layer

(b)

Fig. 9. Design model of image recognition on hardware for the (a) MNIST dataset and the (b)
CIFAR-10 dataset.

Fig. 10. Experiments on the FPGA board.

In cases of the CIFAR-10 dataset, images are larger and more complex than those
in the MNIST database. To temporarily simplify the hardware design, we only
implement fully-connected layers on the hardware while feature extraction layers are
pre-processed. Note that the implementation of those layers follows the classical
image classifier and does not cost much in cases of the small filter kernel [31]. In the
first fully-connected layer, the number of input units is 1024, the number of output
features is 256; in the second fully-connected layer, the number of output neurons is
10. Therefore, the size of the weight matrix for the first layer is 1024x256, for the
second layer is 256x10; the size of the bias vectors for the first layer is 256x1, for the
second layer is 10x1.

To examine the performance of the hardware design of the neural network
accelerator, we have collected the performance of the image classification model on a
real FPGA board as can be seen in Fig. 10.

15

5.2 Experimental Results of Neural Network Accelerator on FPGA

Our entire generic design presented in section 4 has been described by a hardware
description language (HDL), where the number format and parallel coefficient are
considered as design parameters and can be set to desired values. The hardware
architecture of NN is evaluated on the Vivado Simulator. The parameters are
converted into a fixed-point number format (with 2, 4, 8, or 16 bits) by an in-house
software on C++. The featured parameters of the built neural networks are trained and
extracted using TensorFlow. The performance evaluation is conducted on 1,000
samples in the MNIST dataset.

After designing the image recognition model on the hardware, experiments are
conducted to evaluate the hardware architecture. First, the extracted image data from
the text files are put into the designed block and processed by the hardware simulator
Xilinx Vivado. The classified label which is the output of the image classification
model is then compared with the true label and the number of correctly recognized
images will be recorded in the counter. When the last image in the test set is
classified, the classification accuracy is obtained.
The impacts of the number formats and network architectures

Table 1. Accuracy of MNIST image recognition implemented on the hardware with different
hidden layers and number formats for 1,000 samples.

Number of hidden layers 2-bit 4-bit 8-bit 16-bit

1 16.8% 88.6% 89% 89%

2 16% 96.8% 96.9% 96.9%

In this subsection, we focus on analyzing the dependence of recognition accuracy

on two main parameters: the number of hidden layers and number format to represent
the values of the weight matrix. The results of MNIST image recognition accuracy
with different parameters are shown in Table 1. It can be seen that the classification
accuracy depends more on the number format than the number of hidden layers.
When the number of bits used to represent the weight matrix is too small, the
recognition accuracy is very low (e.g., 16% accuracy for 2-bit number format).
Meanwhile, the accuracy sharply improves if the number of bits changes from 2 to 4
or more. However, there is no significant improvement in cases of using more than 4
bits for each training parameter. E.g., the accuracy converges to 89% and 96.9% with
1 and 2 hidden layers, respectively. From Table 1, we observe that the 8-bit format
can be used to save hardware resources while ensuring accurate performance on image
classification.

Hardware utilization on different chips and with different parallel coefficients
Recall that we have derived the hardware resources required for MACs, adders,

and memory in Eq. (2). The number of MACs, the number of adders, and memory
size increase proportionally to the parallel coefficient and the number of hidden
layers. Indeed, using a higher parallel coefficient 𝑝 results in short prediction time but

16

a significant increase in the system resources demand. At the same time, multilayer
neural networks can produce higher accuracy while demanding more computing
resources. Therefore, it is necessary to study the relationship between these two
factors (recognition time and resource demand) for a better selection of neural
network architectures in reality.

To understand the feasibility of FPGA for the neural network application, we first
implemented and compared the designs on some representative FPGA devices from
Xilinx. Then, with the HDL designed and fully logical verified, we have implemented
on the actual FPGAs. The main results are presented in Fig. 11.

(a) (b)

(c) (d)

Fig. 11. Hardware utilization and corresponding maximum clock frequency (a) 1-layer MNIST,
(b) 2-layer MNIST, (c) 1-layer CIFAR, and (d) 2-layer CIFAR implementations using an 8-bit
fix-point number format targeted for different Xilinx FPGA devices.

In this work, we have chosen some representative and active FPGA families from
Xilin [32], including the low-cost (Artix-7), the best price/performance (Kintex-7),
the performance-optimized (Virtex-7) solutions with different resource capabilities. In
terms of resources, except for the Artix XC7A100T FPGA, where all DSP is fully
utilized, the remaining FPGA devices are considered large enough for
accommodating 2-layer neural networks in either CIFAR or MNIST. The actual
resource utilization of slice registers, LUT, RAM only accounts for a small proportion
of the total availability (e.g., less than 15% LUT for Kintex 7 XC7K325T, or less than
5% LUT for Virtex 7 XC7V980). This is the strong validation for the feasibility of the
implementation of the more sophisticated recognition and classification engines (e.g.,
up to 5 hidden layers with more complex activation functions) on the next generation
FPGA. The other high-end devices such as Ultra-scale [33] and Ultra-scale plus [34]
with their extremely large logic and computing resource are essentially capable not
only for neural networks but complete AI system implementations. In terms of
performance, the achievable clock frequencies are technically dependent mainly on

0.7% 0.3% 0.2% 0.1%

1.2%
0.6% 0.4% 0.1%

2.2%

0.8% 0.7% 0.2%

8.3%

2.7% 2.4%

0.6%

153 153

183 186

0

20

40

60

80

100

120

140

160

180

200

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Cl
oc

k
fr

eq
ue

nc
y

(M
H

z)

H
ar

dw
ar

e
re

so
ur

ce
s

FPGA chip

Register
LUT
RAM
DSP
Max Freq

XC7A100T XC7A200T XC7K325T XC7VX980T

19%

7% 5% 2%

71%

17%
11%

4%

46%

17% 14%

4%

72%
63%

15%

165
165

197 200

0

20

40

60

80

100

120

140

160

180

200

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cl
oc

k
fr

eq
ue

nc
y

(M
Hz

)

H
ar

dw
ar

e
re

so
ur

ce
s

FPGA chip

Register
LUT
RAM
DSP
Max Freq

100%

XC7A100T XC7A200T XC7K325T XC7VX980T

0.8%
0.4% 0.2% 0.1%

1.4%
0.6% 0.4% 0.1%

2.6%

1.0% 0.8% 0.2%

8.3%

2.7% 2.4%

0.6%

153 153

183 186

0

20

40

60

80

100

120

140

160

180

200

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Cl
oc

k
fr

eq
ue

nc
y

(M
H

z)

Ha
rd

w
ar

e
re

so
ur

ce
s

FPGA chip

Register
LUT
RAM
DSP
Max Freq

XC7A100T XC7A200T XC7K325T XC7VX980T

23%

9% 6%
2%

88%

21%
14%

5%

47%

18% 14%

4%

72%
63%

15%

165 165

197 200

0

20

40

60

80

100

120

140

160

180

200

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cl
oc

k
fr

eq
ue

nc
y

(M
Hz

)

H
ar

dw
ar

e
re

so
ur

ce
s

FPGA chip

Register
LUT
RAM
DSP
Max Freq

XC7A100T XC7A200T XC7K325T XC7VX980T

100%

17

the latency of MAC (i.e., FPGA DSP macro). Therefore, the reported clock
frequencies range from 153MHz (Artix 7) to ~200 MHz (Virtex 7).

Furthermore, we evaluated the impacts of the parallel coefficient on the resource
utilization and bandwidth of the hardware architecture. Fig. 12 presents the resource
utilization for the case of MNIST implementation on the Xilinx Kintex-7 FPGA series
XC7K325T.

(a) (b)

(c) (d)

Fig. 12. Resource utilization and recognition speed on Xilinx Kintex-7 FPGA series
XC7K325T of 2-layer neural network for (a) MNIST, (b) CIFAR implementations with
different parallel coefficients and images depicting physical layout on the FPGA chip for (c)
MNIST, (d) CIFAR implementations when parallel coefficient equals 4.

Based on the results obtained, we found that the image recognition speed also
increases almost proportionally to the parallel coefficient 𝑝. Specifically, when the
parallel computing is not applied (i.e., 𝑝 = 1), the implemented network can process
250,000 images image recognition per second, and when this coefficient increases to
8, the image recognition speed reaches 1,762,000 images per second for the MNIST
dataset. Similarly, for the CIFAR-10 dataset, the recognition speed is 153,000 and
1,084,000 images per second, respectively. The practical performance hence increases
by more than 7X in either implementation when changing 𝑝 from 1 to 8. This is
explained by a slight degradation in maximum clock frequencies when the design
becomes larger. There is an inevitable trade-off between increasing image recognition
speed and the cost in logical resource, and this is explicitly shown by the dependency
of the growth rate of the resource utilization and the parallelism level.

Performance comparison between FPGA-based neural network accelerator and
neural network using the software tool

5% 5% 6%
10%8% 11%

26%

73%

13% 14%

28%

56%

32%

63%

250
491

946

1762

0

200

400

600

800

1000

1200

1400

1600

1800

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Re
co

gn
iti

on
 s

pe
ed

 (1
00

0
im

ag
es

/s
)

Ha
rd

w
ar

e
re

so
ur

ce
s

Parallel cofficient (Xilinx Kintex-7 FPGA series XC7K325T)

Register
LUT
RAM
DSP
Recognition speed

100% 100%

1 2 4 8

6% 6% 7%
12%

9%
14%

32%

92%

14% 14%

29%

58%

32%

63%

153
301

581

1084

0

200

400

600

800

1000

1200

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Re
co

gn
iti

on
 s

pe
ed

 (1
00

0
im

ag
es

/s
)

H
ar

dw
ar

e
re

so
ur

ce
s

Parallel cofficient (Xilinx Kintex-7 FPGA series XC7K325T)

Register
LUT
RAM
DSP
Recognition speed

100% 100%

1 2 4 8

18

From the simulation results of the software design and the implementation results
of the design on the hardware, we can see that the achievable accuracy of the image
recognition on the hardware as good as achievable accuracy by software. Meanwhile,
hardware implementation is more beneficial in terms of detection speed than that on
software.

Table 2. Comparison of software and hardware performance in MNIST image recognition.

Platform Software Hardware

Number
of layers

1 2 1 1 1 1 1 2 2 2 2 2

𝑝 (*) N/A N/A 1 2 4 8 16 1 2 4 8 16

𝑇(**)(µs) 6000 8000 4 2 1.1 0.6 0.3 5.3 2.7 1.4 0.8 0.4

(*) Parallel coefficient, (**) Recognition time

Full comparative figures between image recognition on hardware and software are
given in Tables 2. From this table, we observe that the time to recognize images when
performing on hardware is faster than image recognition on software at least 1500
times when the parallel coefficient equals 1 (6000 µs vs 4 µs, using one hidden layer
for recognition), and maybe faster up to 20,000 times when the parallel coefficient is
16 (8000 µs vs 0.4 µs with two hidden layers).

6 Conclusion

In this work, we have proposed a generic design for neuromorphic computing upon
one layer, that allows us to construct any other sophisticated neural networks. Along
with the generic design, a systematic study has been conducted on the resource
utilization, performance, and accuracy of the neural network models and their
dependencies on the design hyper-parameters. From the statistical study, we have
practically proven that using a fixed-point number for hardware implementation could
greatly reduce the complexity and resource for the hardware implementation while
still maintaining mostly the same level of accuracy compared to the software
implementation.

As a case study, we implemented the hardware models for MNIST and CIFAR-10
datasets on a reconfigurable hardware platform. Regarding the resource utilization, a
Xilin Virtex 7 device (XC7VX980) can handle the 2-layer CIFAR-10 implementation
with spending less than 5% of LUT and 15% in DSP. Furthermore, at iso-accuracy,
the FPGA-based neural network implementations are notably faster in recognition
speed. If no parallel computing is considered, the proposed hardware accelerator is
1,500 times quicker than the baseline software implementation and could reach
20,000 with a higher degree of parallelism. Though our initial design in this work is
limited for the neural networks, the impressive results proved the potential of
reconfigurable devices and FPGA as the flexible and powerful platform for
neuromorphic computing and AI applications in general.

19

Acknowledgment

This research is funded by the Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under grant number 102.01-2018.310.

References

1. A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep
Convolutional Neural networks. In NIPS 25, pages 1106-1114. Curran Associates, Inc., 2012.

2. Y. Sun, Yi, X. Wang, and X. Tang, “Deep Learning Face Representation by Joint
Identification-Verification,” in Neural Information Processing Systems, 2014, pp. 1988-1996.

3. S. Ji and W. Xu, “3D Convolutional Neural networks for Automatic Human Action
Recognition,” in Pattern Analysis & Machine Intelligence, 2013, 35(1), pp. 221-31.

4. O. Abdel-Hamid, “Convolutional Neural networks for Speech Recognition,” in Audio
Speech & Language Processing, 2014.

5. [n. d.]. https://github.com/Xilinx/chaidnn. ([n. d.]). Accessed Mar 31, 2020.
6. [n. d.]. https://www.xilinx.com/support/documentation/white papers/wp504-accel-dNeural

networks.pdf. ([n. d.]). Accessed Mar 31, 2020.
7. [n. d.]. http://www.deephi.com/technology/dnndk. ([n. d.]). Accessed Mar 31, 2020.
8. Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. Tensorflow:
Large-scale ML on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016).

9. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional Neural networks,” in Neural Information Processing Systems, 2012, pp. 1097-1105.

10. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level
performance on Imagenet classification, in Proceedings of the IEEE International
Conference on Computer Vision, 2015a, pp. 1026-1034.

11. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, et al., Imagenet large scale visual recognition challenge, Int. J.
Comput. Vis. 115 (3) (2015) 211-252.

12. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.

13. C. Szegedy, et al. Going deeper with convolutions. In CVPR, 1-9, 2015.
14. Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, Huazhong Yang, “A Survey of

FPGA-Based Neural Network Accelerator”, 2017, arXiv:1712.08934v3.
15. Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, Shaojun Wei, “FP-BNN: Binarized

neural network on FPGA”, Elsevier, 2017, Available online 18 October 2017:
https://doi.org/10.1016/j.neucom.2017.09.046.

16. NVIDIA, Tesla K40 GPU Active Accelerator, NVIDIA, 2013.
17. Y.-H. Chen, et al. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep

Convolutional Neural networks. In IEEE Int. Solid-State Circuits Conf. (ISSCC), 2016.
18. Ovtcharov K, Ruwase O, Kim J-Y, Fowers J, Strauss K, Chung ES (2015) Accelerating

deep CNNs using specialized hardware. Microsoft Research Whitepaper vol 2, no 11
19. A. Putnam, et al. A reconfigurable fabric for accelerating large-scale datacenter services.

In Int. Symp. on Computer Architecture (ISCA), 1324, 2014.
20. M. Bettoni, G. Urgese, Y. Kobayashi, E. Macii, and A. Acquaviva, "A Convolutional

Neural network Fully Implemented on FPGA for Embedded Platforms," 2017 New
Generation of CAS (NGCAS), Genova, 2017, pp. 49-52, DOI: 10.1109/NGCAS.2017.16.

20

21. E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh, and D. Marr,
"Accelerating Binarized Neural networks: Comparison of FPGA, CPU, GPU, and ASIC,"
2016 International Conference on Field-Programmable Technology (FPT), Xi'an, 2016, pp.
77-84, DOI: 10.1109/FPT.2016.7929192.

22. E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
"Accelerating recurrent neural networks in analytics servers: Comparison of FPGA, CPU,
GPU, and ASIC," 2016 26th International Conference on Field Programmable Logic and
Applications (FPL), Lausanne, 2016, pp. 1-4, DOI: 10.1109/FPL.2016.7577314.

23. [n. d.]. http://yann.lecun.com/exdb/mnist/. ([n. d.]). Accessed Mar 31, 2020.
24. A. Krizhevsky, "CIFAR-10 AND CIFAR-100 DATASETS," 2009. [Online]. Available:

https://www.cs.toronto.edu/~kriz/cifar.html.
25. [n. d.]. https://becominghuman.ai/best-languages-for-machine-learning-in-2020-

6034732dd24. ([n. d.]). Accessed Mar 31, 2020.
26. [n. d.]. https://opensource.com/article/18/5/top-8-open-source-ai-technologies-machine-

learning. ([n. d.]). Accessed Mar 31, 2020.
27. Feng, Junxi & He, Xiaohai & Teng, Qizhi & Ren, Chao & Chen, Honggang & Li, Yang.

(2019). Reconstruction of porous media from extremely limited information using
conditional generative adversarial networks. Physical Review E. 100.
10.1103/PhysRevE.100.033308.

28. Jie Hu and Li Shen and Gang Sun. Squeeze-and-Excitation Networks. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018.

29. Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. Communications of the ACM. May 2017.

30. [n.d.]. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug937-
vivado-design-suite-simulation-tutorial.pdf. ([n. d.]). Accessed Jun 06, 2020.

31. Aurelien Gron. 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems (1st. ed.). O’Reilly Media.

32. [n.d.]. https://www.xilinx.com/support/documentation/selection-guides/7-series-product-
selection-guide.pdf. ([n. d.]). Accessed Jun 06, 2020.

33. [n.d.]. https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-
fpga-product-selection-guide.pdf. ([n. d.]). Accessed Jun 06, 2020.

34. [n.d.]. https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-
overview.pdf. ([n. d.]). Accessed Jun 06, 2020.

