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Abstract. A novel hybrid approach between clustering methods and
autoencoders (AEs) is introduced for detecting network anomalies in
a semi-supervised manner. A previous work has developed regularized
AEs, namely Shrink AE (SAE) and Dirac Delta Variational AE (DVAE)
that learn to represent normal data into a very small region being close
to the origin in their middle hidden layers (latent representation). This
work based on the assumption that normal data points may share some
common characteristics, so they can be forced to distribute in a small
single cluster. In some scenarios, however, normal network data may
contain data from very different network services, which may result in
a number of clusters in the normal data. Our proposed hybrid model
attempts to automatically discover these clusters in the normal data in
the latent representation of AEs. At each iteration, an AE learns to map
normal data into the latent representation while a clustering method
tries to discover clusters in the latent normal data and force them being
close together. The co-training strategy can help to reveal true clusters
in normal data. When a querying data point coming, it is first mapped
into the latent representation of the AE, and its distance to the closest
cluster center can be used as an anomaly score. The higher anomaly score
a data point has, the more likely it is anomaly. The method is evaluated
with four scenarios in the CTU13 dataset, and experiments illustrate
that the proposed hybrid model often out-performs SAE on three out of
four scenarios.

Keywords: Autoencoder, Deep learning, Anomaly Detection, Cluster-
ing, Latent Representation

1 Introduction

Anomaly detection is the task to identify patterns in data or events representing
the operation of systems that vary so much from the expected behavior [1, 6].
In network security, the network anomaly detection means the discrimination of
illegal, malicious activities and other damaging forms of network use and abuse
from normal connections or expected behavior of network systems [13]. These
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actions are considered network anomalies. In many scenarios, data representing
the normal behavior of network systems tend to be available and easy to obtain,
while anomalies are scarce and sometimes impossible to collect [5]. Thus, the
semi-supervised learning approach, such as one-class classification techniques, is
a suitable learning scheme to construct models from only normal data for iden-
tifying network anomalies. In such approach, One-class Support Vector Machine
(OCSVM), Local Outlier Factor (LoF), and Autoencoders (AEs) are well-known
methods used for anomaly detection.

There has been been a widespread use of AEs in anomaly detection domain [8,
12, 10, 14] in recent years. This AE method can be used to build anomaly de-
tectors by itself, or used as representation blocks in hybrid anomaly detection
models. In the latter approach, the bottleneck layer of the AE trained on nor-
mal data is used as the new feature representation (latent representation) for
enhancing the performance of following anomaly detection methods. This is be-
cause the latent feature space can represent normal data in more meaningful
features (lower dimension and reveal robust features) than the original feature
space. The work in [5] is known as a typical study of using the latent represen-
tation. In [5], two regularized AEs, namely SAE and DVAE, were developed to
construct a robust feature representation in which normal data is mapped into
a very small region being close to the origin in the latent representation of SAE.
The rest of latent feature space is reserved for possible anomalies appearing in
the future. This work is based on the assumption that normal data points may
share some common characteristics, and they can be forced to distribute in a
small single cluster. In some scenarios, however, normal network data may con-
tain data from very different network services, which may result in a number of
clusters in the normal data. Therefore, representing such data into single cluster
in the bottleneck layer of AE may damage valuable characteristics of normal
data.

In this paper, we introduce a hybrid learning model that can inherited the
strengthens from both autoencoders (AEs) and clustering methods for anomaly
detection. In other words, AEs have the ability to map normal data in a lower
feature space in which more robust features representing normal behavior can
be revealed, whereas clustering methods can learn to discover sub-classes (i.e.
clusters) in the normal data. When clustering methods working in a lower di-
mension with more robust features such the latent representation of AEs, they
can perform more efficiently than those in the original input data. Therefore,
this work aims to propose a novel learning scheme that combines the learning
strategies of an AE and a clustering method at each iteration. This means that
the AE learn to represent normal data into robust feature space in its middle
hidden layer, while the clustering method automatically discovers a number of
sub-classes and forces them being close together. This work is performed at each
iteration until these training processes are stable. Our proposed model is novel
to the exist hybrid between AEs and clustering techniques introduced in [15].
In [15], the authors aimed to discover a number of image clusters in the latent
feature space of an AE in an unsupervised manner. The main difference is that
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the hybrid in [15] was trained to pull each image cluster far away from each oth-
ers while CAE learns to force normal clusters being close together because these
normal clusters share some common characteristics of the normal behaviors. The
proposed model is evaluated on the four scenarios in the CTU13 dataset. our ex-
perimental results show that CAE often out-performs SAE and DVAE on three
of four scenarios where the normal data seems to have more than one classes.

The rest of this paper is organized as follows. We shortly introduce to AEs and
a clustering method in Section 2. Section 3 briefly reviews some recent studies
related to using latent representation for anomaly detection. This is followed by a
section proposing the hybrid between AEs and clustering methods. Experiments,
results and discussion are presented in Sections 5 and 6 respectively. The paper
concludes with highlights and future directions.

2 Background

2.1 Autoencoders

A classical autoencoder [11, 2], often called autoencoder, is a neural network that
consists of two parts: encoder and decoder as shown in Figure 1. An autoencoder
is trained to copy network’s input to its output. The encoder is defined as a
feature extractor that allows to explicitly represent an input x in a feature space.
Let fθ denote the encoder, and X = {x1, x2, ...xn} be a dataset. The encoder fθ
map the input xi ∈ X into a latent representation zi = fθ(xi). The decoder gφ
attempts to map the latent representation zi back into the input space, which
forms a reconstruction x̂i = gφ(zi). The encoder and decoder are commonly
represented as single-layer neural networks in the form of activation functions of
affine mappings as follows:

fθ (x) = ψf (Wx+ b) (1)

gφ(z) = ψg

(
W
′
z + b

′
)

(2)

where θ=(W,b) and φ =(W’,b’) are parameters set for training encoder and
decoder, respectively. ψf and ψg are the activation functions of the encoder and
decoder, such as a logistic sigmoid or hyperbolic tangent non-linear function, or
a linear identity function. The reconstruction loss function over training samples
can be written as:

LAE(θ;φ;x) =
1

n

n∑
i=0

l(xi, x̂i) =
1

n

n∑
i=0

l(xi, gφ(fθ(xi))) (3)

Where l(xi, x̂i) is the discrepancy between the input xi and its reconstruction x̂i;
n is the number of data samples in the dataset. Autoencoders learn to optimize
the objective function in (3) with respect to the parameters θ=(W,b) and φ
=(W’,b’) by using a learning algorithm such as the stochastic gradient descent
with back-propagation. The choice of the reconstruction loss depends largely
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Fig. 1. Autoencoder

on the appropriate distributional assumptions on given data. The mean squared
error (MSE) in Eq. 4 is commonly used for real-valued data, whereas a cross-
entropy loss in Eq. 5 can be used for binary data.

LAE(θ;x) =
1

n

n∑
i=1

(
‖ xi − x̂i ‖2

)
(4)

LAE(θ;x) = − 1

n

n∑
i=1

(
xi log(x̂i) + (1− xi) log(1− x̂i)

)
(5)

By compressing input data into a lower dimensional space, the classical au-
toencoder avoids simply learning the identity, and removes redundant informa-
tion [12].

2.2 Clustering techniques

Clustering techniques consider samples in datasets as objects. They classify these
objects into different groups or clusters, so that objects within a cluster are sim-
ilar to each others and distinguished with objects from other clusters. There are
variety type of clustering algorithms and every methodology follows a different
set of rules for defining the similarity among data points. One of the most pop-
ular clustering algorithms is K-means. It was originally proposed by MacQueen
in 1967. K-mean is a unsupervised, interative method of clustering. The idea be-
hind this technique is that the algorithm starts with a given dataset and initial
clustering centers. Following this, two steps are operated iteratively: relocating
each data point to its new closest center; updating the clustering centers by cal-
culating the mean of all members. The process is repeated until a convergence
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criteria is met (a predefined number of iterations). If no changes in clustering
centers between two consecutive iterations is found, the process will stop, and
return the optimal solution. Pseudo-code of K-Means algorithm is showed in
Algorithm 1.

Algorithm 1 K-Means

1: Input: given a datasets X = {x1, x2, ...xn}
and the number of cluster k.

2: Output: k cluster centers.
3: Initialize: Randomly choose k initial centers {c1, c2, ...ck}.
4: repeat
5: Assign each sample xi ∈ X to the closest cluster.
6: Calculate the new mean and update the new cluster center.
7: until a convergence criteria is met

=0

3 Related Work

Autoencoders (AEs) have been widely used for anomaly detection. The network
architectures can be used by itself as a stand-alone classifier or a feature rep-
resentation block in a hybrid between AEs and classification methods. In the
latter approach, the bottleneck layer of AEs can be used as a new feature space
for the following classifiers [5, 4, 3, 10, 7, 15, 16]. The latent feature representation
can be constructed in supervised learning [16], semi-supervised learning [5, 4, 3]
and unsupervised learning [10, 7]. Once the training process of a AE finished,
the encoder is used as a feature representation block enhancing the following
anomaly detection method. The central idea is that the bottleneck layer can
map original data into a lower dimension, and discover more robust features
representing the normal behavior. The remain of this section, we will discuss
some typical work for three latent representation approaches mentioned above.

In supervised manner, Vu et al. [16] introduced Multi-distribution VAE
(MVAE) to represent normal data and anomalous data into two different areas
in the middle hidden layer of VAE. Classical Variational autoencoders (VAEs)
can learn to map input data into a standard Gaussian distribution N (0, 1) in its
bottleneck layer. In [16], the class labels (normal and anomaly) are incorporated
into the loss function of VAE to push the two data classes into two different
regions. These regions have the same Gaussian distribution shape with σ = 1,
but different mean values. The proposed model was evaluated on two publicly
network security datasets, and it produces promising performance.

In semi-supervised manner, Cao et al. [5] proposed two regularized AEs,
called Shrink AE (SAE) and Dirac Delta VAE (DVAE), to capture the behav-
iors of normal data. SAE and DVAE are aimed to put normal data towards a very
small region being close to the origin of the latent feature space, and attempt to
reserve the rest of the latent feature space for anomalies appearing in the future.
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The authors assumed that only normal samples are available for training, and
no anomalous data can be used for estimating hyper-parameters. These regu-
larized AEs are aimed to address the problem of identifying anomalies in high-
dimensional network data. The latent representation of SAE and DVAE were
then used for facilitating simple one-class classifiers. SAE and DVAE were then
evaluated on eight well-known anomaly detection datasets. The experimental
results confirmed that their models not only can produce a better performance,
but also are less sensitive on a wide range of parameter settings in comparison
to stand-alone OCCs, and those of other feature representation methods.

The study [7] is a typical unsupervised learning approach that employs the
latent representation of an AE, namely a deep belief network (DBN). Erfani et
al. [7] used a deep belief network (DBN) for constructing a robust feature repre-
sentation for an one-class classifications (OCCs). The OCCs are One-class Sup-
port Vector Machine (OCSVM) and Support Vector Data Description (SVDD).
The proposed model aimed to deal with the problem posed in high-dimensional
anomaly detection data. The DBN was first pretrained in the greedy layer-wise
fashion by stacking Restricted Boltzmann Machines (RBMs) trained in unsuper-
vised manner. OCSVM and SVDD were then stacked on top of the DBN. The
hybrid model were evaluated on eight high-dimensional UCI datasets, and the
experimental results showed that the model often out-performs stand-alone the
one-class classifiers.

In this work, we attempt to construct a latent representation for identifying
network anomalies in semi-supervised manner. This means that we first train
an AE on normal data to map the original data into several clusters in the
latent feature space of the AE with a proposed regularized loss. It then performs
the K-mean task: assigning data points to each clusters; relocating the cluster
centers. These tasks are operated iteratively until a early-stopping criteria met.
The trained CAE is then employed for classifying querying data points. The
distance from the data point to the nearest cluster center is used as anomaly
score. By imposing a classification threshold, the data point can be classified as
an anomaly if its distance is greater than the threshold.

4 Proposed Approach

In this section, we explain our proposed model for anomaly detection that is
called Clustering-based deep AutoEncoder (CAE). Our model is a combination
of a variation of k-mean clustering algorithm and an AE. It is clear that the orig-
inal version of AE, which forces normal input samples into a sole cluster may not
produce expected results on datasets in which practically have several clusters.
CAE aims to learn the latent representation of normal data and parallelly force
data points in the bottleneck of AE into a number of clusters. During the train-
ing process, the centers of these clusters are also put toward to the origin of the
latent representation. This is based on the assumption that normal data may
have several sub-classes inside, but they still share some common characteristics
in overall. Thus, normal data points should be appeared close each others.
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In practice, we propose a new regularizer to the loss function of the AE
in the hybrid CAE. Unlike classical K-mean methods, which try to minimize
distances within a cluster and maximize the distances between clusters, we aim to
design a variance K-mean that minimizes both distances within each cluster and
between clusters. Therefore our regularizer consists of two terms: (1) minimizing
the distances of data points to their corresponding centers; (2) minimizing the
distances of the cluster centers to the origin of the latent representation. In the
equation 3, the first term is the reconstruction error (RE) of the AE, and the
second and the third terms are the two regularized terms (1) and (2) respectively.
The CAE model trained on normal training data forces almost normal data into
inner clusters and these cluster centers are also pulled closer to the origin of the
CAE latent representation. In the querying stage, the model will be employed to
distinguish whether a query data point belonging to normal class or anomalous
class by evaluating its distance to the closest cluster center. This means that
if the distance is greater than a predetermined threshold, the data point will
be classified as an anomaly. The loss function in this case can be defined as in
Equation 6 below:

ζCAE(θ, xi, z) =
1

n

n∑
1

∣∣∣∣xi − x̂i∣∣∣∣2 + λ1
1

n

n∑
1

∣∣∣∣∣∣f (t)(xi)− c∗i ∣∣∣∣∣∣2 + λ2
1

k

k∑
1

∣∣∣∣ctj∣∣∣∣2
(6)

c∗i = argmin
ct−1
j

∣∣∣∣∣∣f (t)(xi)− ct−1j

∣∣∣∣∣∣2 (7)

ctj =

∑
xi∈Ct−1

j
f t(xi)∣∣Ct−1j

∣∣ (8)

where n is the number of samples in the normal training set; x̂i is the recon-
struction of the sample xi; The first component in (6) is the reconstruction
error (RE), and the second and the third terms are two regularized components
(pulling data points closer to their cluster centers, pushing the centers of all clus-
ters being close to the origin as well as possible). λ1 and λ2 are used to trade-off
between these components. f t(x) is the mapping function (the encoder of CAE)
at the tth iteration; c∗i is the closest cluster of the ith observation; ct−1j is the jth

cluster centroid, which is produced at the (t− 1)th iteration.
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Fig. 2. An illustration of our proposed model

Fig. 2 is an example for representing noramal data in the latent feature space
of CAE during the co-training process of CAE. We suppose that the normal
training set consists of three clusters (illustrating in green, blue, and red). In the
training phrase, observations in the same cluster are forced to be close to their
corresponding cluster centers as showed in small purple arrows, meanwhile three
cluster centers are also pushed towards the origin of the latent feature space as
illustrated with red arrows.

We present our proposed method as in Algorithm 2. At the first iteration
C0, we randomly initialize K cluster centers. CAE is trained on the normal
training set to optimize the loss function (6). This process will gradually force the
normal training data in the latent feature space (called latent normal data) into
several clusters. Following this, the latent normal data is assigned into K clusters
via formula (7) and these cluster centers are updated using the equation (8).
These training steps will be operated until an early-stopping criteria met or the
iteration exceed a threshold T . In this work, we use a normal validation set for
the early-stopping. The model trained on the normal training set is evaluated on
the validation set once every few iterations. The training process will stop if the
RE on the validation set does not improve for a certain threshold in a number of
successive iterations. Finally, the output of the algorithm is the cluster centers
in the latent feature space and CAE model.
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Algorithm 2 Clustering-based deep AutoEncoder (CAE)

1: Input: a given dataset X, the number of clusters K, a set of AE hyper-
parameters θ and φ, the maximum number of iterations T .

2: randomly choose K cluster centers (Co)
3: t = 1
4: repeat
5: Train CAE on X to optimize the loss function (6).
6: Classify X into K clusters
7: Update all new K cluster centers (Ct) via formula (8).
8: t = t+ 1.
9: until an early-stopping criteria met or t < T .
10: Output: CAE model and cluster centers C.

=0

5 Experiments

5.1 Datasets

In order to demonstrate the efficient performance of the proposed model, we
conducted the experiments on four datasets as shown in the Table 1. These
datasets are the mostly well-known issues in the cyber security domain, namely
CTU13. The CTU13 is a publicly available botnet data provided in 2011 [9]. In
each experiment we split them into 40% for training (normal traffic) and 60%
for evaluating (normal and botnet traffic). Three categorical features, including
dTos, sTos and protocol are encoded by the one-hot encoding technique. We
follow the processing procedure in [5] to preprocessing these datasets.

Table 1. Four datasets for evaluating the proposed models

No Dataset Dimension
Training

set
Normal

Test
Anomaly

Test

1 Rbot (CTU13-10) 38 6338 9509 63812
2 Murlo (CTU13-8) 40 29128 43694 3677
3 Neris (CTU13-9) 41 11986 17981 110993
4 Virut (CTU13-13) 40 12775 19164 24002

5.2 Experimental Settings

In this work, our model will be constructed from the normal class only. The
configuration of CAE is described as follows. The trade-off parameters of the
loss function λ1 and λ2 are set equal to 300 and 1500 respectively. The number
of hidden layer is 5, and the middle hidden layer size is calculated using the
formula h = [1 +

√
n], where n is the number of input features [4]. The learning
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rate is set at 10−1, and the batch size is 100. The weights of CAE are initialized
using the Xavier initialization method to speed up the convergence process. We
use Adadelta optimization algorithm for training CAE. The activation function
is the TANH function. For the variance K-mean, we manually choose the number
clusters equal to 2. We realize that k = 2 is the best choice, but it is acceptable.
How to automatically estimate the number of sub-classes (clusters) in normal
network data is a question for our future work. We use validation sets to evaluate
our proposed models at every 5 epochs for early-stopping. The normal training
data, normal testing data and anomaly testing data in the latent representation
are visualized for getting into the insight of the latent feature space.

We carry out two experiments for evaluating the proposed model. Firstly, the
performance of CAE is compared with SAE and DVAE in the study [5]. There-
fore, we reproduce the same experiments as in [5], and report the performance
of SAE and DVAE on two cases: the following classifiers are CEN and MDIS
as showed in Table 2. The reason for choosing CEN and MDIS is that CEN
was reported as the best classifier when combining with SAE and DVAE in the
study [5] while MDIS was considered as the worse case. In our model, we use the
distance from a querying data point to its nearest cluster center as anomaly a
score. To estimate the distance, our model first calculate the distance from that
point to every cluster centers, and decide which one is the nearest cluster center.
The process is very similar to CEN proposed in [5], but for multiple centroids.
We call the method to estimate anomaly score in our proposed model as Multi
Centroids (M-CEN). Secondly, the latent data of the training set and testing
set are visualized to get into insight the behavior of the latent representation of
CAE as visualizing in Figs. 3, 6, 4, and 5. We also visualize the Are Under the
ROC curves when evaluating CAE on four scenarios as showed in Fig. 7.
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Fig. 3. Visualize the latent data of the CTU13-10 dataset
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Fig. 4. Visualize the latent data of the CTU13-08 dataset
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Fig. 5. Visualize the latent data of the CTU13-9 dataset
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Fig. 6. Visualize the latent data of the CTU13-13 dataset
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0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves

CAE      (AUC = 0.959)

(c) CTU13-09
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Fig. 7. The ROC curves of our proposed model on four datasets

Table 2. AUCs from the hybrid SAE-OCCs, DVAE-OCCs, and the CAE model.

Represen-
-tation

One-class
Classifiers

Datasets
CTU13-10 CTU13-08 CTU13-09 CTU13-13

SAE
λ = 10

CEN 0.999 0.991 0.950 0.969
MDIS 0.999 0.990 0.950 0.968

DVAE
λ = 0.05, α = 10−8

CEN 0.999 0.982 0.956 0.963
MDIS 0.999 0.984 0.957 0.964

CAE M-CEN 0.996 0.994 0.959 0.979

6 Results and Discussion

This section presents the experimental results of evaluating the proposed model,
CAE, on the four scenarios in the CTU13 dataset. The performance of these
classifiers is evaluated by using AUC as summarized in Table 2. The training
data and testing data represented in the latent feature space of CAE are plotted
to investigate the behavior of CAE. The ROC curves produced from the CAE
classifier are also visualized to evaluate the performance of CAE on a number of
classification thresholds as showed in Fig. 7.

It can be seen from Table 2 that the CAE classifier performs (in terms of
classification accuracy) very well on all datasets, and the CAE performance is
often better than those of SAE and DVAE with CEN and MDIS on the CTU13-
08, CTU13-09 and CTU13-13 scenarios. This suggests that the normal data may
originally distribute in two sub-classes. Thus, when CAE represents the normal
data into two clusters, the AUC scores are improved in comparison to those
produced from SAE-CEN and DVAE-CEN.

In order to support for our discussion above, we will investigate the latent
data of both the normal training data, and the testing data consisting of normal
data and anomalies. In the figures 3, 6, 4, and 5, we plot the first two features
of the data in the latent feature space: the normal training data in blue; the
normal testing data in green; and the anomaly testing data in red. Figure 3
shows that both the normal training data and the normal testing data seem to
distribute in only one region in the latent feature space. This suggests that the
normal data in CTU13-10 may contain only one cluster. Therefore, the AUC
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score on CTU13-10 decreases when the normal data is forced into two clusters
(the AUC of CAE is slightly lower than those of SAE-CEN and DVAE-CEN).
On the other hand, the figures 6, 4, and 5 show promising results. The latent
data of the normal training, and the latent data of the normal testing distribute
into two small areas in the latent feature space. These small areas tend to be
close together. The latent data of the anomaly data appears in some regions not
overlapping the normal data. This can imply that the normal data of CTU13-
13, CTU13-08, and CTU13-09 may contain more than one sub-classes, which
results in the increase in the AUC scores in comparison to those of SAE-CEN
and DVAE-CEN as showed in the last row in Table 2.

The results in the figures 3, 6, 4, and 5 are very useful for the explanation
why CAE can out-performs SAE and DVAE on the CTU13-13, CTU13-08, and
CTU13-09 scenarios while on CTU13-10 it does not. Base on our experimental
results and analysis, we can confirm that our proposed model, CAE, can perform
well on anomaly detection datasets in which the normal data contains more than
one sub-classes.

7 Conclusion and Future work

A novel hybrid between clustering methods and AEs, namely CAE, is proposed
for automatically revealing a number of clusters in normal data. This aims to
overcome the drawback of a previous study [5] where normal data is considered
as only one cluster. In CAE, a variation of K-mean and an AE co-train at each
training iteration in which the AE maps normal data into the latent representa-
tion while the clustering-based method attempts to group the data into several
clusters being close to the origin. In querying stage, the distance of a given data
point to the closest cluster center can be used as an anomaly score. The higher
anomaly score a data point has, the more likely it is anomaly. CAE is evaluated
on four scenarios in the CTU13 dataset and experiments illustrate that CAE
out-performs SAE and DVAE on three out of four scenarios.

In this work, we choose the number of clusters manually. The study of au-
tomatically estimating the true number of clusters in normal data will be post-
poned to the future work.
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