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Abstract. Detecting malware using dynamic analysis techniques is an efficient
method. Those familiar techniques such as signature-based detection perform
poorly when attempting to identify zero-day malware, and it is also a challeng-
ing and time-consuming task to manually engineer malicious behaviors. Several
studies have tried to detect unknown behaviors automatically. One of effective
approaches introduced in recent years is to use graphs to represent the behavior
of an executable, and learn from these graphs. However, current graph represen-
tations have ignored much important information such as parameters, variables
changes… In this paper, we present a newmethod for malware detection by apply-
ing a graph attention network onmulti-edge directional heterogeneous graphs con-
structed from Windows API calls collected after a file being executed in cuckoo
sandbox… The experiments show that our model achieves better performance
than other baseline models at both TPR and FAR scores.

Keywords: Malware detection · Dynamic analysis · Deep learning · Graph
representation

1 Introduction

Malware is referred to “any software that does something that causes harm to a user,
computer, or network” [11]. Detecting malware remains a significant security chal-
lenge, predominantly. Malware analysis techniques can be categorized into two types:
static and dynamic. The former including signature-based is considered a simple and
lightweight approach. However, malware samples that employ obfuscation techniques
such as refactoring code, inserting nop-code, encryption etc. can easily bypass static
analysis. The latter includes two types of behavioral data, static behavior data (or code
analysis) and dynamic behavior data (or behavioral analysis). In code analysis data are
collected by static methods such as reverse-engineering and can give us a sight on what
the software does. However, it faces the same problem of being evaded by obstruction
techniques such as binary packers, polymorphism, metamorphism and anti-debugging
etc. Hence, behavioral analysis becomes attractive to analysts because it can tackle it
from a black box perspective, whereby only the end result on the system can be observed.
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This method requires emulating a safe virtual environment and executing the malware
inside it tomonitor its behavior. Although there are tactics to prevent behavioral analysis,
this strategy is less vulnerable to obfuscation techniques.
Manually analyzing an executable file to identify malicious behavior is a highly

laborious process, therefore recent research projects have focused on automating this
process. Devised techniques range fromextracting features using text-mining algorithms,
to learning features from graphs that represent behaviors of executable files. These
approaches are very inspiring and have proved their efficiency in existing literature [8,
14, 15]. However, behavioral obfuscation techniques (e.g. system call reordering or
bogus call injection) pose a challenge to approaches that represent behavioral data in
sequences. One major limitation of current graph methods [8, 14, 15] is that they an
abstract view of system behavior and omit important information.
This paper introduces a new graph representation for a file that contains multiple

types of information, including API calls, connection types, and key arguments of each
API. After obtaining the graph, verifying whether a file is a malware is done by applying
a neural network to learn the node-level embedding and semantic-level embedding. Our
main contributions in this work are as follow:

• A new method to represent an executable file as a Multi-edge Directional
Heterogeneous Graph (MDHG) that can retain the most important behavioral
characteristics of malware.
• A new deep learning model to learn features from built graphs, introducing edge-
weighing layer, along with data encoding techniques, to focus on the argument of
each API to weigh the importance of that call.

The rest of the paper is organized as follows: Sect. 2 presents an overview of exist-
ing research focused on detecting malicious software automatically. Section 3 provides
a detailed description of our proposed approach. In Sect. 4, experimental results are
discussed. Finally, conclusions are drawn in Sect. 5.

2 Related Work

In response to the steadily increasing complexity of modern malware, much research
has been conducted to find alternative malware detection strategies. One efficient way is
to analyze the behavior of the software after executing it in a virtual safe environment.
Many studies rely on system call traces to evaluate and identify the malicious behaviors
of malware samples.
Almost all proposedmethods need to depend upon behavioral data (e.g., for example

API calls), which to maximize accuracy must be performed in a specific way. The
difficulties of this task lie in how to represent this behavioral data efficiently, whilst
reducing noise without losing any useful information. In terms of API calls being used
to analyze and learn features from, there are two popular approaches used to represent
such data: sequences of text, the other uses graph.
With text-based representation, features can be extracted by applying conventional

algorithms, or using deep learning model such as Recurrent Neural Networks (RNN) or
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Convolutional Neural Networks (CNN) to extract features automatically, and a classifier
would then be applied to learn from features extracted. Yu eta al. [1] gave an overview of
behavioral description methods including XML-based, semantic description methods,
description languages and several text-based. Hongfa et al. [2] represented system call
sequences with MIST instructions and used an n-gram algorithm to extract features. In
[3] Zhao et al. proposed the use of a control flow graph to generate an execution tree and
form an opcode stream. N-gram is also used to generate feature set afterwards. Sequence
alignment algorithms was used in [4] for common call sequence extraction. However,
the complexity of sequence alignment algorithms was too large and computing time
was too high. Based on NLP techniques, Tran et al. in [5] enhanced the conventional
ML algorithms for API calls analysis by doc2vec, N-gram and TF-IDF methods. The
n-gram analysis method archived some good results, but it faced to the optimizing the
values of n and L. The current pace of malware development requires models that can
seek patterns and informative features autonomously. Pascanu et al. in [6] were the first
to use a hybrid model of RNN and a machine learning classifier to predict the next
API call. Kolosnjaji et al. in [7] proposed a method to detect and classify malware in
series of opcodes representation, using a Convolutional Neural Network (CNN) and
feed-forward layers. This model used static analysis of portable executable files so hard
to detect malware with obfuscation and detection evasion techniques. RNN and LSTM
are also experimented with in various existing works but largely face the same problems
[8–10].
In recent years, graph neural network has been a trend in related literature that has

proven to be an effective format for representing linked data and extracting features.
Inspired by this approach, many studies have attempted to present behavioral data in
graph form. Authors of [19] generated Markov chain graphs from dynamic trace data,
and applied graph kernels to acquire similarity matrix, which was sent to a Support Vec-
tor Machine (SVM). Naval et al. [12] extracted system call traces by monitoring mal-
ware execution and transforming the traces into Ordered System-Call Graphs (OSCGs).
Another common type of graph that is used frequently in visualizing malware behavior
data is Quantitative Data Flow Graph (QDFG) as introduced by Wüchner et al. [14],
however, this work only formalizes heuristics to identify malware. Work by Hung et al.
[15] outline an extended version of the traditional QDFG by subsequently applying a
graph neural network (GCN). Although this graph succeeded in expressing more infor-
mative data, it still lack some details, for example each entity is only identified by its
type (i.e. process, file, registry, network) but does not contain any more data such as its
name, path or arguments etc.
It can be inferred that behavioral data contains different types of information, includ-

ing different API categories, different objects and resources that the software influences.
Therefore, this signifies that heterogeneous graph would be a suitable format in which
to illustrate behavioral data. Currently, there is very little existing work investigating the
use of heterogeneous graphs, and we believe our work is the first to represent behavioral
data as a heterogeneous graph. Further details are outlined in Sect. 3.
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3 Proposed Method

In our paper, we use the dynamic behavioral data, or more precisely, the API calls
collected from Cuckoo sandbox to construct multi-edge directional graphs. To generate
graph embedding and identify malicious objects from benign samples, we apply an
attention neural network, as inspired by the work of Wang et al. [16].

3.1 Graph Representation

Entities and Connections. Our graph contains six main types of entities or nodes:
Process, File, Registry, and three for three types of API calls: ProcessAPI, FileAPI and
RegistryAPI. There are five types of connection accordingly:

• Process-ProcessAPI performs connection between a process handle (process entity)
to a Process API (an API that belongs to process category),
• File-FileAPI performs connection between a file handle (file entity) and a File-API,
• Registry-RegistryAPI performs connection between a registry handle (registry entity)
and a RegistryAPI,
• Process-FileAPI performs connection between a process entity and a FileAPI,
• Process-RegistryAPI performs connection between a process entity and a Reg-
istryAPI,
• Self-loop: for each node to have its own features taken into consideration.

Note that there would never be a connection between a file handle and a registry API or
a registry handle and a file API. Details of how the graphs are constructed are presented
below.

The entities and connections are built on API calls that belong to 3 categories respec-
tively:process, file and registry. Inherited from thework ofWüchner et al. [14], processes,
files, sockets, and registry keys are of much significance when identifying malicious
actions. Notice that there is no restriction on the number of types of entities or nodes in
our graph, but we limit the three types of nodes because of the limitation in data collec-
tion. Therefore, with more types of nodes and edges the graph needs to represent, feature
space would become bigger, and the data would be inadequate for learning in such a
huge feature space. The edge data would be important arguments of each call. For each
API call node (entity), only the name of the API is used for encoding as features, and
all arguments are placed in edge data. Therefore, there might be multiple connections
to one single API call node. The graph is also directional. The principles to determine
the direction of each connection is similar to the work done by Hung et al. [15]. In the
work, all API calls that operate the task of opening, creating, writing, or any modifying
actions towards a file or registry would be the source nodes, and the destination nodes
would be the file or registry themselves. In other cases, this will be reversed (i.e. the file
or registry are the source node and the API calls are destination node). The text below
is an example of the behavior from a malware sample collected from a cuckoo report.
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{
"category": "process", 
"status": 1, 
"stacktrace": [], 
"api": "WriteProcessMemory", 
"return value": 1, 
"arguments": { 

"process identifier": 768, 
"buffer": "MZnu0090nu0000nu0003nu0000nu0000...",
"process handle": "0x0000007c", 
"base address": "0x01000000" 

},
"time": 1556629733.164881, 
"tid": 3812, 
"flags":{}

},

List 1. An example of a behavior generated by cuckoo

This small piece of behavior constructs 2 nodes: one is a process entity (id 768)
and another is a ProcessAPI entity (WriteProcessMemory) (because this API belongs
to category process). One edge from the API entity to the process entity, with features
are generated by encoding some information. The data used for acquiring features of
each node is either its API name (if it is an API entity) or the name of its type (if it is
a process/file/registry entity). For each connection, its data is obtained from the flags
fields of the API that the connection links to (or from). Flags fields are generated by
Cuckoo giving an insight into important information about that call.
In our paper, we define meta-path differently from the original work of Wang et al

[16]. We do not define connections between two nodes of the same type (for example
movie-movie) through a middle node of different types (such as movie-actor-movie and
movie-director-movie). We only define a type for the connection between two nodes
directly. For example, Process-ProcessAPI through Process-ProcessAPI edge, or write
Process-(Process-ProcessAPI)-ProcessAPI. After all, the importance of a heterogeneous
graph is the heterogeneity of nodes and edges the graph can support.

Embedding Entities and Edges Argument. As mentioned earlier, insufficient data is
a big problem and has a great effect on how graphs are constructed, or more precisely
what text data should be used for encoding, and how it should be encoded. In this paper,
we will test on both skip-gram and TF-IDF encoding for node names (API names) and
edge arguments (flags fields of an API). Figure 1 shows a representation of a malware
and a benign sample.

3.2 Malware Detection

Detecting malware from a constructed graph can be considered as a graph classification
task. There are two main approaches for this task: graph embedding (try to find rep-
resentations of graph nodes and edges) and graph feature extraction (e.g. using graph
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a) Graph representation of a benign sample

b) Graph representation of a malware sample

Fig. 1. Graph representation of a malware and benign sample.

convolutional neural network). A recent survey in [17] classified graph deep learning
models into 5 categories: graph convolution, graph attention, graph generative, graph
spatial-temporal networks and graph auto-encoders. Zhou et al. [18] examined graph
models in terms of the main characteristics: graph types, training methods and propaga-
tion types; convolution and attention networks are both demonstrated to have contributed
to the propagation step. Hung et al. [15] used GCN to extract features from graph but
this spectral approach requires training and detection on a specific graph structure, since
the learned filters depend on the Laplacian eigenbasis. Graph attention network, instead
of statically normalizing the sum of the features using convolution operation like GCN,
uses attention mechanism for weighting neighbors features with feature dependent and
structure-free normalization.
For heterogeneous graph, the most distinctive feature is the heterogeneity, where

each type of connection or each type of node would have a different importance in
the overall consideration. Wang et al. [16] proposed the heterogeneous graph attention
network (HAN) which utilizes node-level and semantic-level attentions and the model
has the ability to consider node and meta-path importance simultaneously.
When analyzing the behavior ofmalware,manycalls between two entities and related

information may be very important and should take into account for detecting malware.
Inspired by the idea of Wang [16], we propose a new approach with main contribution
is the edge-weighing layers that can learn the importance of each connection among set
of connections between two nodes, since our graphs is multi-edge. More concretely, the
pipeline is presented as in Table 1:
The notations are inherited from the work of Wang [16], therefore the table above

explains only new symbols.
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Table 1. Notations and explanations.

Notation Explanation

eijp Importance of node j to node i through path p

α∅ijp
Weight of node pair (i, j) through path p

Pij Set of connections between node pair (i, j) (from node j to node i)

uijp Importance of path p in the set of connections from node j to node i

Uij Edge-level attention vector from node j to node i

lp Initial edge features

lp Weighted edge features

γ
ij
p Weight of path p

τi Weight of final node i

Z Graph embedding

Edge-Weighing. In [16], embedding z∅i of node i is computed by weighted-aggregation
of the embedding of its meta-path based neighbors:

z∅i = σ

⎛
⎜⎝
j∈N ∅i

α∅ij .hj

⎞
⎟⎠ (1)

α∅ij =
exp σ aT∅ .[hi||hj]

k∈N ∅i
exp σ aT∅ .[hi||hk]

(2)

However, in our problem, each edge has features. Therefore, the importance of node
j to node i should be deduced not only from the embedding of node j and node i, but
also from the connection between these two nodes. Intuitively, we would concatenate
the features of edge p (between node j and node i) and calculate eijp (the importance of
node j to node i through path p). The Eq. (2) would then become:

α∅ij =
exp σ aT∅ . hi lij hj

k∈N ∅i
exp σ aT∅ .[hi||lik ||hk]

(3)

This is the case when there is only one connection between node j and node i, lp there-
fore is lij. However, graphs in our problem are multi-edge, which means there could
be multiple connections between two nodes. For example, Fig. 2 exemplifies multiple
calls to RegQueryValueExW but with different arguments, therefore it should have
different importance values.
Although we can still concatenate lp and hj as in Eq. (3), to acquire:

α∅ijp =
exp σ aT∅ . hi lp hj

k∈N ∅i m∈Pik exp σ a
T
∅ .[hi||lm||hk]

(4)
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Fig. 2. Same API (RegQueryValueExW) is called from process id 2824 with different
arguments.

This concatenation still enables the model to learn the importance of node j to node i
through path p, but note that this concatenationmakes the graph become auni-edge graph
where node i has m connections to m other nodes (having features hj||lp; p ∈ m) instead
of m connections to one node (having features hj). However the purpose of building a
multi-edge graph is to expect that the model could learn the importance of each edge in
the set of connections between two nodes In other words, we want to focus more on the
edge arguments to learn the importance.
Inspired by the idea of the attention network, we use an additional attention layer to

learn the importance of each edge in one set of connections:

uijp = attp lp = σ UTij .lp + b (5)

The weight coefficient of path p is the softmax of u.

γ
ij
p = softmax(u

ij
p )

=
exp σ UTij · lp + b

m∈Pij exp U
T
ij · lm + b

(6)

And the weighted embedding of path p:

lp = γ
ij
p .lp (7)

Node-Level Embedding. By replacing lp in Eq. (3) with lp in Eq. (7) we calculate the
importance of node j to node i though path p:

α∅ijp = softmax σ a
T
∅ . hi lp hj (8)

And the meta-path based embedding of node i (Fig. 3):

z∅i = σ

⎛

⎜⎝QT .
k∈N ∅i m∈Pik

α∅ijp.[hi||lp]

⎞

⎟⎠ (9)
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Fig. 3. Aggregation of meta-path based neighbors

Semantic-Level Embedding. Once we have the node-level embedding, an attention
network is used for learning semantic meaning:

(10)

And the final embedding of node i:

Zi =
P

k=1
β∅k .z

∅k
i (11)

Graph Embedding. There are a variety of ways to obtain the graph embedding after
computing the embedding for the nodes. In this work, the final graph embedding is
obtained by accumulating the weighted final node embedding as in (12):

Z =
i∈V
τi.Zi (12)
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4 Experiments

4.1 Datasets

In our experiments, we employ two datasets for demonstrate the advancement of our
proposed model. The original is directly derived from the work in [15]. The second is an
enhanced version created for this work, which follows the same methodology described
in [15]. The exact compositions are shown in Tables 2 and 3.

Table 2. Original dataset composition

Subset Total Malware Benign

Train/test 1088 655 433

Train 761 463 298

Test 327 192 135

Unknown 637 637 0

Table 3. Enhanced dataset composition

Subset Total samples No. malicious samples No. benign samples Purpose

Enhanced train/test 2379 1391 998 –

Train 1665 954 711 Training

Test 714 437 227 Testing

Unknown 637 637 0 Testing

pack1 4620 4620 0 Testing

benign_555 555 0 555 Testing

We use the train/test subset for training and testing, which is the same as in [15].
This dataset includes 1088 samples in total (655 malware and 433 benign samples).
Training and testing files are exactly the same as in [15]. The same unknown subset is
used for testing. The unknown subset includes 637 malware samples that ClamAV (an
open source anti-virus engine used in a variety of situations) was unable to detect until
2/6/2019. These two subsets are also used to compare the effectiveness of our method
and others. We also collect extra data using the same strategy as described in [15] for
further experiments and enhancing training set. The benign_555 subset consists of 555
benign files, and the pack1 subset comprises 4620 malware samples. These two subsets,
which do not contain any sample from the Original Dataset, are used for testing purpose
only.
The Original Dataset composition is shown in Table 2, it is important to note, that

none of the samples are duplicated in any subset.
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The Enhanced Dataset composition is show in Table 3. It is larger than the Original
Dataset but it is important to note that the same methodology and same 7:3 train:test
ratio was observed.
The enhanced train/test subset consists of 2379 items, 987 of which are benign, the

rest are malware. This enhanced subset is made up by combining the original train/test
subset (described in Table 2), benign_555 subset, (555 benign samples), and additional
741 malware samples, which are not previously seen in any set (original train/test,
unknown or pack1 subset). The train/test ratio is 7:3, the same as that of the train/test
subset in the Original Dataset. The experiment schemes are as follow:

• Evaluate on Original Dataset. We train on train set of train/test subset and experiment
on test set (of train/test subset) and unknown subset.
• Evaluate on Enhanced Dataset. We train on train set of enhanced train/test subset and
experiment on test set (of enhanced train/test subset), unknown, pack1 and benign_555
subset.

4.2 Results

For the evaluation we utilized two types of encoding for node names and edges argu-
ments: skip-gram and TF-IDF. For nodes names, since we only consider 3 types of API
to construct nodes, the vocabulary size for node names is not relatively small. It contains
31 words, 28 of which are APIs (from the three considered categories), the 4 remain
words are: proc (for process entities), file (for file entities), reg (for registry entities),
and other (just in case a non-standard entry occurs in the dataset, though this would be
rare). The vocabulary size for edge arguments is bigger, containing 138 words, one for
each of the 137 cases covered, and a “null” entry for potentially unseen words.
When using TF-IDF encoding, we use three max elements and one second-min ele-

ment to construct a 4-dimensional feature vector of each edge. For skip-gram encoding,
input is the whole argument string sequence and the output is a 10-dimensional feature
vector. Table 4 shows evaluation of different model (trained on train/test subset in Origi-
nal Dataset) with different ways of encoding node and edge data on theOriginal Dataset.
It can be seen that using edge-weighing gives the best performance on train/test subset.
And using edge-weighing layers outperformed original GAT model for heterogeneous
graph proposed by Wang et al.
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Table 4. Results different text encoding and model on the Original Dataset

Train/test (1088 total) Unknown
637 malwareTrain (761 total)

298 benign
463 malware

Test (327 total)
135 benign
192 malware

Acc TPR FAR Acc TPR FAR TPR

Skip-gram +
TF-IDF

96.19% 96.98% 5.03% 92.66% 92.19% 6.67% 89.64%

Skip-gram 93.82% 95.90% 9.40% 88.69% 89.06% 11.85% 96.55%

TF-IDF 90.41% 92.44% 12.75% 91.74% 92.19% 8.89% 96.23%

Skip-gram (no
edge-weighing)

88.04% 86.39% 10.07% 85.63% 83.33% 11.11% 85.22%

TF-IDF (no
edge-weighing)

80.81% 79.05% 16.44% 84.40% 80.21% 9.63% 84.46%

TheOriginalDataset is the same as literature [15], thereforewe conduct a comparison
between our best model (using skip gram encoding for node names and TF-IDF encoding
for edge arguments) and others on this dataset.
Tables 5 and 6 show comparison results on two subsets: test set from train/test subset

and unknown subset. The results of other methods are inherited from literature [15]. Our
first model outperformed in both cases.

Table 5. Evaluation result comparison of our model

Acc TPR FAR

Our model (1st model) 92.66% 92.19% 6.67%

MalGCN 86.22% 88.02% 9.66%

QDFG-GCN 74.31% 87.05% 44.04%

QDFG-KNN 62.37% 49.59% 15.49%

We have implemented a simple classifier on embedding sequences using these two
encoders to investigate the performance of each encoding method, the results from this
are shown in Table 7. It is noticeable that the classification performance on the TF-IDF
encoded data is quite poor on benign_555. Additionally, encoding node data using skip-
gram for benign_555 results in an even worse performance. This is because sequences
of nodes names only, do not convey much meaning, in a sense that there is not much
difference between the sequences of API called by benign and malware samples. As
mentioned in Sect. 2, differences usually lie within the arguments of each call. Also,
this is just to help us understand how the encoding method may affect our model,
hence we just simply apply a classifier on encoded sequences of API called (ordered
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Table 6. Comparison of our model and others on unknown subset

Engine Accuracy Engine Accuracy Engine Accuracy

Our model (1st model) 89.64% ESET-NOD32 77.75% Sophos 70.29%

MalGCN 84.03% K7GW 74.21% AVG 69.63%

McAfee-GW631 82.59% Endgame 74.08% GData 69.24%

Fortinet 82.59% K7AntiVirus 73.95% Rising 68.06%

Microsoft 78.93% Invincea 73.43% Avira 67.54%

MccAfee 77.75% CrowdStrike 72.38% VBA32 67.28%

by the appearance of that call in the report generated by cuckoo). TF-IDF on the other
hand considers the frequency of separate words, and the way words are chosen from
each sequence is the same in every circumstance, (3 max and 1 second-min elements),
therefore can detect from an early stage which calls seem to be abnormal.

Table 7. Classifying based on encoding edge arguments and nodes names only

Train/test (1088) Unknown
(637 malware)

Pack1 (4620
malware)

Benign_555
(555 benign)

Train (761)
298 benign
463 malware

Test (327)
135 benign
192 malware

Edge Node Edge Node Edge Node Edge Node Edge Node

Skip-gram 77.1% 82.3% 78.9% 75.8% 90.9% 97.5% 74.1% 59.3% 14.3% 0.0%

TF-IDF 98.2% 97.4% 87.3% 90.9% 81.3% 92.8% 64.2% 51.7% 26.4% 73.2%

When we conduct experiments to evaluate these models (trained on train/test subset
from Original Dataset) on pack1 and benign_555 subsets, all models still give high True
Positive Rate (TPR) on the pack1 subset. However, they achieve worse False Alarm
Rate (FAR) on the benign_555 subset. The results are shown in Table 8. It can also
be inferred from this table that combining skip-gram and TF-IDF encoder (using skip-
gram for encoding the edge arguments and TF-IDF for encoding the nodes names) gives
more promising results, and is superior in stability as well. Since pack1 contains only
malwares and benign_555 contains only benigns, only TPR and FAR are considered in
these two subsets respectively.
However, all experiments result in higher FAR on benign_555 when compared

with train/test subset. This might be due to the difference in DLL usage between the
benign_555 and train/test subsets.More specially, benign_555 samples all require exter-
nal DLLs loaded to be able to execute, whereas none of the samples in train/test subset
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Table 8. Results on pack1 and benign_355 subset

Acc TPR FAR Acc TPR FAR

Pack1 (4620 malware) Benign_555 (555 benign)

Skip-gram + TF-IDF (1st) – 81.28% – – – 21.29%

Skip-gram (2nd) – 95.30% – – – 29.53%

TF-IDF (3rd) – 82.42% – – – 21.77%

Skip-gram (no edge-weighing) (4th) – 59.65% – – – 26.24%

TF-IDF (no edge-weighing) (5th) – 49.65% – – – 16.25%

require any DLLs, because all benign samples in train/test subset are Windows sys-
tem files. Therefore, we train and evaluate our model (the 1st model) on the Enhanced
Dataset. The results are shown in Table 9.

Table 9. Evaluation when training with enhanced dataset

Dataset/testset Acc TPR FAR

Enhanced
train/test

Train 96.22% 96.02% 3.52%

Test 93.00% 92.68% 6.45%

Unknown – 88.23% –

Pack1 – 90.77% –

It can be seen fromTables 8 and 6 that ourmodel (when trainedon enhanced train/test
subset) cause a slight decline in TPR (or accuracy) on unknown subset, however, it is
still a better result than other models.

4.3 Discussions

Edge-Weighing. For a more intuitive evaluation and deeper understanding, we have
visualized the weights of each edge produced by our model.
List 2 shows an example of a signature for malicious activity of a malware sample.

The signature is generated along with cuckoo report by applying YARA rules which
are contributed by the open community. The call to NtAllocateVirtualMemory
API is indicated as malicious when it requires not only read, write but also execute
permissions, and its allocation type is MEM_COMMIT and MEM_RESERVE. The graph
of this malware after edge-weighing layers is illustrated in Fig. 4.
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List 2. A signature for malicious activity according to yara rules
{ 

"markcount": 2, 
"families": [], 
"description": "Allocates execute permission to another

process indicative of possible code injection", 
"severity": 3, 
"marks": [

{ 
"call": {

"category": "process", 
"status": 1, 
"api": "NtAllocateVirtualMemory",
"return_value": 0, 
"arguments": {

"process_identifier": 2508, 
"region_size": 36864, 
[…]

},
"time": 1556598469.154953, 
"tid": 2468, 
"flags": {

"protection": "PAGE_EXECUTE_READWRITE", 
"allocation_type": "MEM_COMMIT|MEM_RESERVE"

} 
},
[…]

},
...

] 
} 

Fig. 4. Visualization of edge after weighted

As can be seen from Fig. 4, our model has been able to learn the importance of
the API call using the parameters protection and allocation_type, similar
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to the signature from the cuckoo report. It can be inferred that distinctive behaviors
that humans can manually analyze and label as malicious activities, could be learned
automatically using this approach. However, we expect the model could learn not only
behaviors that human can explicitly see but also those that are more abstract that prove
difficult or impossible for humans to manually analyze.

Information Used for Embedding. For now, only three types of API are represented
in our graph, therefore, some important information might be ignored. For example, the
two behaviors shown in List 3 and 4 are considered malicious activities:

List 3. A query for the computer name
"call": {

"category": "misc",
"status": 1, 
"api": "GetComputerNameA", 
"return_value": 1, 
"arguments": {

"computer_name": "WIN7X86-PC"
},
"flags": {}

} 

List 4. Check for the Locally Unique Identifier on the system for a suspicious privilege
{ 

"call": {
"category": "system",
"status": 1, 
"api": "LookupPrivilegeValueW", 
"return_value": 1, 
"arguments": {

"system_name": "",
"privilege_name": "SeDebugPrivilege"

},
"flags": {}

} 
} 

The above two calls belong to category misc and system. Our model is unable
to take these calls into consideration. To evaluate the effects of each API category on
our model’s malware detection ability, we have leveraged malware analyzing expertise
to narrow down the most distinctive APIs for detecting malicious behaviors. The list
of these APIs with their corresponding category is described in Table 10. The number
of those APIs grouped by category is presented in Table 11. Note that these categories
are organized by Cuckoo, of which there are 16 in total: certificate, crypto,
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exception, file, iexplore, misc, netapi, network, ole, pro-
cess, registry, resource, services, synchronization, system
and ui. Other sandboxes might have different methods to group APIs.

Table 10. The most distinctive API for detecting malicious behaviors

API Category API Category API Category

NtDuplicateObject System ReadProcessMemory Process DeviceIoControl File

URLDownloadToFileW Network CreateServiceW Service CryptGenKey Crypto

MoveFileWithProgressTransactedW File ControlService Service NtDelayExecution Synchronisation

NtCreateUserProcess Process NtCreateProcess Process NtClose System

GetComputerNameW Misc ShellExecuteExW Process NtCreateKey Registry

URLDownloadToFileW Network NtCreateProcessEx Process NtWriteFile File

NtSetInformationFile File RegSetValueExW Registry OpenServiceW Service

CreateProcessInternalW Process InternetSetOptionA Network CryptEncrypt Crypto

NtProtectVirtualMemory Process LdrGetDllHandle System CreateServiceA Service

RtlCreateUserProcess Process CryptExportKey Crypto NtOpenProcess Process

MoveFileWithProgressW File RegOpenKeyExW Registry InternetOpenW Network

NtAllocateVirtualMemory Process RegSetValueExA Registry Process32FirstW Process

NtDeviceIoControlFile File RegOpenKeyExA Registry NtCreateFile File

SetWindowsHookExW System SetFileAttributesW File InternetOpenA Network

EnumServicesStatusW Service InternetReadFile Network Process32NextW Process

SetWindowsHookExA System GetUserNameA Misc NtLoadDriver System

LdrGetProcedureAddress System RegQueryValueExA Registry CryptHashData Crypto

GetComputerNameA Misc RegQueryValueExW Registry NtOpenFile File

GetAdaptersAddresses Network OpenServiceA Service LdrLoadDll System

ObtainUserAgentString Network NtTerminateProcess Process NtSetValueKey Registry

EnumServicesStatusA Service

Table 11. Number of interesting apis by category

Category Total API Category Total API Category Total API

Crypto 4 Network 8 Service 7

File 8 Process 13 Synchronisation 1

Misc 3 Registry 8 System 8

Not only the API is the model missing out, but the flags field also conveys limited
information. For example, the action demonstrated in List 5 would highly be a suspicious
behavior since it is trying to register itself to execute whenever Windows starts, which
is a common covert activity of malware:
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List 5. An activity of a malware trying to install itself for auto-run at Windows startup
{ 
"category": "registry", 
"status": 1, 
"stacktrace": [], 
"api": "RegSetValueExA", 
"return_value": 0, 
"arguments": {

"key_handle": "0x00000078",
"value": "c:\\windows\\system32\\mssrv32.exe",
"regkey_r": "ImagePath", 
"reg_type": 1, 
"regkey":

"HKEY_LOCAL_MACHINE\\SYSTEM\\ControlSet001\\services\\msu
pdate\\ImagePath"
},
"time": 1556598470.626408,
"tid": 2512, 
"flags": {

"reg_type": "REG_SZ"
} 

},

Our graph only encodes the flag field, however, the importance does not lie within
the flag field, but the regkey in the arguments section, which specifies the reg-
istry path this API is trying to modify. Similarly, when changing the content of a file,
the distinctive information used to distinguish between malware and benign samples
is often the path to which the API is referring, or the value the API is trying to set.
With such information, we cannot simply use n-gram or similar encoding methods,
since the path vary. One solution is to encode each part of the path and assign a corre-
sponding severity level. For example, the path HKEY_LOCAL_MACHINE\\SYSTEM
\\ControlSet001\\services\\msupdate\\ImagePath, wouldbe divided
into 4 parts as follow:
ePath, would be divided into 4 parts as follow:

1. HKEY_LOCAL_MACHINE\\
2. SYSTEM\\
3. ControlSet001\\services\\msupdate\\
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4. ImagePath

Here, 1. would be the root element separated by \\, which indicates the cat-
egory of the registry, (i.e. HKEY_CLASSES_ROOT, HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CURRENT_CONFIG). Each
value would be assigned a corresponding severity, in this case HKEY_CURRENT_USER
and HKEY_LOCAL_MACHINE would be 1 and the others 0. This is because these two
root category contain paths to important registry entries that malware usually interferes
with (e.g. the path to set auto-start applications). 2. would be the child element of
the root registry object. This element would be assigned a severity level according to
its presence on a blacklist. Any elements contained within this list would be set to 1,
otherwise they would be set to 0. 3. Regular expressions would be used to detect the
presence of certain words in another blacklist, or to compute the number of elements
separated by \\. There is considerable diversity in the strategy to encode the path and
this is just one example of a possible solution.

Graph Embedding. Asmentioned in Sect. 3, there are multiple methods for generating
the graph embedding. Our model now only uses the weighted-sum of all the nodes to
represent the graph embedding. However, this approach would omit information about
the time each API is executed, in other word, the order of each API being called. Now,
intuitively, the solution might be to concatenate the nodes’ embedding in the order of
time they are executed. Yet, it is intricate to determine the exact execution sequence if
multipleAPIs having the same time field value, as manifested in Fig. 5. Another hurdle
is to decide whether to order the nodes just by time of execution or also by the process
calling them. The first option would ignore the relationship between the caller and the
node being called, and considers the time the nodes are called only. The latter groups
all nodes being called by the same process, and then orders each group of nodes by the
time they are called.
In previous works, there are already some efforts to represent the graph as a sequence

of nodes to apply anRNN on. However, these worksmostly usewalking algorithms such
as RandomWalkor DeepWalk to choose theorder of the nodes [20, 21]. He et al. proposed
a modified random walk on heterogeneous graph in [22]. Yet, all these models are not
either designed for, or evaluated on malware detection tasks, and the information of the
nodes in these literatures does not contain time data. Nevertheless, these approaches do
produce promising results and are inspiring, although in this specific task they would
still overlook time data.
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Fig. 5. An example of 10 API containing the same value for time field

5 Conclusions and Future Work

In conclusion, this paper outlined several challenges faced in the field of malware detec-
tion. It has also proposed a novel approach in an effort to help address the challenges. Our
method has achieved comparable resultswith other state-of-the-art techniques. However,
there are still several limitations in our strategy of representing behaviors, whichwe have
also discussed in Sect. 4 to aim for future research.
As with other deep learning approaches, this cannot simply be a replacement for

existing time-served tactics for malware detection, such as signature-based, but it could
be implemented as amodule to analyzemore complicated or unseen samples (it might be
an additional validation after static analysis). However, this approach requires executing
the sample in a virtual environment, hence it would take a while to first generate a report
which contains behavioral data. Therefore, when implemented in a program, it would
still be infeasible to process every file that static modules cannot detect as malware, but
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rather only execute suspicious files. Yet, knowing which files are suspicious might be
another challenge.
Moreover, not every executable can be activated in a virtual environment due to

anti-virtualization techniques, or the fact that some executable files require human
interaction, especially those that are benign, which makes collecting benign samples
a time-consuming task.
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