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This article presents a finite element method (FEM) integrated with the nonlocal theory for analysis of the static bending and free
vibration of the sandwich functionally graded (FG) nanoplates resting on the elastic foundation (EF). Material properties of
nanoplates are assumed to vary through thickness following two types (Type A with homogeneous core and FG material for
upper and lower layers and Type B with FG material core and homogeneous materials for upper and lower layers). In this
study, the formulation of the four-node quadrilateral element based on the mixed interpolation of tensorial components
(MITC4) is used to avoid “the shear-locking” problem. On the basis of Hamilton’s principle and the nonlocal theory, the
governing equations for the sandwich FG nanoplates are derived. The results of the proposed model are compared with
published works to verify the accuracy and reliability. Furthermore, the effects of geometric parameters and material properties
on the static and free vibration behaviors of nanoplates are investigated in detail.

1. Introduction

Nowadays, with the sophisticated development of technol-
ogy, the investigation of nanostructures has been widely con-
cerned by scientists in the world. However, the studies show
that conventional computational theory for millimeter-sized
structures is less accurate for nanometer-sized structures. So,
in order to improve the accuracy for the analysis of nano-
structures, many theories have been proposed such as the
modified couple stress theory [1], the strain gradient theory
[2], and the nonlocal theory [3, 4]. Among these theories,
the nonlocal theory [3, 4] has been used popularly in the lit-
erature due to simplicity and high accuracy. Li et al. [5] devel-
oped a new nonlocal model to solve the static and dynamic
problems for circular elastic nanosolids. Ansari et al. [6] used
the nonlocal theory to analyze the free vibration of single-

layered graphene plates. Arash andWang [7] discussed about
the nonlocal elastic theory in modeling carbon nanotubes
and graphene. Asemi and Farajpour [8] studied thermome-
chanical vibration of graphene plates including surface effects
by decoupling the nonlocal elasticity equations. Jalali et al. [9]
used molecular dynamics combined with nonlocal elasticity
approaches to investigate the effect of out-of-plane defects
on vibration analysis of graphene. In addition, the nonlocal
theory was also used in Refs. [10–20] to investigate the vari-
ous performances of nanoplates. Recently, more attention
has focused on the analysis of FG nanoplates considering
the small-scale effects. Natarajan et al. [21] examined the
vibration behavior of FG nanoplates by using the Mori-
Tanaka homogenization scheme. Jung and Han [22] used
the Navier solution to investigate the bending and free vibra-
tion responses of the Sigmoid FGM nanoplates. Nami et al.
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[23] studied the thermal buckling of FG nanoplates by using
the third-order shear deformation theory (TSDT) combined
with nonlocal elasticity. Hashemi et al. [24] analyzed the free
vibration of moderately thick circular/annular FG Mindlin
plates via nonlocal elasticity. Salehipour et al. [25] developed
the analytical solution for free vibration analysis of the FG
micro/nanoplates using the three-dimensional theory of
elasticity accounting small-scale effect. Salehipour et al.
[26] expanded the modified nonlocal elasticity for examin-
ing the natural frequency of the FG micro/nanoplates.
Ansari et al. [27] analyzed the bending and free vibration
responses of the FG nanoplates by using Eringen’s nonlocal
theory.

In recent years, the application of FG materials has been
widely spread in nanoscale devices such as thin films [28, 29]
or fully released nanoelectromechanical systems (NEMS)
[30] due to their excellent performance. Therefore, investi-
gating various behaviors of the FG material nanostructures
has attracted the attention of many researchers. Simsek [31]
studied free longitudinal vibration of axially FG tapered
nanorods using nonlocal effects. Simsek and Yurtcu [32]
analyzed the bending and buckling of FG nanobeams based
on the nonlocal Timoshenko beam theory. Natarajan et al.
[33] considered the free flexural vibration of FG nano-
plates. Nazemnezhad and Hashemi [34] analyzed the non-
linear free vibration of FG nanobeams, and Hashemi et al.
[35, 36] investigated the nonlinear free vibration of piezo-
electric FG nanobeams using nonlocal elasticity. In the
above-mentioned studies, most of them used the analytical
solutions to analyze the behavior of FG nanoplates. How-
ever, the analytical solutions are limited or even impossible
when the geometry, boundary conditions, or types of load
become more complicated. As an alternative, numerical
methods have been proposed to fill in the gaps of these
problems.

In the case of the nanostructures resting on the elastic
foundation (EF), some typical works can be mentioned here
as follows. Wang and Li [37] investigated the static bending
behavior of the nanoplates embedded in an EF. Narendar
and Gopalakrishnan [38] studied the wave dispersion of a
single-layered graphene sheet embedded in an elastic poly-
mer matrix. Pouresmaeeli et al. [39] investigated the vibra-
tion behaviors of nanoplates embedded in a viscoelastic
medium. Zenkour and Sobhy [40] considered thermal
buckling of nanoplates on the EF by using the sinusoidal
shear deformation theory. Panyatong et al. [41] combined
the nonlocal theory and the surface stress to investigate
the bending behavior of nanoplates embedded in an elastic
medium.

It is well known that the classical plate theories are lim-
ited only for thin plates. Therefore, many studies in recent
years have developed Reissner-Mindlin plate theories to
investigate both thick and thin plates. However, the shear-
locking phenomenon in these theories can arise when the
thickness of plates becomes very small. To eliminate the
shear-locking phenomenon, many improved techniques
have been introduced such as the reduced integration
method [42], discrete shear gap method (DSG) [43], assumed
natural strains technique (ANS) [44], and mixed interpola-

tion of tensorial components (MITC) [45–48]. Among these
methods, the four-node quadrilateral element using MITC
technique, which gives the so-called MITC4 element, has
attracted the interest of many scientists around the world
due to the simplicity of formulation and reasonable compu-
tational cost.

Based on the best of authors’ knowledge, the static and
free vibration analysis of sandwich FG nanoplates resting
on the elastic foundation using the MITC4 element inte-
grated with the nonlocal theory has not been published
yet. This motivates us to develop the MITC4 element inte-
grated with the nonlocal theory to accurately describe the
stress-deformation and displacement of the FG nanoplates
resting on the elastic foundation in this work. The accu-
racy and reliability of the proposed method are verified
by comparing its numerical results with those available
in the literature. Furthermore, the effects of geometric
parameters and material properties on the bending and
free vibration responses of sandwich FG nanoplates are
also investigated in detail.

2. Theoretical Formulation

2.1. FG Sandwich Nanoplates. In this study, we consider a
sandwich FG nanoplate has length a, width b, and thickness
h which rests on the Winkler foundation. The properties of
FG materials of the nanoplate are given by power-law expo-
nent function as follows:

P zð Þ = Pm + Pc − Pmð ÞVc, ð1Þ

where P mentions the effective material property such as
the modulus of elasticity E, mass density ρ, and Poisson’s
ratio ν; the characters m and c are the metal and ceramic
constituents, respectively; n is the power-law index; and Vc
is the volume fraction of the material. In this study, two
types of the FG sandwich nanoplates are considered as
shown in Figure 1.

2.1.1. Type A: Sandwich Nanoplates with FG
Skins—Homogeneous Core. The bottom and top surfaces
are composed of the FG materials, while the core is ceramic
(Figure 1(a)), and Vc is given by the following formula:

Vc =
z + h2
h1 + h/2

� �n

, z ∈ −
h
2 , h1

� �
bottom surface

Vc = 1, z ∈ h1, h2½ � core

Vc =
z − h2
h/2 − h2

� �n

, z ∈ h2,
h
2

� �
top surface:

8>>>>>><
>>>>>>:

ð2Þ

2.1.2. Type B: Sandwich Nanoplates with Homogeneous
Skins—FG Core. In this type, the bottom and top surfaces
are metal and ceramic, respectively, while the core is

2 Journal of Nanomaterials



Metal
Ceramic
Ceramic
Metal

Spring layer

a

z

b

y

h
x

(a)

Ceramic
Ceramic

Metal
Metal

Spring layer

a

z

b

y

h
x

(b)

0
–0.5

–0.25

0

0.25

0.5

0.2 0.4

n = 0.02
n = 0.2
n = 1

n = 2
n = 5

0.6 0.8 1

z/
h

Vc

(c)

0
–0.5

–0.25

0z/
h

0.25

0.5

0.2 0.4
Vc

0.6 0.8 1

n = 2
n = 5

n = 0.02
n = 0.2
n = 1

(d)

Figure 1: Sandwich FG nanoplates rest on EF (a, b) and influence of the power-law index in 2-2-1 sandwich FG nanoplates (c, d). (a, c) Type
A. (b, d) Type B.
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composed of the FG materials as shown in Figure 1(b). Vc is
given by the following formula:

Vc = 0, z ∈ −
h
2 , h1

� �
bottom skin

Vc =
z − h1
h2 − h1

� �n

, z ∈ h1, h2½ � core

Vc = 1, z ∈ h2,
h
2

� �
top skin:

8>>>>>>>><
>>>>>>>>:

ð3Þ

2.2. Plate Equations Based on Nonlocal Elasticity. Based on
the nonlocal theory [1], the constitutive relation of a Hoo-
kean solid is determined by

σ − μ∇2σ =Q ; μ = e0 lð Þ2, ð4Þ

where ∇2 = ð∂2/∂x2Þ + ð∂2/∂y2 Þ; μ is the small-scale effect
factor or nonlocal factor; l is an internal characteristic length,
and e0 is a constant; and Q is the stress tensor at a point
which is calculated by the local theory. When l equals zero,
the nonlocal continuum theory degenerates into classical
elasticity theories. Stress tensor Q is determined by

Q =Dε, ð5Þ

where

ε =

εxx

εyy

εxy

εxz

εyz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

; σ =

σxx

σyy

σxy

σxz

σyz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, ð6Þ

D = Cijkl

� �
=

C11 C12 0 0 0
C22 0 0 0

C66 0 0
C44 0

sym C55

2
666666664

3
777777775
=

Db 02×2
0 Ds

" #
,

ð7Þ

with

Db =
C11 C12 0

C22 0
sym C44

2
664

3
775Ds =

C55 0
0 C44

" #
, ð8Þ

C11 = C12 =
E zð Þ

1 − v zð Þð Þ 1 + v zð Þð Þ ;

C12 =
v zð ÞE zð Þ

1 − v zð Þð Þ 1 + v zð Þð Þ ;

C66 = C55 = C44 =
E zð Þ

2 1 + v zð Þð Þ :

ð9Þ

According to the first-order shear deformation theory
(FSDT), the displacement field of the nanoplates is expressed
as

U =
u1 x, y, zð Þ = u0 x, yð Þ + zφx x, yð Þ
u2 x, y, zð Þ = v0 x, yð Þ + zφy x, yð Þ
u3 x, y, zð Þ =w0 x, yð Þ,

8>><
>>: ð10Þ

where u1, u2, u3 are the displacements at any point (x, y, z);
u0, v0,w0 are the displacements at the mid-plane; and φx,
φy are the rotation angles of the cross-section around the y
-axis and x-axis, respectively.

The deformation field of the FG nanoplate is defined as
follows:

ε =

εxx

εyy

εxy

εxz

εyz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

=

u1,x

v2,y

u1,y + u2,x

u3,x + u1,z

u3,y + u2,z

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

=

u0,x

v0,y

u0,y + v0,x

w0:x + φx

w0,y + φy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

+ z

φx,x

φy,y

φx,y + φy,x

0
0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

ð11Þ

Equation (11) may be written as

ε =
ε1

ε2

( )
=

ε01 + zε11

ε02

( )
, ð12Þ

with

ε1 =

εxx

εyy

εxy

8>>><
>>>:

9>>>=
>>>;

; ε2 =
εxz

εyz

8<
:

9=
; ; ε01 =

uo,x

vo,y

u0,y + v0,x

8>>><
>>>:

9>>>=
>>>;

;

ε11 =

φx,x

φy,y

φx,y + φy,x

8>>><
>>>:

9>>>=
>>>;

; ε02 =
w0,x + φx

w0,y + φy

8<
:

9=
;:

ð13Þ

From Equations (4)–(13), the nonlocal force and
moment resultants are determined by

Nij

Mij

( )
=
ðh/2
−h/2

σij
1
z

( )
dz ; ij = xx, yy, xy, ð14Þ
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Qxz

Qyz

( )
=
ðh/2
−h/2

σxz

σyz

( )
dz: ð15Þ

Equations (14) and (15) can be rewritten as

Nxx Nyy Nxy

� 	T = Aε01 + Bε11,

Mxx Myy Mxy

� 	T = Bε01 + Fε11,

Qxz Qyz

� 	T =Abε02,

ð16Þ

where

A, B, Fð Þ =
ðh/2
−h/2

Db 1, z, z2

 �

dz ;Ab = 5
6

ðh/2
−h/2

Dsdz, ð17Þ

which leads to

Nxx

Nyy

Nxy

8>><
>>:

9>>=
>>; − μ∇2

Nxx

Nyy

Nxy

8>><
>>:

9>>=
>>; =Aε01 + Bε11, ð18Þ

Mxx

Myy

Mxy

8>><
>>:

9>>=
>>; − μ∇2

Mxx

Myy

Mxy

8>><
>>:

9>>=
>>; = Bε01 + Fε11, ð19Þ

Qxz

Qyz

( )
− μ∇2 Qxz

Qyz

( )
=Abε02: ð20Þ

By using Hamilton’s principle, the equilibrium equations
of the FG nanoplates are written by the following formula
[49]:

Nxx,x +Nxy,y = J0€u0 + J1€φx, ð21Þ

Nxy,x +Nyy,y = J0€v0 + J1€φy, ð22Þ
Qxz,x +Qyz,y − R = J0 €w0, ð23Þ

Mxx,x +Mxy,y −Qxz = J1€u0 + J2€φx , ð24Þ
Mxy,x +Myy,y −Qyz = J1€v0 + J2€φy, ð25Þ

in which R is the active force which is the combination
between the external force in the z-direction and the reaction
force of the elastic foundation as follows

R = q x, yð Þ − kww0: ð26Þ

The mass inertia moment components are determined by
the following formula:

J0, J1, J2ð Þ =
ðh/2
−h/2

1, z, z2

 �

ρ zð Þdz: ð27Þ

Substituting Equations (18)–(20) into Equations

(21)–(25), we obtain equilibrium equations of the sand-
wich FG nanoplates according to the nonlocal theory as
follows:

Nxx,x +Nxy,y = 1 − μ∇2
 �
J0€u0 + J1€φxð Þ, ð28Þ

Nxy,x +Nyy,y = 1 − μ∇2
 �
J0€v0 + J1€φy

� 

, ð29Þ

Qxz,x +Qyz,y = 1 − μ∇2
 �
J0 €w0 + Rð Þ, ð30Þ

Mxx,x +Mxy,y −Qxz = 1 − μ∇2
 �
J1€u0 + J2€φxð Þ, ð31Þ

Mxy,x +Myy,y −Qyz = 1 − μ∇2
 �
J1€v0 + J2€φy

� 

: ð32Þ

Finally, we perform a few simple calculations by
multiplying the equations from Equations (28)–(32),
respectively, with the variables δu0, δv0, δw0, δφx , δφy and
integrating on the Sc domain and adding together the sides
of each equation, to give the final equation as follows:

ð
Sc

�
Nxxδu0,x +Nxy δu0,y + δv0,x


 �
+Nyyδv0,x −Mxxδφx,x

+−Mxy δφx,y + δφy,x

� 

−Myyδφy,y +Qxz δφx + δw0,xð Þ

+Qyz δφy + δw0,y
� 


− 1 − μ∇2
 ��
q x, yð Þ − kww0Þδw0

−− 1 − μ∇2
 �
J2 _φxδ _φx + _φyδ _φy

� 

− 1 − μ∇2
 �

J0 _u0δ _u0 + _v0δ _v0 + _w0δ _w0ð Þð
+ J1 _φxδ _u0 + _φyδ _v0 + _u0δ _φx + _v0δ _φy

� 



dxdy = 0:

ð33Þ

2.3. Finite Element Formulation

2.3.1. Basic Formulation. In this study, we use the four-node
plate element, each node has 5 degrees of freedom (dof) to
discretize the nanoplates. Then the nodal displacement
vector can be defined as follows:

de = dT1 dT2 dT3 dT4
h iT

, ð34Þ

1 2

34

A

B

C

D

x

y

O

(–1,1)

(–1,–1) (1,–1)

(1,1)

𝜂

𝜁

Figure 2: Four-node plate element.
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Table 4: Dimensionless displacements and stresses of the square nanoplates ða/h = 10, SSSSÞ under the sinusoidal distribution loads on the
EF and two different nonlocal factors μ.

Method
μ = 0 μ = 4

Kw W3 σ∗∗xx h/2ð Þ σ∗∗xy −h/3ð Þ W3 σ∗∗xx h/2ð Þ σ∗∗xy −h/3ð Þ

[52]
0 2.9603 19.9550 10.7450 5.2977 35.7108 19.2289

100 2.3290 15.6991 8.4534 3.5671 24.0455 12.9475

Q4
0 2.7974 18.3797 9.9198 5.0061 32.8917 17.7522

100 2.2417 14.7287 7.9493 3.4639 22.7590 12.2834

Present
0 2.9760 19.7344 10.6262 5.3258 35.3161 19.0164

100 2.3500 15.5834 8.3911 3.6036 23.8962 12.8672

Table 3: The convergence of fundamental frequency Ω1 of the SSSS square plate ða/h = 10Þ.
n 0 1 4 10
Mesh Present Q4 Present Q4 Present Q4 Present Q4

2 × 2 0.0764 0.1078 0.0586 0.0869 0.0506 0.0719 0.0483 0.0655

4 × 4 0.0617 0.0727 0.0473 0.0572 0.0409 0.0484 0.0391 0.0451

8 × 8 0.0587 0.0617 0.0449 0.0477 0.0389 0.0409 0.0372 0.0388

10 × 10 0.0584 0.0603 0.0447 0.0465 0.0387 0.0400 0.0370 0.0380

14 × 14 0.0580 0.0591 0.0444 0.0454 0.0384 0.0391 0.0368 0.0373

16 × 16 0.0580 0.0588 0.0444 0.0451 0.0384 0.0389 0.0368 0.0372

18 × 18 0.0580 0.0585 0.0444 0.0449 0.0384 0.0388 0.0368 0.0371

[51] 0.0577 0.0442 0.0381 0.0364

Table 2: The convergence of dimensionless deflection W1of the SSSS square plate ða/h = 10Þ under sinusoidal loads.
n 0 1 4 10
Mesh Present Q4 Present Q4 Present Q4 Present Q4

2 × 2 0.3764 0.1900 0.7461 0.3406 1.1094 0.5518 1.2702 0.6950

4 × 4 0.3168 0.2284 0.6299 0.4300 0.9341 0.6683 1.0657 0.8014

8 × 8 0.3006 0.2721 0.5981 0.5313 0.8865 0.8003 1.0107 0.9278

10 × 10 0.2987 0.2797 0.5942 0.5497 0.8808 0.8236 1.0041 0.9493

16 × 16 0.2966 0.2889 0.5901 0.5718 0.8746 0.8513 0.9970 0.9748

18 × 18 0.2966 0.2902 0.5901 0.5750 0.8746 0.8553 0.9970 0.9784

20 × 20 0.2966 0.2911 0.5901 0.5773 0.8746 0.8581 0.9970 0.9811

[50] 0.2961 0.5890 0.8815 1.0087

Table 1: Mechanical properties of the materials.

Material #1 E (GPa) ν ρ (kg/m3) Material #2 E (GPa) ν ρ (kg/m3) Material #3 E (GPa) ν

Si3N4 348.43 0.24 2370 Al2O3 380 0.3 3800 ZrO2 151 0.3

SU3S3O4 201.04 0.30 8166 Al 70 0.3 2707 Al 70 0.3
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where di is the displacement vector at the node of
element i, ði = 1 − 4Þ and is expressed as

di = u0i v0i w0i φxi φyi

n o
, ð35Þ

The displacement field in the plate element is interpo-
lated through the node displacement vector as

u0 =Nude ; v0 =Nvde ;w0 =Nwde

φx =Nφxde ; φy =Nφyde,

(
ð36Þ

whereNu,Nv ,Nw,Nφx ,Nφy are the shape functions in the
forms of

Nu = N 1ð Þ
1 N 1ð Þ

2 N 1ð Þ
3 N 1ð Þ

4
h i

;Nv = N 2ð Þ
1 N 2ð Þ

2 N 2ð Þ
3 N 2ð Þ

4
h i

;

Nw = N 3ð Þ
1 N 3ð Þ

2 N 3ð Þ
3 N 3ð Þ

4
h i

;Nφx = N 4ð Þ
1 N 4ð Þ

2 N 4ð Þ
3 N 4ð Þ

4
h i

;

Nφy = N 5ð Þ
1 N 5ð Þ

2 N 5ð Þ
3 N 5ð Þ

4
h i

:

8>>>>><
>>>>>:

ð37Þ

The matrices NðjÞ
i ðj = 1 − 5Þ in Equation (37) have the

size (1 × 5)

N 1ð Þ
i = ψi 0 0 0 0½ � ;

N 2ð Þ
i = 0ψi 0 0 0½ � ;

N 3ð Þ
i = 0 0ψi 0 0½ � ;

N 4ð Þ
i = 0 0 0ψi 0½ � ;

N 5ð Þ
i = 0 0 0 0ψi½ �,

8>>>>>>>>>><
>>>>>>>>>>:

ð38Þ

where ψi are the Lagrange interpolations, and it is shown in
Appendix.

Substituting Equation (36) into Equation (33), the FEM
of the typical element can be expressed as

Me
€de + Kede = Fe, ð39Þ

where Ke is the element stiffness matrix defined as

Ke =Kb
e + K s

e +K f
e , ð40Þ

where Kb
e , K

s
e, K

f
e are the bending, shear element stiffness

matrices, and the foundation stiffness matrix, respectively,
and are defined as

Kb
e =
ð
Sc

BT
1 B

T
2

� � A B

B F

" #
B1

B2

" # !
dxdy,

Table 5: The variation of the dimensionless displacement of the
sandwich FGM square nanoplates versus to the variations of
power-law index n and nonlocal factor μ.

μ
W2

n 0 2.5 5 7.5 10

1

2-1-2 0.1793 0.2763 0.2889 0.2926 0.2943

2-1-1 0.1792 0.2684 0.2800 0.2836 0.2852

2-2-1 0.1791 0.2569 0.2687 0.2727 0.2747

1-2-1 0.1791 0.2493 0.2612 0.2656 0.2679

1-8-1 0.1788 0.2085 0.2139 0.2160 0.2172

2

2-1-2 0.2007 0.3031 0.3160 0.3199 0.3216

2-1-1 0.2007 0.2949 0.3069 0.3106 0.3123

2-2-1 0.2006 0.2829 0.2952 0.2994 0.3015

1-2-1 0.2006 0.2750 0.2874 0.2920 0.2944

1-8-1 0.2002 0.2321 0.2377 0.2400 0.2413

3

2-1-2 0.2206 0.3269 0.3401 0.3440 0.3457

2-1-1 0.2206 0.3186 0.3308 0.3345 0.3363

2-2-1 0.2205 0.3063 0.3188 0.3232 0.3253

1-2-1 0.2204 0.2982 0.3109 0.3156 0.3181

1-8-1 0.2201 0.2536 0.2595 0.2619 0.2632

4

2-1-2 0.2391 0.3483 0.3615 0.3655 0.3672

2-1-1 0.2390 0.3398 0.3522 0.3560 0.3577

2-2-1 0.2389 0.3274 0.3401 0.3445 0.3466

1-2-1 0.2389 0.3191 0.3321 0.3368 0.3393

1-8-1 0.2385 0.2734 0.2795 0.2819 0.2833

Table 6: The variation of the dimensionless stress σ∗∗xx ðh/2Þ of the
sandwich FG square nanoplate ðKw = 10, a/h = 10, SSSSÞ versus to
the variations of power-law index n.

μ
σ∗∗xx h/2ð Þ

n 0 2.5 5 7.5 10

1

2-1-2 0.8323 1.2996 1.3583 1.3753 1.3826

2-1-1 0.8315 1.1900 1.2359 1.2507 1.2579

2-2-1 0.8313 1.1430 1.1885 1.2042 1.2119

1-2-1 0.8314 1.1722 1.2296 1.2510 1.2620

1-8-1 0.8300 0.9748 1.0007 1.0112 1.0169

2

2-1-2 0.9320 1.4255 1.4860 1.5035 1.5109

2-1-1 0.9312 1.3075 1.3546 1.3699 1.3772

2-2-1 0.9310 1.2590 1.3058 1.3220 1.3299

1-2-1 0.9311 1.2932 1.3531 1.3754 1.3867

1-8-1 0.9295 1.0848 1.1123 1.1235 1.1295

3

2-1-2 1.0244 1.5376 1.5991 1.6167 1.6242

2-1-1 1.0235 1.4124 1.4601 1.4756 1.4830

2-2-1 1.0232 1.3630 1.4105 1.4269 1.4349

1-2-1 1.0234 1.4020 1.4637 1.4865 1.4982

1-8-1 1.0217 1.1854 1.2142 1.2259 1.2322

4

2-1-2 1.1101 1.6380 1.6999 1.7176 1.7251

2-1-1 1.1091 1.5067 1.5545 1.5700 1.5775

2-2-1 1.1089 1.4568 1.5046 1.5209 1.5289

1-2-1 1.1091 1.5004 1.5632 1.5864 1.5982

1-8-1 1.1073 1.2777 1.3076 1.3196 1.3262
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where
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Figure 3: The variation of the dimensionless stress σ∗∗
xx ðh/2Þ of the sandwich FG square nanoplate versus to the variation of power-law index

n corresponding to different nonlocal factors μ: (a) μ = 1, (b) μ = 2, (c) μ = 3, (d) μ = 4.
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2.3.2. Transverse Shear Strains of the Element Based on
MITC. The shear strains are approximated by interpolation
in the natural coordinate system by [45]:

εxz

εyz

( )
=H−1

εζ

εη

( )
=H−1~L

εAη

εBζ

εCη

εDζ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, ð43Þ

where H is the Jacobian matrix and A, B, C,D are the
midpoints of the edges as shown in Figure 2; εAη , εBζ , εCη ,
εDζ are the shear deformation of the points A, B, C,D,
respectively.

H−1 =
x,ζ y,ζ

x,η y,η

" #
; ~L = 1

2
1 − ζð Þ 0  1 + ζð Þ 0
0  1 − ηð Þ 0  1 + ηð Þ

" #
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1
2 w1 −w4ð Þ + 1

2 x1 − x4ð Þ φx1 + φx4ð Þ + 1
2 y1 − y4ð Þ φy1 + φy4

� 

;

εBζ =
1
2 w4 −w3ð Þ + 1

2 x4 − x3ð Þ φx4 + φx3ð Þ + 1
2 y4 − y3ð Þ φy4 + φy3

� 

;

εCη =
1
2 w3 −w2ð Þ + 1
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2 y3 − y2ð Þ φy3 + φy2
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;

εDζ = 1
2 w2 −w1ð Þ + 1

2 x2 − x1ð Þ φx2 + φx1ð Þ + 1
2 y2 − y1ð Þ φy2 + φy1

� 

:

ð44Þ

By transforming the shear deformation according to
the dof of the element displacement vector de, we obtain
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Figure 4: The variation of the dimensionless displacement of sandwich FG square nanoplate versus the variation of the power-law index n
corresponding to different nonlocal factors μ: (a) μ = 1, (b) μ = 2, (c) μ = 3, (d) μ = 4.
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1
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From here, the element stiffness matrix of the nano-
plate can be recalculated as follows:
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Figure 5: The variation of the dimensionless stress σ∗∗xx ðh/2Þ of the sandwich FG square nanoplate versus the variation of nonlocal factor μ
corresponding to different power-law indexes n: (a) n = 2:5, (b) n = 5, (c) n = 7:5, (d) n = 10.
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3. Numerical Results

In this section, three numerical examples are performed to
demonstrate the reliability and accuracy of the proposed
method. In numerical analysis, the material properties are
given in Table 1. For convenience, the following dimension-

less displacement, stress, and frequencies of the plate are
defined as
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Figure 6: The variation of the dimensionless displacement of sandwich FG square nanoplate versus the variation of nonlocal factor μ
corresponding to different power-law indexes n: (a) n = 2:5; (b) n = 5; (c) n = 7:5; (d) n = 10.
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Figure 7: The variation of the dimensionless stresses of sandwich FG square nanoplate along with the thickness corresponding to two
different proportions of material layers: (a) σxx with the proportion of material layers 1-2-1; (b) σxy with the proportion of material layers
1-2-1; (c) σxx with the proportion of material layers 2-2-1; (d) σxy with the proportion of material layers 2-2-1.

Table 7: The variation of the dimensionless displacement and the dimensionless stress σ∗∗xx ðh/2Þ of the sandwich FG square nanoplate ðn
= 2, μ = 1, a/h = 10, SSSSÞ versus the variation of Kw.

Kw 0 50 100 150 200

W2

2-1-2 0.4261 0.4080 0.3815 0.3649 0.2864

2-1-1 0.3307 0.3197 0.3033 0.2927 0.2399

2-2-1 0.2703 0.2629 0.2516 0.2443 0.2064

1-2-1 0.2285 0.2232 0.2150 0.2097 0.1811

1-8-1 0.1979 0.1939 0.1877 0.1836 0.1614

σ∗∗xx h/2ð Þ

2-1-2 2.0033 1.8131 1.7022 1.7146 1.3380

2-1-1 1.5551 1.4210 1.3530 1.3751 1.1209

2-2-1 1.2708 1.1683 1.1227 1.1479 0.9644

1-2-1 1.0744 0.9919 0.9594 0.9851 0.8462

1-8-1 0.9305 0.8618 0.8376 0.8627 0.7539
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Figure 8: The variation of the dimensionless displacement and stress of sandwich FG square nanoplate along with thickness versus the
variation of Kw: (a) dimensionless displacement; (b) dimensionless stress.
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Figure 9: The variation of the dimensionless frequencies of the sandwich FG nanoplate versus the variation of power-law index n
corresponding to different nonlocal factors μ; (a) μ = 1; (b) μ = 2; (c) μ = 3; (d) μ = 4.

13Journal of Nanomaterials



3.1. Convergence and Accuracy Study. Firstly, the FG nano-
plate using the material #2 but with the nonlocal factor
μ = 0 is considered. The numerical results with other mesh
sizes are presented in Tables 2 and 3 and compared with
the analytical method in Refs. [50, 51]. It can be seen that
the results using the MITC4 element converge faster than
those using the Q4 element in both static and free vibra-
tion problems. In the static bending problem, the results
of proposed method using 16 × 16 mesh size are as accu-
rate as those in Ref. [50], while in the free vibration prob-
lem, we only need to use 14 × 14 mesh size to ensure the
same accuracy as in Ref. [51]. Hence, to ensure the accu-
racy of the proposed method, the paper will use the mesh
element 16 × 16 to analyze both static bending and free
vibration responses of nanoplates.

Next, Table 4 presents the results of the static bending
analysis of the square nanoplates on the EF including
the dimensionless displacement W3, dimensionless stress
σ∗∗xx ðh/2Þ, and σ∗∗xy ð−h/3Þ. It is seen that the obtained results
of the present method match well with the analytical method
in Ref. [52]. These results hence demonstrate the reliability
and accuracy of the proposed method.

3.2. Static Bending Problem. We now investigate the static
bending response of the fully simple-supported (SSSS)
sandwich (Type A) FG nanoplate resting on the Winkler
foundation under the sinusoidal load qðx, yÞ = q0 sin ðπx/aÞ
sin ðπy/bÞ. The dimensions of the nanoplate are given by

a = b = 10 nm, h = a/10, and the material property is cho-
sen by Al/ZrO2 (material #3) as shown in Table 1. The
power-law index n varies from 0 to 10, and the nonlocal
factor μ varies from 1 to 4. Five cases of the ratio of layer
thickness, 2-1-2, 2-1-1, 2-2-1, 1-2-1, and 1-8-1 together
with the foundation stiffness Kw = 100, are considered.

Tables 5 and 6 present the numerical results of the
dimensionless displacement and stresses. Figures 3 and 4
illustrate the variation of the dimensionless displacement of
the nanoplate centerW2 and the dimensionless stresses when
n varies from 0 to 10 corresponding to μ = 1, 2, 3, 4. Figures 5
and 6 present the variation of the dimensionless displace-
ment and stresses when μ varies from 0 to 4 corresponding
to n = 1, 2:5, 5, 7:5, and 10. It can be seen that the increase
of power-law index n leads to the increase of the metal con-
tent in the FG structures and makes the FG nanoplates
become softer. This result hence leads to the increase of the
displacement and stress of the nanoplates. With the same
power-law index n, the increase of the geometric parameter
and of the nonlocal factor μ leads to the increase of the dimen-
sionless displacement and stress of the FG nanoplates. Fur-
thermore, the dimensionless displacement and stress of the
sandwich FG nanoplate obtain the minimum values in the
case of the ratio of layers thickness 1-8-1 and obtain the max-
imum values in the case of the ratio of layers thickness 2-1-2.
These results show that the sandwich FG nanoplate with a
constant thickness will have the higher stiffness corresponding
to the increase of the thickness of the core layer (ceramic).

Table 8: The variation of the dimensionless frequencies of sandwich FG square nanoplate ðKw = 100, a/h = 10, SSSSÞ versus the variations of
power-law index n.

Ω2
μ n 0 2.5 5 7.5 10

1

2-1-2 1.9283 1.4328 1.3874 1.3768 1.3732

2-1-1 1.9286 1.4575 1.4114 1.4000 1.3959

2-2-1 1.9290 1.4992 1.4456 1.4285 1.4207

1-2-1 1.9292 1.5345 1.4794 1.4598 1.4502

1-8-1 1.9307 1.7414 1.7109 1.6988 1.6922

2

2-1-2 1.8215 1.3836 1.3452 1.3366 1.3340

2-1-1 1.8218 1.4049 1.3656 1.3562 1.3530

2-2-1 1.8221 1.4402 1.3936 1.3790 1.3723

1-2-1 1.8223 1.4706 1.4223 1.4053 1.3969

1-8-1 1.8237 1.6538 1.6266 1.6157 1.6099

3

2-1-2 1.7369 1.3454 1.3126 1.3057 1.3037

2-1-1 1.7372 1.3640 1.3302 1.3224 1.3198

2-2-1 1.7375 1.3942 1.3533 1.3405 1.3348

1-2-1 1.7376 1.4207 1.3779 1.3629 1.3555

1-8-1 1.7390 1.5848 1.5602 1.5504 1.5452

4

2-1-2 1.6681 1.3149 1.2866 1.2810 1.2796

2-1-1 1.6684 1.3313 1.3019 1.2954 1.2934

2-2-1 1.6686 1.3574 1.3210 1.3098 1.3048

1-2-1 1.6688 1.3806 1.3423 1.3289 1.3224

1-8-1 1.6700 1.5289 1.5065 1.4976 1.4928
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Figure 7 shows the variation of the dimensionless stress
of sandwich FG square nanoplate along with the thickness
corresponding to two different proportions of material layer,
1-2-1 and 2-2-1, and corresponding to the variation of
power-law indexes n = 0, 2:5, 5, 7:5, 10. Note that the nonlo-
cal factor μ = 1 is fixed. It is seen that when the power-law
index equals zero (n = 0), the sandwich FG nanoplate
becomes an isotropic nanoplate, and hence the stress distri-
butions through the thickness of FG nanoplates are linear.
When the power-law indexes are different from zero (n ≠ 0),
the stress distributions through the thickness of FG nanoplates
will vary according to the folding curve types. When the core
layer is homogeneous ceramic, the stress will have the jumping
step at the contact surface of the middle layer with the top and
bottom layers.

The effects of the foundation stiffness Kw on the static
bending response of the sandwich FG nanoplates are pre-
sented in Table 7, and the graphs of dimensionless displace-

ments and stresses are shown in Figure 8. It can be seen that
the increase of Kw (from 0 to 200) leads to the decrease of the
dimensionless displacement and stress for all cases of the
nanoplate thickness.

3.3. Free Vibration Problem. In this example, we consider the
free vibration response of a sandwich FG nanoplate (Type A)
with geometric dimensions a = b = 10 nm, h = a/10, resting
on the Winkler foundation. Figure 9 shows the numerical
results of the dimensionless frequencies of the FG nanoplates
when the volume fraction exponent n varies from 0 to 10
with μ = 1, 2, 3, 4. It can be seen that the increase of the
volume fraction exponents n leads to the decrease of the
dimensionless frequencies. Table 8 and Figure 10 present
the numerical results of the dimensionless frequencies of
the FG nanoplates with the nonlocal factor μ varying from
0 to 4 and the volume fraction exponent n = 1, 2:5, 5, 7:5, 10
corresponding to five cases of the ratio of layers thickness.
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Figure 10: The variation of the dimensionless frequencies of the sandwich FG nanoplate versus the variation of nonlocal factor μ
corresponding to different power-law indexes n: (a) n = 2:5; (b) n = 5; (c) n = 7:5; (d) n = 10.
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Figure 11: Dimensionless displacement of the sandwich FG square nanoplates with the variation of nonlocal factor μ and power-law index n
corresponding to different proportions of material layers: (a) 2-1-2; (b) 2-2-1; (c) 1-2-1; (d) 1-8-1.

Table 9: The variation of the dimensionless frequencies of sandwich FG nanoplate versus the variations of Kwðn = 2, μ = 1, a/h = 10Þ and the
different boundary conditions.

Kw 0 50 100 150 200

SSSS

2-1-2 1.0299 1.2619 1.4574 1.6296 1.7853

2-1-1 1.0700 1.2924 1.4819 1.6497 1.8019

2-2-1 1.1430 1.3472 1.5243 1.6829 1.8278

1-2-1 1.1974 1.3899 1.5588 1.7111 1.8509

1-8-1 1.4629 1.6150 1.7539 1.8826 2.0031

SCSC

2-1-2 1.4671 1.6379 1.7925 1.9348 2.0673

2-1-1 1.5225 1.6859 1.8348 1.9725 2.1012

2-2-1 1.6248 1.7741 1.9118 2.0401 2.1609

1-2-1 1.7005 1.8408 1.9712 2.0934 2.2089

1-8-1 2.0604 2.1708 2.2759 2.3763 2.4726

CCCC

2-1-2 1.7912 1.9332 2.0655 2.1898 2.3075

2-1-1 1.8581 1.9939 2.1210 2.2408 2.3546

2-2-1 1.9824 2.1062 2.2231 2.3342 2.4402

1-2-1 2.0741 2.1903 2.3007 2.4060 2.5069

1-8-1 2.5060 2.5974 2.6856 2.7711 2.8539
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It is noted that the increase of the nonlocal factor leads to the
decrease of the dimensionless frequencies. Furthermore,
Figure 11 presents the variation of the dimensionless fre-
quencies of the FG nanoplates versus the variations of the
volume fraction exponent n and the nonlocal factor μ. It
can be observed that the increase of these values leads to
the decrease of the dimensionless frequencies.

Table 9 and Figure 12 demonstrate the effects of the foun-
dation stiffness Kw (varying from 0 to 200) on the free vibra-
tion of the sandwich FG nanoplates. It is found that the
increase of the foundation stiffness Kw leads to the increase
of the dimensionless frequencies of the FG nanoplates. In

addition, the natural frequencies of the CCCC nanoplates
are larger than those of the SSSS sandwich FG nanoplate.
The results are quite reasonable because the SSSS boundary
condition inherently offers more flexible boundary condi-
tions than the CCCC boundary condition. Figure 13 shows
the first six mode shapes of the SSSS sandwich FG square
nanoplate with Kw = 100, n = 2, μ = 1, a/h = 10. It can be seen
that the second and third mode shapes are similar to each
other (the second fundamental frequency is approximated
the third fundamental frequency). This phenomenon is suit-
able for the actual symmetrical plates under the same bound-
ary conditions.
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Figure 12: The variation of the dimensionless frequencies of the sandwich FG nanoplate through thickness versus the variation of boundary
conditions: (a) SSSS; (b) SCSC; (c) CCCC.
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4. Conclusions

In this article, a new finite element method using the MITC4
element integrated with the nonlocal theory is proposed for
the analysis of the static bending and free vibration of the
sandwich functionally graded (FG) nanoplates resting on
the Winkler foundation. Material properties of nanoplates
are assumed to vary through thickness following two types
(Type A with homogeneous core and FG material for upper
and lower layers and Type B with FG material core and
homogeneous materials for upper and lower layers). The
obtained results of the proposed method agree excellently
with others published works in the literature. The proposal
method is free shear-locking and converges faster than the
Q4 element and hence is very promising for the analysis of
more complicated problems of the sandwich functionally
graded (FG) nanoplates resting on the elastic foundation.

Appendix

The Shape Function of the
Quadrilateral Element

The Lagrange interpolations in Equation (38):

ψ1 =
1
4 1 − ζð Þ 1 − ηð Þ ; ψ2 =

1
4 1 + ζð Þ 1 − ηð Þ,

ψ3 =
1
4 1 + ζð Þ 1 + ηð Þ ; ψ4 =

1
4 1 − ζð Þ 1 + ηð Þ:

ðA:1Þ
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