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Abstract. Visual Odometry is widely used for recovering the trajec-
tory of a vehicle in an autonomous navigation system. In this paper, we
present an adaptive stereo visual odometry that separately estimates the
rotation and translation. The basic framework of VISO2 is used here for
feature extraction and matching due to its feature repeatability and real-
time speed on standard CPU. The rotation is accurately obtained from
the essential matrix of every two consecutive frames in order to avoid the
affection of the stereo calibration uncertainty. With the estimated rota-
tion, translation is rapidly calculated and refined by our proposed linear
system with non-iterative refinement without the requirement of any
ground truth data. The further improvement of the translation by joint
backward and forward estimation is also presented in the same frame-
work of the proposed linear system. The experimental results evaluated
on the KITTI dataset demonstrate around 30% accuracy enhancement
of the proposed scheme over the traditional visual odometry pipeline
without much increase in the system overload.

Keywords: Visual odometry - Essential matrix + Non-iterative
translation estimation - Forward-backward translation estimation

1 Introduction

Visual Odometry(VO) [1] is one of the important parts in robotics research, espe-
cially for autonomous navigation. With the unavailability of GPS signals such
as indoor extra-terrestrial and in space, image-based localization becomes neces-
sary. Specifically, a single movement between previous and current images is esti-
mated by resolving geometric constraints. Subsequently, the full camera trajec-
tory is finally recovered via the accumulation of these movements. Recently, the
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survey [2] classified VO in different approaches such as monocular /stereo camera-
based, geometric/learning-based and feature/appearance-based. The feature-
based VO pipeline has a long history and has been detailed in Nister’s [1] work.
Scaramuzza and Fraundorfer conducted a comprehensive review of feature-based
VO [3,4]. Accordingly, relative ego-motion between the two frames was obtained
by three following major approaches

— 2D-t0-2D: Motion is estimated only from 2D feature correspondences.

— 3D-t0-3D: Motion is estimated only from 3D feature correspondences.

— 3D-to-2D: Motion is estimated from 3D features in one frame and their
corresponding 2D features in other.

The first approach, 2D-to-2D,is a methodology that recovers the rotation
and translation direction from the essential matrix computed from 2D feature
correspondences using the epipolar constraint. Nister proposed an efficient imple-
mentation [5] for the minimal case solution with five 2D correspondences and
that has become the standard for 2D-to-2D motion estimation due to the effi-
ciency in the presence of outliers. The second approach, 3D-to-3D, computes the
camera motion by determining the aligning transformation of the two 3D feature
sets that minimizes the Euclidean distance between the two sets of 3D features.
As shown in [6], the minimal case solution involves three 3D-to-3D non-collinear
correspondences, which can be used for robust estimation in the presence of
outliers. 3D-to-2D method is well-known as perspective from n points (PnP).
The pose is obtained via iteratively minimizing the summation of projection
error between the projected points of 3D features and corresponding 2D obser-
vations. The minimal case involving 3D-to-2D correspondences in [7] is called
perspective from three points (P3P). With n > 6, there is a simple and straight-
forward solution for PnP by solving the direct linear transformation (DLT) [8].
The conventional framework VISO2 [9] applied PnP approach with a robust
against outliers. They adopted PnP using 3 randomly drawn correspondences
into a RANSAC scheme, by first estimating (R, t) for 50 times independently.
All inliers of the winning iteration were then used for refining the parameters,
yielding the final transformation (R, t).

Since VO works by estimating the camera path incrementally (pose after
pose), then over time, the errors introduced by each frame-to-frame motion accu-
mulate. This generates a drift of the estimated trajectory from the real path.
For some applications, it is utmost important to keep drift as small as possible,
which can be done through local optimization over the last m camera poses. This
approach called sliding window bundle adjustment or windowed bundle adjust-
ment has been used in several works. However, it takes additional computational
time because of being an iterative method. So it only is used as the final step for
refining or executed at some special location. For real-time applications, reduc-
ing computational cost is important so proposing the fast and accurate frame to
frame VO is still an active research area.

Note that, 3D-to-3D and 3D-to-2D approaches require triangulation of 3D
points from 2-D image correspondences which are determined by intersecting
back-projected rays from 2D image correspondences of at least two image frames.
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In perfect conditions, these rays would intersect in a single 3D point. However,
they never intersect because of image noise, camera model and calibration errors
as well as feature matching uncertainty. Therefore, the point at a minimal dis-
tance in the least-squares sense from all intersecting rays can be taken as an
estimate of the 3D point position. As pointed out by Nister [1], the 2D-to-2D
method and 3D-to-2D method are evaluated to be more accurate than 3D-to-
3D methods because 3D-to-3D minimizes feature position error whereas 3D-to-
2D approach minimizes re-projection error or 2D-to-2D approach minimizes the
Sampson error. In the case of using the 2D-to-2D approach, we do not need tri-
angulation to calculate the rotation and scalable translation. However, we need
to use triangulation for computing absolute translation. There is an easy way to
obtain scale from relative distances between any combination of two 3D points
or exploiting the trifocal constraint between 3 view matches of 2D features or
iteratively minimizing re-projection error with known rotation for features on
pairs of stereo images.

Left and Right Images

Feature Extraction
and Matching

Essential Matrix based
Rotation Estimation

v v
Forward Translation Forward-Backward
Estimation Translation Estimation

Translation

Refinement

Fig. 1. Our proposed algorithm. Utilizing the feature extraction and matching com-
ponent of VISO2 library and replacing the pose estimation part based on PnP by our
proposed adaptive stereo VO with essential matrix based rotation estimation and join
forward-backward translation estimation

In this paper, we propose adaptive stereo camera which estimates the trans-
formation of two consecutive frames separately. The proposed algorithm is
depicted in Fig.1. Here, rotation is extracted from essential matrix estimated
by using five point algorithm with preemptive RANSAC and translation is com-
puted by solving a novel linear equation system modified from the re-projection
equation. The proposed approach has following benefits:
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— Accurate rotation from essential matrix estimation that avoids uncertainty of
stereo calibration.

— Translation is estimated directly without iterative optimization for both ini-
tiation and final refinement joint forward and backward approaches.

The paper is organized as follows. Section 2 briefly provides a description of fea-
ture extraction and matching. Section 3 describes the proposed visual odometry
approach based on the essential matrix estimation and non-iterative translation
calculation. Section4 presents the results of KITTI dataset in comparison to
VISO2. Section 5 provides the concluding marks.

2 Feature Extraction

The input of our visual odometry is feature correspondences between four images
in the previous and current stereo camera frames. We took advantage of feature
detector and matching (active matching) proposed by Chli [9] because of its fea-
ture repeatability and speed. It was employed as open-source by Geiger in the
VISO2 library [10]. In particular, firstly, 5 X 5 blob and corner masks were used
to filter the input image to extract four feature classes: blob min/max, corner
min /max. Additionally, feature matching was done by comparing the 11 x 11
block windows of horizontal and vertical Sobel filter responses to give two fea-
tures using the sum of absolute differences (SAD) error metric. To speed-up,
the matching process, sum over a sparse set of 16 locations was used instead of
being summed over the whole block window. Note that, the matching process
was done on the same class (blob max/min, corner max/min) to reduce the com-
putational cost without reducing feature matching quality. Some of the outliers
were rejected by circular matching [11], suggesting that each feature needs to
be matched between left and right images of two consecutive frames, requiring
four matches per feature. Finally, the bucketing technique is used to divide the
corresponding features into 50 x 50 grids and selecting only a limited number of
features in each bucket. This step guarantees the uniform distribution of selected
features along the z-axis, the roll axis of the vehicle. It means that both close
and far features are used for pose estimation resulting in high accuracy of vehicle
trajectory. This feature detector and matching have been used for several visual
odometry approaches such as [12] and [13] that achieved good performance on
the KITTT dataset.

3 Proposed Pose Estimation

Single movement between previous and current frames is separated into two
parts. Firstly, the five-point algorithm is performed to obtain the essential matrix
and then rotation is extracted. Secondly, the translation initially is estimated by
one point RANSAC by close features and finally is obtained by forward-backward
refinement. Different from conventional approaches using iterative optimization
such as [13], we proposed a closed-form linear equation for both initial and final
estimation.
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3.1 Rotation Estimation

The geometric relation between two consecutive frames of a calibrated camera is
described by the so-called essential matrix £ which contains the camera motion
parameters up to a unknown scale factor for translation. It is represented as
following form:

E=T*R (1)
where skew matrix T is rewritten in detail as follow
0 —t. t,
T =1|t, 0 —t, (2)
—ty ty O

Each correspondence of two image frames satisfies the epipolar constraint
pTEq=0 (3)

Where a 2D feature, p in previous frame corresponds to another 2D feature, g,
in current frame. Essential matrix E has two additional properties

det(E) = 0 (4)

And
2EETE —tr(EET)E =0 (5)

Note that, essential matrix F is 3 x 3 matrix with 8 unknown variables with an
un-observable scale can be solved by five point equations by search solution of
root of tenth degree polynomial proposed by Nister [5]. Each of the five point
correspondences gives rise to a constraint (3). It can be also rewritten in a linear
equation formular as follows

aE =0 (6)
where
a = [p1q1,q192, P1,P2q1, P242, P2, 41, G2, 1] (7)
and A
E = [E11, Fra, B3, E21, Baz, Ess, F31, E32, s3] (8)

Stacking the constraints of five-point correspondences gives the linear equation
(6) and by solving the system the parameters of E can be computed. Equations
(6), (4), and (5) are extended to 10 cubic constraints, and then to a ten-degree
polynomial. As a result, a maximum of 10 essential matrix solutions was obtained
for any five-point set. The solution yielding the highest number of inliers was
selected as a set representative. This five-point algorithm is applied in conjunc-
tion with preemptive RANSAC. A number of five-point sets are randomly taken
from the total set of features. The five-point algorithm is applied to taken subsets
and generate a number of hypotheses. The hypothesis with the best preemptive
scoring which has the largest set of inliers is chosen as the final solution. This
five-point algorithm may not always converge to a global minimum but can offer
superior performance in the rotation because of some reasons:
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— Essential matrix is estimated from a closed-form tenth degree polynomial.

— Five-point is a minimal set for essential estimation so the affection of outlier
is small.

— Monocular method is not affected by imperfect calibration between left and
right image of stereo camera.

Therefore, only left or right camera is used for rotation estimation.

3.2 Translation Estimation

The relative orientation between the previous and current frames was obtained
by the algorithm described above. Here, we propose a joint forward-backward
translation estimation. Firstly, an initial translation was estimated by one point
RANSAC. Secondly, it is further improved by joint forward-backward non-
iterative translation estimation with the rotation estimated previously.

Consider the projection equation from a 3D point feature from current frame
to previous frame.

X
Up f0u, Y s
vp | = (0 fve ] [(Raxataxa) || = |0 (9)
1 001 1 0

with:

— Homogenous image coordiate (up, vp, )T in left or right frame of preivious
frame.

— Focal length f.

— Rotation R and translation ¢ from current frame to previous frame.

— 3D point (x,y, z) in current left frame.

— Value s is equal to 0 for left frame or baseline for right frame.

This projection equation is re-written detail as follows

(xRot + 1t + 8)

U, = f—7-—-=+41u

ZRot + tz 10
v _ f(yRot +ty) +u ( )
P ZRot + tz ¢
where
T Rot x
Yrot | = Rsx3 | ¥ (11)
ZRot z
1 YT Ye ts TRot + 5 — ZRot (u —fuc)
o vt |\ )= (v — ) (12)

f tz YRot — ZROtT
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A 3D feature of current frame is projected to both left and right of previous
frame with s = 0 and s = baseline, respectively. So from Eq. (12), we can form
a linear system of 4 equations of 3 unknown variables t;,%,,?, as follows

2
Alt,| =B (13)
12

They are known to be solution of Pseudo Inverse method

ty | =(ATA)ATB (14)

z

In idea case without feature noise, translation is successfully obtained by Eq. (14)
using only one feature correspondence. However, in the real situation, feature
noise is unavoidable, using one feature does not guarantee the success of estima-
tion. To obtain higher accuracy of translation estimation, we wrap this algorithm
into the RANSAC scheme, 100 samples of closest 3D features are used to esti-
mate candidate translations. The best one producing the largest of number inliers
is considered as the final solution. These inliers are further used for the refine-
ment step. Different from conventional methods that minimize the re-projection
error iteratively, our proposed refinement quickly estimates absolute translation
by solving a linear system. In particular, all n inliers are plug into Eq. (13) to
create

Al Bl

A2 t, BQ
ty | =1~ (15)
t, '

An B,

Similar to above, Pseudo Inverse method is re-used to refine the initial estima-
tion.

The above paragraph describes for backward estimation. To improve trans-
lation accuracy, both forward t; and backward ¢, translations are estimated by
using same Eq. (15). The final solution is obtained by

tfinal = 05(tb - Riltf) (16)

where R is rotation estimated from previous section using the essential matrix.

4 Experimental Results

The proposed approach is evaluated on the KITTI dataset in comparison to
its performance against the traditional VO pipeline, VISO2, proposed in [10].
The KITTI dataset consists of different traffic scenarios that are widely used
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Table 1. Performance evaluation on KITTI Dataset

Sec Num | VISO2 Backward Join For-Backward
te (%) |Te tavs  |te (%) |Te tavs  |te (%) |Te tabs
(deg/ |(m) (deg/ |(m) (deg/ |(m)
100 m) 100 m) 100 m)
1 2.46 1.18 86.0 1.28 0.41 25.5 1.22 0.46 18.7
2 4.41 1.01 188.3 4.40 0.56 121.1 |3.30 0.38 85.7
3 2.19 0.81 140.7 |1.19 0.36 59.0 1.11 0.36 20.9
4 2.54 1.20 32.6 2.57 0.32 14.9 2.43 0.36 13.1
5 1.02 0.87 4.2 2.45 0.32 10.2 2.29 0.33 9.0
6 2.07 1.12 46.5 1.42 0.40 18.9 1.41 0.40 15.4
7 1.31 0.92 8.9 2.31 0.42 17.8 1.98 0.33 9.4
8 2.30 1.77 21.2 1.76 1.00 14.8 1.66 0.99 13.1
9 2.74 1.33 35.1 1.68 0.41 16.9 1.51 0.41 13.9
10 2.76 1.15 79.3 1.80 0.29 17.8 2.04 0.34 15.2
11 1.63 1.12 25.8 1.23 0.53 18.8 1.44 0.65 20.6
Avg 2.43 1.11 - 1.60 0.41 - 1.49 0.42 -

for evaluating autonomous driving algorithms. The dataset also accommodates
challenging aspects such as different lighting, shadow conditions, and dynamic
moving objects. In order to evaluate the performance of the VO approaches,
RMSEs of measuring rotation/translation errors are computed from all possible
sub-sequences of lengths (100, 200...800m) as described in [14]. There is an
evalution tool on their web page.

The detail error of 11 sections of dataset are shown in Table 1. For each app-
roach, the Table displays the average rotation error r. in degree/100 m, average
translation in percentage (%) t. and absolute error ¢, in (m) of final frame com-
pared to the ground-truth. The results of VISO2 library is named VISO2 and
our proposed VO are named ‘Backward’ as well as ‘Joint For-Backward’, respec-
tively, for two cases. This table indicates that the proposed approach achieves
lower error for both translation and rotation, in general. Specifically, the rota-
tion error of our approach using essential matrix is 0.46 deg/100m while that
of VISO2 is 1.1deg/100 m; our translation error is 1.6% while that of VISO2 is
2.4%. That indicates around 30% translation error enhancement. The error of
translation is further reduced to 1.49% by joint forward and backward transla-
tion estimation.That mean, the joint forward-backward estimation improve the
translation accuracy 7%.
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Fig. 2. Average rotation error along travel distance (Color figure online)
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Fig. 3. Average translation error along travel distance

We also measure the transformation error along with the distance of travel
from 100, 200,..., 800 m. The change of translation and rotation errors are shown
in Fig. 2 and Fig. 3, respectively. For all travel distances, both rotation and trans-
lation errors of proposed approaches are smaller than those of VISO2. Specifi-
cally, Our translation error of backward estimation gradually reduces from 1.8%
at 100m to 1.5% at 800 m while the translation error of VISO2 increases mono-
tonically from 1.0% at 100m to 2.5% at 800 m. The change of joint forward-
backward translation estimation in black is a little bit lower than that of back-
ward estimation in blue. Consider the change of rotation error along the path
length, our rotation errors are similar because we only focus on translation opti-
mization. They gradually reduce from around 0.78°/100m at 100 m to around
0.23°/100m at 800 m. Similarly, The error of VISO2 reduces from 1.4°/m at
100m and 0.8°/100m at 800 m. However, at every travel distance 100, 200,...,
800m. The error of the proposed approaches slower than that of VISO2.
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Fig. 4. Trajectory of Sect. 1 for three approaches compare to the ground-truth.
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Fig. 5. Trajectory of Sect. 3 for three approaches compare to the ground-truth.

The accuracy improvement of our method compared to conventional app-
roach VISO2 is confirmed by visualizing several camera trajectories in Sect. 1
and Sect. 3 in Fig. 4 and Fig. 5, respectively. It is clear that camera tracks of our
approaches closer to the ground-truth than those of VISO2.

This evaluation has been done on an Intel Core i5-2400S CPU running at
2.5 Hz. The average single thread run-time per image for joint forward-backward
translation estimation is 80 ms in total with 70 ms for rotation estimation and
10 ms for both forward and backward translation estimation. That means only
forward or backward translation estimation spends on 5 ms.

5 Conclusion and Furture Work

An adaptive stereo visual odometry based on the essential matrix is presented
by introducing the non-iterative translation estimation. The joint forward and
backward translation estimation is proved to enhance performance. Compared
to conventional methods that used PnP such as VISO2 library, the proposed
method relies on the essential matrix estimation and the direct translation esti-
mation by solving a linear system. The effectiveness of the proposed approach
is verified by evaluating the errors in terms of translation and rotation on the
KITTTI dataset. The experimental result indicates that our approach achieves
1.6% and 1.49% with-out and with joint forward-backward translation estima-
tion, respectively. In the future, we plan to widen the scope of applications
utilizing the non-iterative translation estimation and refinement rotation esti-
mation.
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