
123

Nguyen-Son Vo
Van-Phuc Hoang (Eds.)

Industrial Networks
and Intelligent Systems
6th EAI International Conference, INISCOM 2020
Hanoi, Vietnam, August 27–28, 2020
Proceedings

334

Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 334

Editorial Board Members

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong, China

Geoffrey Coulson
Lancaster University, Lancaster, UK

Falko Dressler
University of Erlangen, Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Piacenza, Italy

Mario Gerla
UCLA, Los Angeles, USA

Hisashi Kobayashi
Princeton University, Princeton, USA

Sergio Palazzo
University of Catania, Catania, Italy

Sartaj Sahni
University of Florida, Gainesville, USA

Xuemin (Sherman) Shen
University of Waterloo, Waterloo, Canada

Mircea Stan
University of Virginia, Charlottesville, USA

Xiaohua Jia
City University of Hong Kong, Kowloon, Hong Kong

Albert Y. Zomaya
University of Sydney, Sydney, Australia

More information about this series at http://www.springer.com/series/8197

http://www.springer.com/series/8197

Nguyen-Son Vo • Van-Phuc Hoang (Eds.)

Industrial Networks
and Intelligent Systems
6th EAI International Conference, INISCOM 2020
Hanoi, Vietnam, August 27–28, 2020
Proceedings

123

Editors
Nguyen-Son Vo
Faculty of Electrical and Electronics
Engineering
Duy Tan University
Da Nang, Vietnam

Van-Phuc Hoang
Le Quy Don Technical University
Hanoi, Vietnam

ISSN 1867-8211 ISSN 1867-822X (electronic)
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering
ISBN 978-3-030-63082-9 ISBN 978-3-030-63083-6 (eBook)
https://doi.org/10.1007/978-3-030-63083-6

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-63083-6

Preface

We are delighted to introduce the proceedings of the 2020 European Alliance for
Innovation (EAI) International Conference on Industrial Networks and Intelligent
Systems (INISCOM 2020). This conference has brought together researchers, devel-
opers, and practitioners from around the world who are leveraging and developing
industrial networks and intelligent systems. The theme of INISCOM 2020 was
“Computing, Telecommunications Technologies and Applications of 5G-IoT, AI and
Cyber-Security to Improve Citizens’ Lives.”

The technical program of INISCOM 2020 consisted of 25 full papers in oral pre-
sentation sessions at the main conference tracks. The conference tracks were: Track 1 –

Telecommunications Systems and Networks; Track 2 – Hardware, Software, and
Application Designs; Track 3 – Information Processing and Data Analysis; Track 4 –

Industrial Networks and Intelligent Systems; and Track 5 – Security and Privacy. Aside
from the high-quality technical paper presentations, the technical program also featured
one keynote speech. The keynote speaker was Prof. Dong-Seong Kim, from Kumoh
National Institute of Technology, South Korea.

Coordination with the steering chairs, Prof. Imrich Chlamtac, Dr. Vien Ngo, and
Dr. Ta Chi Hieu, was essential for the success of the conference. We sincerely
appreciate their constant support and guidance. It was also a great pleasure to work
with such an excellent Organizing Committee team and we thank them for their hard
work in organizing and supporting the conference. In particular, the Technical Program
Committee (TPC), led by our TPC co-chairs, Dr. Nguyen-Son Vo, Dr. Quoc Tuan
Vien, and Prof. Trung Q. Duong, who completed the peer-review process of technical
papers and made a high-quality technical program. We are also grateful to conference
manager Natasha Onofrei for the support and all the authors who submitted their papers
to INISCOM 2020.

We strongly believe that INISCOM provides a good forum for all researcher,
developers, and practitioners to discuss all science and technology aspects that are
relevant to industrial networks and intelligent systems. We also expect that the future
INISCOM will be as successful and stimulating as indicated by the contributions
presented in this volume.

October 2020 Nguyen-Son Vo
Van-Phuc Hoang

Organization

Steering Committee

Imrich Chlamtac University of Trento, Italy
Vien Ngo Queen’s University Belfast, UK
Ta Chi Hieu Le Quy Don Technical University, Vietnam

Organizing Committee

General Chair

Van-Phuc Hoang Le Quy Don Technical University, Vietnam

General Co-chairs

Cong-Kha Pham The University of Electro-Communications, Japan
Xuan-Nam Tran Le Quy Don Technical University, Vietnam

TPC Chair and Co-chairs

Nguyen-Son Vo Duy Tan University, Vietnam
Quoc Tuan Vien Middlesex University, UK
Trung Q. Duong Queen’s University Belfast, UK

Sponsorship and Exhibit Chairs

Luong Duy Manh Le Quy Don Technical University, Vietnam
Hoa Le-Minh Northumbria University, UK

Local Chairs

Tran Cong Manh Le Quy Don Technical University, Vietnam
Van-Trung Nguyen Le Quy Don Technical University, Vietnam
Do Thanh Quan Le Quy Don Technical University, Vietnam

Workshops Chairs

Koichiro Ishibashi The University of Electro-Communications, Japan
Sylvain Guilley Télécom Paris, France
Xuan-Tu Tran VNU University of Engineering and Technology,

Vietnam

Publicity and Social Media Chairs

Tomohiko Taniguchi Fujitsu Laboratories, Japan
Nguyen Quoc Dinh Le Quy Don Technical University, Vietnam
Dao Thi Nga Le Quy Don Technical University, Vietnam

Publications Chairs

Quang Kien Trinh Le Quy Don Technical University, Vietnam
Mai Ngoc Anh Le Quy Don Technical University, Vietnam
Tomoyuki Ohkubo Advanced Institute of Industrial Technology, Japan

Web Chairs

Trong-Thuc Hoang The University of Electro-Communications, Japan
Vu Hoang Gia Le Quy Don Technical University, Vietnam

Posters and PhD Track Chairs

Ulrich Kuhne Télécom Paris, France
Guanghao Sun The University of Electro-Communications, Japan
Ta Minh Thanh Le Quy Don Technical University, Vietnam
Le-Nam Tran University College Dublin, Ireland

Panels Chairs

Mai-Khanh Nguyen Ngoc The University of Tokyo, Japan
Le Chung Tran University of Wollongong, Australia
Berk Canberk Istanbul Technical University, Turkey

Demos Chairs

Zoran Hadzi-Velkov Ss. Cyril and Methodius University, Macedonia
Van Sang Doan Kumoh National Institute of Technology, South Korea
Quang Nguyen The Le Quy Don Technical University, Vietnam

Tutorials Chairs

Jean-Luc Danger Télécom Paris, France
Duc Anh Le Center for Open Data in the Humanities, Tokyo, Japan
Tuan Le Middlesex University, UK

Technical Program Committee

Truong Khoa Phan University College London, UK
T. Tuan Nguyen University of Buckingham, UK
Purav Shah Middlesex University, UK
Tuan Anh Le Middlesex University, UK
Cong Trang Mai Queen’s University Belfast, UK
Le Chung Tran University of Wollongong, Australia
Huy T. Nguyen Nanyang Technological University, Singapore
G. Suseendran Vels Institute of Science, Technology & Advanced

Studies, India
Falowo Olabisi University of Cape Town, South Africa
Thang Vu University of Luxembourg, Luxembourg
Yuanfang Chen Hangzhou Dianzi University, China

viii Organization

Kien Nguyen Chiba University, Japan
Nguyen Ngoc Mai Khanh The University of Tokyo, Japan
Guanghao Sun The University of Electro-Communications, Japan
Duc Anh Le Center for Open Data in the Humanities, Tokyo, Japan
Tomoyuki Ohkubo Advanced Institute of Industrial Technology, Japan
Luong Duy Manh Le Quy Don Technical University, Vietnam
Kien Trinh Le Quy Don Technical University, Vietnam
Dao Thi Nga Le Quy Don Technical University, Vietnam
Huu Hung Nguyen Le Quy Don Technical University, Vietnam
Xuan Tung Truong Le Quy Don Technical University, Vietnam
Tang Van Ha Le Quy Don Technical University, Vietnam
Ta Minh Thanh Le Quy Don Technical University, Vietnam
Doan Van Sang Kumoh National Institute of Technology, South Korea
Toan Dao University of Transport and Communications, Vietnam
Huan Vo Ho Chi Minh City University of Technology

and Education, Vietnam
Van-Ca Phan Ho Chi Minh City University of Technology

and Education, Vietnam
Pham Ngoc Son Ho Chi Minh City University of Technology

and Education, Vietnam
Kien Dang Ho Chi Minh City University of Transport, Vietnam
Toan Doan Thu Dau Mot University, Vietnam
Dac-Binh Ha Duy Tan University, Vietnam
Nguyen Gia Nhu Duy Tan University, Vietnam

Organization ix

Contents

Telecommunications Systems and Networks

Intelligent Channel Utilization Discovery in Drone to Drone Networks
for Smart Cities . 3

Muhammed Raşit Erol and Berk Canberk

Downlink Resource Sharing and Multi-tier Caching Selection Maximized
Multicast Video Delivery Capacity in 5G Ultra-Dense Networks. 19

Thanh-Minh Phan, Nguyen-Son Vo, Minh-Phung Bui,
Quang-Nhat Tran, Hien M. Nguyen, and Antonino Masaracchia

Performance Analysis of Relay Selection on Cooperative Uplink NOMA
Network with Wireless Power Transfer . 32

Van-Long Nguyen, Van-Truong Truong, Dac-Binh Ha, Tan-Loc Vo,
and Yoonill Lee

Convolutional Neural Network-Based DOA Estimation Using Non-uniform
Linear Array for Multipath Channels . 45

Van-Sang Doan, Thien Huynh-The, Van-Phuc Hoang,
and Dong-Seong Kim

An UAV and Distributed STBC for Wireless Relay Networks in Search
and Rescue Operations. 57

Cong-Hoang Diem and Takeo Fujii

Hardware, Software, and Application Designs

Resolution-Improvement of Confocal Fluorescence Microscopy via Two
Different Point Spread Functions. 77

Xuanhoi Hoang, Vannhu Le, and MinhNghia Pham

Estimations of Matching Layers Effects on Lens Antenna Characteristics 85
Phan Van Hung, Nguyen Quoc Dinh, Hoang Dinh Thuyen,
Nguyen Tuan Hung, Le Minh Thuy, Le Trong Trung,
and Yoshihide Yamada

A 3-Stacked GaN HEMT Power Amplifier with Independently Biased
Technique . 95

Luong Duy Manh, Tran Thi Thu Huong, Bui Quoc Doanh,
and Vo Quang Son

Feasibility and Design Trade-Offs of Neural Network Accelerators
Implemented on Reconfigurable Hardware . 105

Quang-Kien Trinh, Quang-Manh Duong, Thi-Nga Dao,
Van-Thanh Nguyen, and Hong-Phong Nguyen

Information Processing and Data Analysis

Adaptive Essential Matrix Based Stereo Visual Odometry with Joint
Forward-Backward Translation Estimation . 127

Huu Hung Nguyen, Quang Thi Nguyen, Cong Manh Tran,
and Dong-Seong Kim

A Modified Localization Technique for Pinpointing a Gunshot Event Using
Acoustic Signals . 138

Thin Cong Tran, My Ngoc Bui, and Hoang Huy Nguyen

Table Structure Recognition in Scanned Images Using
a Clustering Method . 150

Nam Van Nguyen, Hanh Vu, Arthur Zucker, Younes Belkada,
Hai Van Do, Doanh Ngoc- Nguyen, Thanh Tuan Nguyen Le,
and Dong Van Hoang

Distributed Watermarking for Cross-Domain of Semantic Large Image
Database . 163

Le Danh Tai, Nguyen Kim Thang, and Ta Minh Thanh

Depth Image Reconstruction Using Low Rank and Total Variation
Representations. 181

Van Ha Tang and Mau Uyen Nguyen

Deep Learning Based Hyperspectral Images Analysis for Shrimp
Contaminated Detection . 195

Minh-Hieu Nguyen, Xuan-Huyen Nguyen-Thi, Cong-Nguyen Pham,
Ngoc C. Lê, and Huy-Dung Han

A Predictive System for IoTs Reconfiguration Based on TensorFlow
Framework. 206

Tuan Nguyen-Anh and Quan Le-Trung

Industrial Networks and Intelligent Systems

An Optimal Eigenvalue-Based Decomposition Approach for Estimating
Forest Parameters Over Forest Mountain Areas . 221

Nguyen Ngoc Tan and Minh Nghia Pham

xii Contents

An Improved Forest Height Inversion Method Using Dual-Polarization
PolInSAR Data . 233

HuuCuong Thieu and MinhNghia Pham

An Attempt to Perform TCP ACK Storm Based DoS Attack on Virtual
and Docker Network . 243

Khanh Tran Nam, Thanh Nguyen Kim, and Ta Minh Thanh

Identification of Chicken Diseases Using VGGNet and ResNet Models 259
Luyl-Da Quach, Nghi Pham-Quoc, Duc Chung Tran,
and Mohd. Fadzil Hassan

Design and Evaluation of the Grid-Connected Solar Power System
at the Stage of DC BUS with Optimization of Modulation Frequency
for Performance Improvement. 270

Nguyen Duc Minh, Quach Duc-Cuong, Nguyen Quang Ninh, Y Nhu Do,
and Trinh Trong Chuong

Security and Privacy

An Efficient Side Channel Attack Technique with Improved Correlation
Power Analysis. 291

Ngoc-Tuan Do and Van-Phuc Hoang

An Optimal Packet Assignment Algorithm for Multi-level Network
Intrusion Detection Systems . 301

Dao Thi-Nga, Chi Hieu Ta, Van Son Vu, and Duc Van Le

Privacy-Preserving for Web Hosting . 314
Tam T. Huynh, Thuc D. Nguyen, Nhung T.H. Nguyen, and Hanh Tan

A Novel Secure Protocol for Mobile Edge Computing Network Applied
Downlink NOMA . 324

Dac-Binh Ha, Van-Truong Truong, and Duy-Hung Ha

Author Index . 337

Contents xiii

An Attempt to Perform TCP ACK Storm
Based DoS Attack on Virtual

and Docker Network

Khanh Tran Nam, Thanh Nguyen Kim, and Ta Minh Thanh(B)

Le Quy Don University, Ha Noi, Viet Nam
noangel0607@gmail.com, thanhcuchp@gmail.com,

thanhtm@mta.edu.vn

http://www.lqdtu.edu.vn/

Abstract. Recently, the server virtualization (hypervisor) market is
growing up fast because server virtualization has many benefits. More
and more businesses use hypervisors as an alternative solution to a phys-
ical server. However, hypervisors are more vulnerable than traditional
servers according to recent researches. Therefore, stand on the position
of a system administrator, it’s necessary to prepare for the worst cir-
cumstances, understand clearly, and research for new threats that can
break down the virtual system. In this paper, we attempt to perform
TCP ACK storm based DoS (Denial of Service) attack on virtual and
Docker networks and propose some solutions to prevent them.

Keywords: DoS · Hypervisor · TCP · ACK storm · Virtual network ·
Docker network

1 Introduction

1.1 Overview

Network security is one important aspect of many aspects that a system admin-
istrator is interested in because there are many potential cybersecurity threats
to a hypervisor system [9 – 12]. The DoS/DDoS attack is one of those threats [8].
In 2 019 , Imperva [1] had reported an SYN DDoS attack in which 500 million
packets per second (PPS) in January and another in which 580 million pack-
ets per second (PPS) in April. Each of the packets was thought to a median
number of 850 bytes per packet. That means that 580 million 850-byte packets
would result in about 39 44Gbps of data targeting your network protocol every
second to render it unresponsive. Previously, in 2 018, the GitHub DDoS Attack
was recognized as sustaining a 1.35Tbps (with 12 9 .6 million PPS) attacks with-
out the help of botnet. “Size” of DDoS attack is increasing year by year and
cost businesses thousands to millions of dollars in losses. To prevent and min-
imize the DoS/DDoS attack’s sabotage, analyzing more types of DoS attack
c⃝ ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

N.-S. Vo and V.-P. Hoang (Eds.): INISCOM 2020, LNICST 334, pp. 243–258, 2020.

https://doi.org/10.1007/978-3-030-63083-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63083-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-63083-6_19

244 K. Tran Nam et al.

and is necessary. In this paper, we attempt to perform TCP ACK-Storm based
DoS attack on virtual and Docker networks. Besides, we propose a new attack
method based on ACK-Storm DoS attack with FIN-ACK packets which can
make vSwitch/vBridge fall into a state of port-exhaustion in a period of time.

1.2 Our Contributions

In our knowledge, the research on the attacks to the vSwitch/vBridge of hyper-
visor systems and docker systems is not focused on, especially on the docker.
Therefore, real services deployed on hypervisor systems or docker systems are
vulnerable to attack via a network. That is the motivation of our paper to
research the related network attacks on such systems. In summary, we briefly
introduce our contributions in this paper as follows:

1. We propose to attempt DoS attacks using FIN-ACK storm on services
deployed on virtual systems so that service providers understand the risks,
and security vulnerabilities when deploying the services in a virtual environ-
ment. That implies that real applications deployed on virtual systems can be
easily attacked by hackers via the Internet.

2 . The DoS attacks proposed on the Virtual Machine and Docker systems in
this paper is the first attempt that is made to prove feasible when a hacker
wants to attack services on a hypervisor system.

3. We propose a new attack method based on ACK-Storm DoS attack with
FIN-ACK packet which can make vSwitch/vBridge fall into a state of port-
exhaustion in a period of time.

4. Based on these attack experiments, our paper also offers some solutions to
prevent and decrease the destruction of these types of attacks in real appli-
cations.

1.3 Roadmap

The rest of this paper is organized as follows: In Sect. 2 , a brief overview of the
related works are presented. We focus on the explanation of the ACK-Storm DoS
attack and the FIN-ACK-Storm DoS attack. To illustrate, In Sect. 3 and Sect. 4,
the detail of the proposed DoS attacks on the hypervisor systems, VMware
and Docker, is explained. Based on our experimental attacks, the simulation
results and discussion are shown. Furthermore, In Sect. 5, we assess the feasibility
of the Ack-Storm DoS attack on hypervisor systems. Finally, Sect. 6 gives the
conclusions of this paper.

2 Related Works

2.1 Transmission Control Protocol - TCP

TCP is a Connection-oriented transmission protocol, it establishes connection
channel before transferring data. Through TCP, applications on networked

An Attempt to Perform TCP ACK-Storm on Virtual and Docker Network 245

Fig. 1. TCP Three-step Handshake - Establish TCP connection

servers can communicate with each other, through which they can exchange data
or packets. This protocol ensures reliable data delivery to the receivers. More-
over, TCP has the function of distinguishing between data of many applications
(such as Web services, Email services, and so on) simultaneously running on the
same server. The operation of the protocol TCP is described in the RFC-79 3 [7].
Nowadays, TCP is still widely used in many server systems.

Three-Step Handshake. Three-step handshake, or maybe called a Three-way
handshake, is used in TCP to establish a connection. TCP uses passive open,
a server bind to and listens to a port before a client tries to connect to the
server. A client may start an active open after the passive open is established.
The three-step handshake occurring in three steps (see Fig. 1) can be described
as follows:

1. The client, who wants to connect to the server, sends a TCP packet to the
server with a random value A for the segment’s sequence number (SEQ) and
a bit SYN set. This packet is called a SYN packet (1).

2 . After the server receives the SYN packet, it responds to the client a TCP
packet with a random value B for SEQ number, the acknowledgment number
is set to one more than the received sequence number (A+1), and two-bit
SYN, ACK are set. This packet is called a SYN-ACK packet (2).

3. Finally, the client sends an ACK packet (3), which has the acknowledgment
number is set to one more than the received sequence number (B+1), the
sequence number is set to the received acknowledgment value (A+1), and
only bit ACK set.

Four-Step Handshake. Four-step handshake, or four-way handshake, is used
to terminate TCP connection with each side of the connection terminating inde-
pendently. It occurs as follows:

246 K. Tran Nam et al.

Fig. 2. TCP Four-step Handshake - Terminate TCP connection

1. When one party X of a TCP connection wants to terminate its half of the
connection, it sends to the other endpoint a FIN packet, which has FIN bit
set, the SEQ number (A), and ACK number (B) depending on the current
state of the TCP connection. Then it enters the FIN-WAIT-1 state.

2 . The other endpoint Y receives the FIN packet, free up its buffer, and responds
an ACK packet, with acknowledgment number is more one than the received
sequence number (A+1) and the sequence number is set to the received
acknowledgment value (B). It enters the CLOSE-WAIT state. After receiving
the ACK packet from endpoint Y, endpoint X enters the FIN-WAIT-2 state
from the FIN-WAIT-1 state. The connection from endpoint X to endpoint Y
is terminate, but the connection from endpoint Y to endpoint X still opens,
this is the half-close connection.

3. Endpoint Y sends a FIN packet to terminate the connection from endpoint
Y to endpoint X and wait for an acknowledgment from endpoint X.

4. Finally, when endpoint X receives the FIN packet from endpoint Y, it enters
the CLOSED state.

2.2 Vmware Workstation [4]

Virtual Machines (VMs). Virtual machines are software computers that
provide the same functionality as physical computers. They are based on com-
puter architectures but they behave as separate computer systems. With them,

An Attempt to Perform TCP ACK-Storm on Virtual and Docker Network 247

the users could run different software requesting different environments without
conflict at the same time. They bring many benefits for users and businesses:
Reduced hardware costs; Faster desktop and server provisioning and deployment;
Small footprint and energy saving; Increasing IT operational efficiency, and so
on.

Hypervisor. A hypervisor, called a virtual machine monitor (VMM), can be
hardware, software, or firmware that provides virtualization capability. A hyper-
visor allows one host computer, which the hypervisor operates in, to support
multiple guest VMs by virtually sharing its resources such as memory and pro-
cessing, and so on. According to the resources that have been allocated for
each virtual machine, the hypervisor gives and manages the scheduling of VM
resources against the physical resources. The hypervisor has two types: type
1,“bare metal”, run directly on the host’s hardware, like an operation system,
while type 2 , “hosted”, run as software on an operating system, as an appli-
cation. What type of usage is based on the purpose and need of the user and
businesses.

Virtual Switch (vSwitch). A virtual switch is a software application that
allows communication between virtual machines, between the physical machine
and virtual machines. It directs the communication on a network in an intelli-
gent way by ensuring the integrity of the virtual machine’s profile, which includes
network and security settings checking data packets before moving them to a des-
tination. A virtual switch is completely virtual and can connect to a network
interface card (NIC). The vSwitch merges physical switches into a single logical
switch. This helps to increase bandwidth and create an active mesh between
a server and switches. It also helps in easy deployment and migration of vir-
tual servers, allows network administrators to manage virtual switch deployed
through a hypervisor, and easy to roll out new functionality, which can be hard-
ware or firmware related.

Virtual Network - Network Virtualization. Network Virtualization is a
method of splitting up the available bandwidth into channels to combine avail-
able resources in a network. Each of the channels can be assigned (or reassigned)
to a particular server or device in real-time and is independently secured. The
main idea of Network virtualization is that virtualization disguises the true com-
plexity of the network by splitting it into manageable parts, like a partitioned
hard drive, making it easier to manage files. Every subscriber has shared access
to all the resources on the network from a single computer.

2.3 Docker [5]

Docker Engine - Docker Daemon. Docker Engine, which may be called
Docker Daemon, is a background-running service that manages everything

248 K. Tran Nam et al.

required to run and interact with Docker containers on the host operating sys-
tem. It’s used to run Docker containers which bundled up all application depen-
dencies inside. Docker Engine enables containerized applications to run anywhere
consistently on any infrastructure. Docker Daemon communicates directly with
the host operating system and knows how to ration out resources for the run-
ning Docker containers. It’s also an expert at ensuring each container is isolated
from both the host OS and other containers. In simple terms, it replaces the
hypervisor.

Docker Container Image. Docker container image, or Docker image, is a
lightweight, standalone, executable package of software. It includes code, run-
time, system tools, system libraries, and setting files - all things needed to run
an application. There are many Docker images available that could be used to
rebuild new images or deployed Docker containers.

Docker Container. A Docker container is an instance of a deploying Docker
image. But we could modify Docker containers. Multiple containers can run
on the same machine at the same time and share the OS kernel. They run as
independent processes in userspace. Containers take up less space than VMs,
can handle more applications, and require fewer VMs and Operating systems.

Docker Network. The Docker networking philosophy is application-driven.
Docker network isolation achieved using Network namespace. Typically, Ser-
vices gets separate IP and maps to multiple containers. Microservices done as
Container puts more emphasis on integrated Service discovery. As the Container
scale on a single host can run to hundreds, host networking has to be very
scalable.

Virtual Bridge (vBridge). A virtual bridge (vBridge), which may be called
Network bridge or Linux bridge, is a piece of software used to unite two or more
network segments. It works like a virtual network switch (vSwitch) and working
transparently [13,14]. In Docker container built with a Linux image base, the
Docker network is managed by vBridge.

2.4 Network and Port Address Translation [6]

Network Address Translation - NAT. Network Address Translation (NAT)
is a technique that allows one or more internal IP addresses to be converted to one
or more external IP addresses. This technique makes a device in a local/private
network could connect to the public network (Internet). NAT is responsible for
transmitting packets from one network layer to another in the same network.
NAT will make changes to the IP address inside the packet. Then move through
routers and network devices. On the contrary, when the packet is transmitted
from the internet (public) back to the NAT, NAT performs the task of changing

An Attempt to Perform TCP ACK-Storm on Virtual and Docker Network 249

the destination address to the IP address inside the local network and sending it.
Moreover, NAT can act as a firewall. It helps users secure computer IP informa-
tion. Specifically, if the computer is having trouble connecting to the internet,
the public IP address (previously configured) is displayed instead of the local
network IP address.

Port Address Translation - PAT. Port Address Translation (PAT) is an
extension technique of NAT which could help multiple devices on a local/private
network connect to the public network by mapping their local IP address to
a single public IP address and specific ports. With each set of local-IP:local-
port is mapped to a public IP address with a specific port, multiple devices
could communicate with the Internet with the corresponding ports provided to
them. This technique could conserve IP addresses but the number of ports is not
unlimited, only 65,536 ports so there can be a theoretical maximum of 65536
PAT entries at a time for each inside global address. If an attacker can occupy
all 65,536 ports, there is a port-exhaustion, and no communications can be made
between local devices and the public network.

2.5 Original ACK-Storm DoS Attack

The original idea [2] is suggested by Mr. Abramov and Prof. Herzberg depending
on the vulnerable handle exceptions of TCP that described on page 72 of RFC
79 3 [7] about TCP: when a TCP connection is in the ESTABLISHED state
received a packet with not-yet-sent acknowledges data SEG.ACK > SND.NXT
(Acknowledgement from the receiving TCP higher than the sequence number
of the next byte of data to be sent to the other), the received one handle as
follows: Send an ACK (with the last sent SEQ/ACK number) to another party of
connection, then drop the segment and return. In particular, ignore the payload
in the segment. However, this state has a timeout and stopped when the timer
reaches the timeout. For raising the basic ACK-storm DoS attack (Two Packets
ACK Storm), the attackers act as the following scenario:

1. Pick up (at least) one packet from a TCP connection between a client and a
server (Just need to eavesdrop one packet and do not need any impacts on
the connection).

2 . Generate two packets, each addressed to one party, and with a sender address
of the other party (i.e. spoofed). The packets must be inside the TCP windows
of both sides. The packets should have content - at least one byte of data or
it will not be implemented.

3. Send the packets to the client and the server at the same time. The connection
will then enter an infinite loop of sending ACK packets back and forth between
both parties.

250 K. Tran Nam et al.

Fig. 3. Experimental model - Three physical computers as above connected with each
other by a router Cisco 800 Series Routers CISCO881-K9, the C is attacker which can
eavesdrop and inject packets into TCP connection between Host A and Hypervisor B

2.6 ACK-Storm DoS Attack Using FIN-ACK Packet

Depending on Abramov’s idea [2], Son proposed another ACK-Storm DoS attack
[3] with the same mechanism, but the starting point is sparked by a couple of
FIN-ACK packets created by the same way when creating a couple of ACK
packets to trigger ACK-Storm DoS attack. According to the description in RFC-
79 3 [7] (p. 73): if a TCP connection is in CLOSE-WAIT state, it does the same
processing as for the ESTABLISHED state. That means if attackers force each
party running into CLOSE-WAIT, each party waits for an ACK packet (see
Fig. 2) never come but not-yet-sent ACK packet instead, then the ACK-Storm
DoS raised by two FIN-ACK packets starts. Because no timeout by default for
CLOSE-WAIT state, this DoS attack will never stop in theory, and parties of
the connection will stay in CLOSE-WAIT state forever.

3 Experiment in VMware Workstation

3.1 Experiment Original ACK-Storm DoS Attack

Environment for Experiment (see Fig. 3)

Hypervisor. We use VMware Workstation 14.1.1 installed Windows 10 64 bit for
Virtual Machine server B*.

Physical Computers. Host A and Hypervisor B have the same configuration
as follows: Window 10 64 bit, Chip Inter R⃝ CoreTM i7-6700 CPU @ 3.40GHz,
RAM 8GB, the network interface is a 100Mbps Ethernet adapter attached to
the PCI-E bus. And the attacker C is Windows 10 installed Python.

An Attempt to Perform TCP ACK-Storm on Virtual and Docker Network 251

Router. We use a router instead of the hub in Son’s experimental test because, in
reality, businesses use the router for establishing their LAN network or connect
to the Internet. The router here is a Cisco 800 Series Routers CISCO881-K9 .

Attack Execution. We use a simple TCP connection created with socket
python (v3.7.3) scripts. For the experiment, we just let A and B* create a con-
nection with a Three-Way Handshake and pick up the last ACK packet from
the connection for SEQ and ACK sequence number. Then, in attacker C, we use
scapy1 to create a couple of fake ACK packets with source IP is one party and
destination IP is the other. We sent those ACK packets to each of the respective
parties.

In Line A. We captured about 55000 retransmitted ACK packets in 60 s while
the ACK storm was occurring. This result is similar to the results in previous
experiments of Abramov [2] and Son [3] but the number of packets is less because
of smaller Ethernet adapter bandwidth. However, task manager still displayed
the bandwidth used by VMware NAT services was 0.6Mbps. This result is much
bigger than 12 0 bytes (two packets) sent by the attacker C.

In Line B. Only the first fake ACK packet, which we created, is forwarded to
virtual machine B* through vSwitch. No retransmitted ACK packet is directed
to virtual machine B*.

3.2 Experiment ACK-Storm DoS Attack Using FIN-ACK Packet

Environment for Experiment. We use the same environment with the exper-
iment of ACK-Storm DoS attack described above.

Attack Execution. We do the same action with the experiment ACK-Storm
DoS attack but we use a couple FIN-ACK packets instead of a couple of ACK
packets. It means that we just turn the bit FIN flag to 1 and keep all conditions
as the experiment ACK-Storm DoS attack as above.

Analysis. When each party received fake FIN-ACK packets, they respond with
invalid retransmitted ACK packets, and the ACK-Storm was begun.

In Line A. We captured about 86000 ACK retransmitted packets in 60 s (about
1434 packets per second) in Line A while the ACK storm was occurring. This
result is similar to the results in previous experiments of Abramov [2] and Son [3]
but the number of packets is less because of smaller Ethernet adapter bandwidth.
However, the task manager still displayed the bandwidth used by VMware NAT
services was 0.6Mbps. This result is much bigger than 12 0 bytes (two packets)
sent by the attacker C. We keep experiment for 2 4 h and it’s still working. This
1 https://scapy.net/.

https://scapy.net/

252 K. Tran Nam et al.

Fig. 4. Experimental model - Three physical computers as above connected by a router
Cisco 800 Series Routers CISCO881-K9, computer C is attacker which can eavesdrop
and inject packets into TCP connection between Host A and Hypervisor B. Docker
container B* use Nginx for server with the local port is 80 and the public port is 8080.

proves that Son’s hypothesis [3] is correct. The TCP connection is stuck in
the CLOSE-WAIT state while the process established TCP connection keeps
running. As the ACK-Storm activated by a couple of FIN-ACK packets can
be last forever, the attacker could completely raise DDoS attack to hypervisor
B and virtual machine B*. If an attacker could raise a DDoS attack with all
available ports, about 65500 ports, he could “play” a DDoS attack which 9 4
million packets per second (with 40 Gbps), and also cause the port exhaustion.

In Line B. As explained above, in the ACK-Storm DoS attack experiment, only
the first fake FIN-ACK packet, which we created, is forwarded to virtual machine
B* through vSwicth. Still, no retransmitted ACK packet is directed to virtual
machine B*, the same result with the ACK-Storm DoS attack. We assumed that
vSwitch responses all retransmitted ACK packets instead of virtual machine B*
as long as no RST request is sent between Host A and virtual machine B*. To
prove this, we try suspending virtual machine B*, the ACK-Storm attack still
going on. We keep experiment for 4 h more and the ACK-Storm attack is no
sign of stopping. When we resume virtual machine B*, nothing happens. This
is a feature of VMware workstation that prevent all invalid packets to virtual
machine inside it.

4 Experiment in Docker

4.1 Experiment Original ACK-Storm DoS Attack

Environment for Experiment

Hypervisor. We use Docker Desktop v2 .2 .0.5 with Docker Engine v19 .03.8,
Docker Compose v1.2 5.4. We build a new image depending on base image
Ubuntu 18.04 and install Htop for monitoring the container’s activity. We also
use TCPdump for monitoring network flow, and use Nginx for server B.

An Attempt to Perform TCP ACK-Storm on Virtual and Docker Network 253

Physical Computers. Host A and Hypervisor B have the same configuration
as follows: Window 10 64 bit, Chip Inter R⃝ CoreTM i7-6700 CPU @ 3.40GHz,
RAM 8GB, the network interface is a 100Mbps Ethernet adapter attached to
the PCI-E bus. We use Windows 10 for attacker C.

Router We use a router for establishing a LAN network or connect to the Inter-
net. The router here is a Cisco 800 Series Routers CISCO881-K9 .

Attack Execution. With TCP connection created by using Chrome to access
to the server Nginx in Container B* and do the same as experiment original
ACK-Storm DoS attack in VMware Workstation, we pick the last ACK packet
in the TCP connection between Host A and Docker container B* for obtaining
SEQ and ACK number. Then, we use scapy to create a couple of fake ACK
packets with source IP is one party and destination IP is the other. After that,
we send those ACK packets to each of the respective parties.

Analysis. When each party received a fake ACK packet, they responded with
invalid retransmitted ACK packets, and the ACK-Storm was begun. The ACK-
Storm was terminated by Host A (see Fig. 4) after 1 s while TCP connection was
timeout after 30 s.

In Line A. We captured about 550 retransmitted ACK packets in 1 s while the
ACK storm was occurring. 10 s later, Container B* send an RST-ACK packet.
The TCP connection timeout after 30 s. There are still some retransmitted ACK
packets generated by the original ACK-Storm attack but the retention time is
very short. This is because of Docker’s feature (or Nginx’s) when the container
received many retransmitted ACK packets with the same ACK/SEQ number.
This result is not as expected but still proves a flaw in TCP connection, which
was discovered by Abramov [2], when receiving not-yet-sent acknowledges data
packet.

In Line B. The same result with the experiment ACK-Storm DoS attack, only
the first fake ACK packet is forwarded to Docker container B* through vBridge.
No retransmitted ACK packet is directed to Docker container B*. It seems like
vBridge response all retransmitted ACK packets instead of Docker container B*,
same behavior with vSwitch.

4.2 Experiment ACK-Storm DoS Attack Using FIN-ACK Packet

Environment for Experiment. We use the same environment with the exper-
iment ACK-Storm DoS attack in Docker that’s described above.

Attack Execution. We do the same with the experiment ACK-Storm DoS
attack but we use a couple FIN-ACK packets instead of a couple of ACK packets.
It means that we just turn the bit FIN flag to 1 and keep all conditions as the
experiment ACK-Storm DoS attack as above.

254 K. Tran Nam et al.

Fig. 5. TCP communication during the experiment in Docker with Ack packet

Analysis. When each party received fake FIN-ACK packets, they responded
with invalid retransmitted ACK packets, and the ACK-Storm was begun.

In Line A. We captured a few retransmitted ACK packets between Host A and
Container B* before Container B*’s side stopped responding.

In Line B. Same as above, in the experiment ACK-Storm DoS attack, only
the first fake ACK packet is forwarded to Container B* through vBridge. No
retransmitted ACK packet is directed to Container B*.

Propose. We tried to replace simple ACK packets for attacking by HTTP
packets. However, we got the same results as Subsect. 4.1 and 4.2 . Because ACK-
Storm DoS attack with FIN-ACK [3] packet seem does not work with TCP
connection created by browsers like Chrome or Firefox and Nginx, we propose
a new attack method based on it: the attacker C create his own fake TCP

An Attempt to Perform TCP ACK-Storm on Virtual and Docker Network 255

connection with server B, send a fake FIN-ACK packet to server B after three-
ways handshake completed and constantly send fake retransmitted ACK packets
of the same format as retransmitted ACK packets of ACK-Storm DoS attack.
Server B, more specifically vBridge, will respond to them and stuck in CLOSE-
WAIT state. With a simple TCP connection, the CLOSE-WAIT state has no
timeout [7], so we assume server B may be stuck in CLOSE-WAIT state forever.
The detail of this attack method will be described in Subsect. 4.3.

4.3 Experiment ACK-Storm DoS Attack Using FIN-ACK Packet
and Fake Retransmitted ACK Packets from Attacker

Environment for Experiment. We use the same environment with the exper-
iment ACK-Storm DoS attack in Docker that’s described above (see Fig. 5) but
no Host A.

Attack Execution. We use scapy (version 2 .4.3) to create a fake TCP connec-
tion with Container B* by Three Steps Handshake as follows:

1. Use scapy create a fake SYN packet manually with the destination is Con-
tainer B*, the source is attacker C, ACK number is 0, SEQ number is volun-
tary, and send to Container B*.

2 . Capture response SYN/ACK packet from Container B* then create a fake
ACK packet depending on the SYN/ACK packet (use ACK and SEQ num-
ber).

3. Send the fake ACK packet to Container B* and the TCP connection is estab-
lished.

After that, we create a fake FIN-ACK packet as same as the previous experiments
and create a fake retransmitted ACK packets like attacker C received FIN-ACK
packet similar to Container B*’s. Then, we follow these three steps:
1. Send the fake FIN-ACK packet to the Container B*.
2 . Send the fake retransmitted ACK packet to the Container B*.
3. Delay about 1 s and repeat step 2 .

Analysis. When Container B* received the fake FIN-ACK packet, it switches
to CLOSE-WAIT state and responses with invalid retransmitted ACK packets.

In Line A. Whenever vBridge receives the fake retransmitted ACK packet from
the attacker C, it responses with invalid retransmitted ACK packets. While
the attacker C keeps sending fake retransmitted ACK packet to the Container
B*, the Container B* is stuck in CLOSE-WAIT state. But the attack does not
last too long as same as the experiment ACK-Storm DoS attack with FIN-
ACK packet [3]. After about 10min, Container B* sends an RST packet to
close the TCP connection. In the experiment, we dump some FIN-PSH-ACK
packets but there are no signs of disconnection until the Container B* sends
RST packet suddenly. This might be a feature of vBridge when received too
many retransmitted ACK packets with the same ACK/SEQ number.

256 K. Tran Nam et al.

Fig. 6. TCP communication during the experiment using FIN-ACK packet in Docker
with fake retransmitted ACK packets from attacker C

In Line B. Only valid packets are directed to Container B*, the same as the
result of the experiment ACK-Storm DoS attack. No retransmitted ACK packet
is directed to Container B*. It means that vBridge response all retransmitted
ACK packets instead of Container B* as long as no RST request is sent between
Host A and Container B* (Fig. 6).

5 Discussion

5.1 Feasibility

From the results of the above experiments, we have concluded that the ACK-
Storm DoS attack is possible with basic TCP connections in a virtualized envi-
ronment. Based on the vulnerability discovered by Abramov [2] described in RFC
79 3 [7] and based on the idea of developing a method of attack with FIN-ACK
packet of Son [3], an attacker can perform an attack which is made by creating

An Attempt to Perform TCP ACK-Storm on Virtual and Docker Network 257

a fake connection and sending packets just like a normal TCP connection being
attacked by ACK-Storm DoS using FIN-ACK packet.

In our experiment, this attack method is feasible even with virtualization
environments like Docker with Nginx for the server. However, in the default
configuration of Nginx, each state of the connection has a timeout setting so the
attack method using ACK packets is blocked and the risk of being attacked by
an attacker with the FIN-ACK packet is also limited. However, attacker C can
use a simple python script with scapy to create many connections to the server
on the Docker container that uses Nginx to occupy ports within 10min and can
cause an issue, which is called port exhaustion, with vBridge when they combine
with a botnet. The time, just about 10min, is not too long, but the damage to
businesses will not be small even though the cost of conducting the attack is not
very high. With this attack method, attackers do not need to eavesdrop TCP
connection but still can occupy port.

5.2 Countermeasures

As we mentioned above, in Sect. 3, the vSwitch (or the vBridge) responds (or
ignores) invalid packets instead of the hypervisor (or the container) and only
directs valid packets to the hypervisor. Therefore, the hypervisor will receive no
packets from the client during the ACK-Storm DoS attack. So, we can create a
timer running on another thread to count the time unresponsive from the client
and close that connection when “timeout”. Besides, we can create a duplicate-
ACK-checker to count the number of duplicate retransmitted ACK packets, when
the number reaches the maximum, the hypervisor creates its own RST-ACK
packet to force the connection stop completely.

5.3 Ethical Considerations

We disconnected the Internet when conducting our experiments and only tested
attacks with the lab computers during the process. These computers only con-
nected to each other during the experiment and did not connect even to the
university local area network. Therefore, our experiments are completely harm-
less to the Internet.

6 Conclusions

For well-known software built by professional teams, such as Nginx, this type of
attack is difficult to perform. However, its implications for the virtual server sys-
tem are still evident once it is successfully implemented. This paper emphasizes
the proper attention to handling timeout vulnerabilities with CLOSE-WAIT
state in TCP connection when building and developing new software using TCP
connection. This flaw could lead to an unlimited ACK-Storm DoS which could
harm servers. Finally, TCP is still an important protocol and is used in many
software, it was built long ago so inevitably there are vulnerabilities, so find the

258 K. Tran Nam et al.

flaws and carefully study the vulnerabilities to find out methods to prevent and
fix these gaps are the necessary work of all information security experts. In this
article, we have focused on researching and analyzing deeply the ACK-Storm
DoS attack models of Abramov [2] and Son [3] as well as proposing a new attack
version to capture the network ports of a virtual server. In the future, we will
focus on researching other virtualized server systems such as Hyper-V, Oracle,
an so on, with these types of attacks as well as proposing new attack measures
and effective countermeasures.

References

1. Imperva’s DDoS Attack reports. https://www.imperva.com/blog/this-ddos-
attack-unleashed-the-most-packets-per-second-ever-heres-why-thats-important.
https://www.imperva.com/blog/2019-global-ddos-threat-landscape-report

2. Abramov, R., Herzberg, A.: TCP ACK storm DoS attacks. In: Proceedings of
the 26th IFIP TC 11 International Information Security Conference, SEC 2011,
pp. 12–27, June 2011. https://www.researchgate.net/publication/225532285 TCP
ack storm DoS attacks

3. Duc, S.N., Mimura, M., Tanaka, H.: An analysis of TCP ACK Storm DoS attack
on virtual network. In: 2019 19th International Symposium on Communications
and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, pp. 288–293
(2019). https://ieeexplore.ieee.org/document/8905220

4. VMWare: Workstation for Windows, VMWare Workstation Pro 14. https://www.
vmware.com/products/workstation. Accessed 10 Apr 2020

5. Docker: Docker desktop for Windows, Docker Nginx. https://www.docker.com/.
Accessed 20 Apr 2020

6. Bansal, A., Goel, P.: Simulation and analysis of network address translation (NAT)
& port address translation (PAT) techniques. Int. J. Eng. Res. Appl. 7(7, Part 2),
50–56 (2017). http://www.ijera.com/papers/Vol7 issue7/Part-2/I0707025056.pdf.
ISSN 2248–9622

7. RFC 793 - Transmission Control Protocol, DARPA Internet Program, Protocol
Specification, pp. 72–73, September 1981. https://tools.ietf.org/html/rfc793

8. Chelladhurai, J., Chelliah, P.R., Kumar, S.A.: Securing docker containers from
Denial of Service (DoS) attacks. In: 2016 IEEE International Conference on Ser-
vices Computing (SCC), San Francisco, CA, pp. 856–859 (2016)

9. Blenk, A., Basta, A., Reisslein, M., Kellerer, W.: Survey on network virtualization
hypervisors for software defined networking. IEEE Commun. Surv. Tutor. 18(1),
655–685 (2016)

10. Bauman, E., Ayoade, G., Lin, Z.: A survey on hypervisor-based monitoring. ACM
Comput. Surv. 48, 1–33 (2015)

11. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Comput.
Netw. 54(5), 862–876 (2010)

12. Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X.: Virtual network
embedding: a survey. IEEE Commun. Surv. Tutor. 15, 1888–1906 (2013)

13. Arch Linux: Network Bridge. https://wiki.archlinux.org/index.php/Network
bridge

14. Varis, N.: Anatomy of a Linux bridge. In: Proceedings of Seminar on Network
Protocols in Operating Systems, p. 58 (2012). https://wiki.aalto.fi/download/
attachments/70789083/linux bridging final.pdf

https://www.imperva.com/blog/this-ddos-attack-unleashed-the-most-packets-per-second-ever-heres-why-thats-important
https://www.imperva.com/blog/this-ddos-attack-unleashed-the-most-packets-per-second-ever-heres-why-thats-important
https://www.imperva.com/blog/2019-global-ddos-threat-landscape-report
https://www.researchgate.net/publication/225532285_TCP_ack_storm_DoS_attacks
https://www.researchgate.net/publication/225532285_TCP_ack_storm_DoS_attacks
https://ieeexplore.ieee.org/document/8905220
https://www.vmware.com/products/workstation
https://www.vmware.com/products/workstation
https://www.docker.com/
http://www.ijera.com/papers/Vol7_issue7/Part-2/I0707025056.pdf
https://tools.ietf.org/html/rfc793
https://wiki.archlinux.org/index.php/Network_bridge
https://wiki.archlinux.org/index.php/Network_bridge
https://wiki.aalto.fi/download/attachments/70789083/linux_bridging_final.pdf
https://wiki.aalto.fi/download/attachments/70789083/linux_bridging_final.pdf

	Preface
	Organization
	Contents
	Telecommunications Systems and Networks
	Intelligent Channel Utilization Discovery in Drone to Drone Networks for Smart Cities
	1 Introduction
	2 Network Architecture
	3 System Model
	3.1 Searching and Finding Sub-layer
	3.2 Functional Sub-layer

	4 Simulation Environment
	5 Performance Evaluation
	6 Conclusions
	References

	Downlink Resource Sharing and Multi-tier Caching Selection Maximized Multicast Video Delivery Capacity in 5G Ultra-Dense Networks
	1 Introduction
	2 System Model
	3 System Formulations
	3.1 Wireless Channel
	3.2 Capacity at RUs
	3.3 SINR at SUs

	4 DRS-MCS Optimization Problem and Solution
	5 Performance Evaluation
	6 Conclusion
	References

	Performance Analysis of Relay Selection on Cooperative Uplink NOMA Network with Wireless Power Transfer
	1 Introduction
	2 Network and Channel Models
	2.1 Power Transfer Phase
	2.2 Information Transmission Phase
	2.3 Relay Phase

	3 Performance Analysis
	4 Nummerical Results and Disscussion
	5 Conclusion
	References

	Convolutional Neural Network-Based DOA Estimation Using Non-uniform Linear Array for Multipath Channels
	1 Introduction
	2 Signal Model and Dataset Generation
	2.1 Signal Model of Antenna Array
	2.2 Dataset Generation

	3 CNN-Based DOA Estimation Model
	4 Experiment Result and Discussion
	4.1 DOA-ConvNet with Different Filter Size
	4.2 DOA-ConvNet with Different Number of Filters
	4.3 DOA-ConvNet with Different Conv-Blocks
	4.4 Comparison of DOA-ConvNet with Other Existing CNN Models

	5 Conclusion
	References

	An UAV and Distributed STBC for Wireless Relay Networks in Search and Rescue Operations
	1 Introduction
	2 Distributed STBC Cooperative Diversity System
	3 Proposed Method
	4 Performance Evaluation
	4.1 Simulation Conditions
	4.2 Simulation Results

	5 Conclusion
	References

	Hardware, Software, and Application Designs
	Resolution-Improvement of Confocal Fluorescence Microscopy via Two Different Point Spread Functions
	1 Introduction
	2 Methodology
	3 Simulation and Experimental Results
	4 Conclusion
	References

	Estimations of Matching Layers Effects on Lens Antenna Characteristics
	1 Introduction
	2 Theoretical Matching Layers and Antenna Modeling
	2.1 Theoretical Matching Layers
	2.2 Antenna Modeling
	2.3 Simulation Parameters

	3 Simulation Results
	3.1 Power Reflection Coefficients
	3.2 Radiation Patterns
	3.3 Side-Lobe Levels
	3.4 The Lens Thickness
	3.5 Electric Field Distributions

	4 Conclusion
	References

	A 3-Stacked GaN HEMT Power Amplifier with Independently Biased Technique
	1 Introduction
	2 Descriptions of the Proposed Amplifier
	2.1 3-Stacked GaN HEMT MMIC Chip
	2.2 Power Amplifier

	3 Performance Evaluation
	3.1 Vd1 Variation
	3.2 Vd2 variation

	4 Experiment
	4.1 PA Prototype
	4.2 Experimental Setup
	4.3 Measured Results

	5 Conclusion
	References

	Feasibility and Design Trade-Offs of Neural Network Accelerators Implemented on Reconfigurable Hardware
	1 Introduction
	2 Background
	2.1 Neural Network
	2.2 Convolutional Neural Network

	3 Performance Evaluation of Neural Network-Based Classifier on a Software Tool
	3.1 Software Platform
	3.2 Analysis of the Recognition Accuracy
	3.3 Analysis of the Number Format

	4 Design of Neural Network Accelerator on FPGA
	4.1 Design of Processing Units
	4.2 Design of Data Buffer
	4.3 Hardware Utilization and Processing Latency

	5 Performance Evaluation of Neural Network Accelerator on FPGA
	5.1 Experimental Setup
	5.2 Experimental Results of Neural Network Accelerator on FPGA

	6 Conclusion
	References

	Information Processing and Data Analysis
	Adaptive Essential Matrix Based Stereo Visual Odometry with Joint Forward-Backward Translation Estimation
	1 Introduction
	2 Feature Extraction
	3 Proposed Pose Estimation
	3.1 Rotation Estimation
	3.2 Translation Estimation

	4 Experimental Results
	5 Conclusion and Furture Work
	References

	A Modified Localization Technique for Pinpointing a Gunshot Event Using Acoustic Signals
	1 Introduction
	2 Signal Simulation
	3 Methodology
	3.1 Event Detection
	3.2 Source Localization

	4 Experimental Results
	5 Conclusions
	References

	Table Structure Recognition in Scanned Images Using a Clustering Method
	1 Introduction
	2 Methods
	2.1 Noise Removal
	2.2 Text Detection
	2.3 Row Detection
	2.4 Column Detection
	2.5 Cell Reconstruction

	3 Evaluation Results
	3.1 Performance Evaluation of CluSTi
	3.2 Comparison of CluSTi and Other Methods

	4 Conclusion
	References

	Distributed Watermarking for Cross-Domain of Semantic Large Image Database
	1 Introduction
	1.1 Overview
	1.2 Our Contributions
	1.3 Roadmap

	2 Preliminary
	2.1 Discrete Cosine Transform
	2.2 Singular Value Decomposition
	2.3 Semantic Large Image Dataset
	2.4 Distributed Watermark

	3 Our Proposed Method
	3.1 Shadows Construction Process
	3.2 Video Embedding Method
	3.3 Video Extraction Method
	3.4 Watermark Revealing Process

	4 Experimental Results and Analysis
	4.1 Experimental Environment
	4.2 Imperceptibility Measure
	4.3 Robustness Measure

	5 Conclusions
	References

	Depth Image Reconstruction Using Low Rank and Total Variation Representations
	1 Introduction
	2 Depth Sparse Imaging Model
	2.1 Depth Image Acquisition
	2.2 Depth Estimation with Sparse Representation

	3 LR-TV Depth Reconstruction
	3.1 LR-TV Problem Formulation
	3.2 ADMM-Based Algorithm

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Evaluation and Analysis of LR-TV Model
	4.3 Comparison with Other Imaging Approaches

	5 Conclusion
	References

	Deep Learning Based Hyperspectral Images Analysis for Shrimp Contaminated Detection
	1 Introduction
	2 Related Works
	3 System Model
	4 Data Preprocessing
	4.1 Hyperspectral Data Visualization
	4.2 DNN for Classification

	5 Experiments and Results
	5.1 DNN Setup and Metrics
	5.2 Results and Discussion

	6 Conclusion
	References

	A Predictive System for IoTs Reconfiguration Based on TensorFlow Framework
	1 Introduction
	2 Related Work
	2.1 IoTs Reconfiguration Framework
	2.2 Time-Series Sensor Data Prediction Algorithms

	3 Development of IRPS
	3.1 Methodology
	3.2 Design and Implementation of IRPS

	4 Case Study
	4.1 Smart Room
	4.2 Smart Hydroponic Cultivation

	5 Conclusion
	References

	Industrial Networks and Intelligent Systems
	An Optimal Eigenvalue-Based Decomposition Approach for Estimating Forest Parameters Over Forest Mountain Areas
	1 Introduction
	2 Basic Scattering Mechanisms in Forest Mountain Areas for PolInSAR and Simplified Neumann Volume Scattering Model
	2.1 The PolInSAR Covariance Matrix
	2.2 Volume Scattering Mechanism and Simplified Neumann Scattering Model
	2.3 Ground and Double-Bounce Scattering Model for Sloped Terrain

	3 The Optimal Eigenvalue-Based Decomposition of PolInSAR Data
	4 Applied Data Set and Experimental Results
	5 Conclusion
	References

	An Improved Forest Height Inversion Method Using Dual-Polarization PolInSAR Data
	1 Introduction
	2 Methodology
	2.1 The Complex Interferometry Coherence Coefficient of the Dual-Polarization PolInSAR System
	2.2 Estimating Ground Phase Based on the Mean Coherence Set Theory
	2.3 Estimating Forest Parameters by the Polarimetric Channel Comprehensive Search Method

	3 Experimental Result
	4 Conclusion
	References

	An Attempt to Perform TCP ACK Storm Based DoS Attack on Virtual and Docker Network
	1 Introduction
	1.1 Overview
	1.2 Our Contributions
	1.3 Roadmap

	2 Related Works
	2.1 Transmission Control Protocol - TCP
	2.2 Vmware Workstationch19refspsvmware
	2.3 Dockerch19refspsdocker
	2.4 Network and Port Address Translationch19refspsnatpat
	2.5 Original ACK-Storm DoS Attack
	2.6 ACK-Storm DoS Attack Using FIN-ACK Packet

	3 Experiment in VMware Workstation
	3.1 Experiment Original ACK-Storm DoS Attack
	3.2 Experiment ACK-Storm DoS Attack Using FIN-ACK Packet

	4 Experiment in Docker
	4.1 Experiment Original ACK-Storm DoS Attack
	4.2 Experiment ACK-Storm DoS Attack Using FIN-ACK Packet
	4.3 Experiment ACK-Storm DoS Attack Using FIN-ACK Packet and Fake Retransmitted ACK Packets from Attacker

	5 Discussion
	5.1 Feasibility
	5.2 Countermeasures
	5.3 Ethical Considerations

	6 Conclusions
	References

	Identification of Chicken Diseases Using VGGNet and ResNet Models
	1 Introduction
	2 The Proposed Methodology
	2.1 ResNet Model
	2.2 VGGNet

	3 Experimental Setup
	3.1 Data Collection
	3.2 Implementation

	4 Results
	5 Conclusions
	References

	Design and Evaluation of the Grid-Connected Solar Power System at the Stage of DC BUS with Optimization of Modulation Frequency for Performance Improvement
	1 Introduction
	2 Structure of Power Blocks in the System
	2.1 Boost DC/DC Block
	2.2 Single-Phase SVPWM Inverter

	3 Maximum Power Sticking Control Algorithm
	4 Setting Up Simulation Model
	4.1 Solar Panel Model
	4.2 DC/DC Power Converter Model
	4.3 Rectifier Stage
	4.4 Two-Level Single-Phase Inverter Model
	4.5 LCL Filter Model
	4.6 Controller

	5 Simulation Results
	5.1 Simulation of PV Panel Properties
	5.2 Simulation of System Characteristics

	6 Conclusion
	References

	Security and Privacy
	An Efficient Side Channel Attack Technique with Improved Correlation Power Analysis
	1 Introduction
	2 Original CPA and Related Works
	2.1 Original CPA
	2.2 Related Works

	3 Proposed CPA Technique
	4 Experimental Results
	5 Conclusion and Future Work
	References

	An Optimal Packet Assignment Algorithm for Multi-level Network Intrusion Detection Systems
	1 Introduction
	2 Network Model
	3 Problem Formulation
	4 An Optimal Packet Assignment Algorithm
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Performance Comparison of Processing Nodes
	5.3 Evaluation of the Proposed Packet Assignment Algorithm

	6 Conclusion
	References

	Privacy-Preserving for Web Hosting
	1 Introduction
	2 Models and Privacy Requirements
	2.1 Models
	2.2 Privacy Requirements

	3 Proposed Protocol
	4 Experiment Results
	5 Conclusions
	References

	A Novel Secure Protocol for Mobile Edge Computing Network Applied Downlink NOMA
	1 Introduction
	2 System Model
	3 Performance Analysis
	4 Numerical Results and Discussion
	4.1 Impact of Average Transmit SNR and the Length of Task 1
	4.2 Impact of Transmit Power Allocation Ratio and the Length of Task 1
	4.3 Comparison to Conventional NOMA Scheme

	5 Conclusion
	References

	Author Index

