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)e paper presents the extension of an edge-based smoothed finite element method using three-node triangular elements for
dynamic analysis of the functionally graded porous (FGP) plates subjected tomoving loads resting on the elastic foundation taking
into mass (EFTIM). In this study, the edge-based smoothed technique is integrated with the mixed interpolation of the tensorial
component technique for the three-node triangular element (MITC3) to give so-called ES-MITC3, which helps improve sig-
nificantly the accuracy for the standard MITC3 element. )e EFTIM model is formed by adding a mass parameter of foundation
into the Winkler–Pasternak foundation model. Two parameters of the FGP materials, the power-law index (k) and the maximum
porosity distributions (Ω), take forms of cosine functions. Some numerical results of the proposed method are compared with
those of published works to verify the accuracy and reliability. Furthermore, the effects of geometric parameters and materials on
forced vibration of the FGP plates resting on the EFTIM are also studied in detail.

1. Introduction

)e dynamic responses of the plates resting on the elastic
foundation (EF) subjected to moving loads have been widely
investigated bymany scientists around the world.)e results of
these works may be applied for computation in many civil
engineering problems such as vehicles running on roads and
airplanesmoving on runways.When investigating the response
of structures on the EF, authors have mainly used the one-
parameter Winkler model [1] or the two-parameter Win-
kler–Pasternakmodel [2]. For example, Xiang et al. [3] used an
analytical method (AM) to study the free vibration of plates.
Omurtag et al. [4] analyzed the free vibration of thin plates
using the finite elementmethod (FEM). Zhou et al. [5] used the
Ritz method to consider the free vibration of rectangular plates.
Ferreira et al. [6] studied the free vibration of the plates by
radial basis functions. Duc et al. [7] studied the nonlinear

thermal dynamic response of the shear deformable functionally
graded (FG) plates. Mahmoudi et al. [8] developed a refined
quasi-three-dimensional shear deformation theory for ana-
lyzing FG sandwich plates under thermomechanical load.
Recently, Tran et al. [9] also investigated the free vibration of
the FGP plates resting on the EFTIM.

Regarding the analysis of structures subjected to moving
loads, some typical works can be mentioned here as follows.
Wu et al. [10] studied the dynamic responses of nonuniform
rectangular plates with various boundary conditions (BC)
using the classical plate theory (CPT) and the FEM. Frýba
[11] summarized the variety of problems about the dynamic
response of the plates. Taheri and Ting [12] used Green’s
functions to investigate the dynamic responses of plates with
different boundary conditions. Hoang et al. [13] used the
FEM to analyze dynamic responses of triple-layer composite
plates with layers connected by shear connectors. Song et al.
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[14] considered dynamic responses of rectangular thin plates
of arbitrary boundary conditions. Expanding the above
studies for plates on the EF under moving loads, Zaman et al.
[15] used the FEM based on the first-order shear defor-
mation theory (FSDT) to analyze the airport pavements
subjected to moving aircraft loads. In their work, the airport
pavement and underlying soil medium were modeled as the
thick plate, and a series of discrete linear springs and
dashpots were acting at nodal points, respectively. Kim and
Roesset [16] considered the dynamic responses of the plate
resting on the EF under constant and harmonic moving
loads. In their study, the double and triple Fourier trans-
formations were used to approximate the moving loads, and
the influences of the velocity parameters, load parameters,
and the internal damping on the displacement were also
examined. Huang and )ambiratnam [17, 18] investigated
the dynamic responses of plates on the EF using the finite
strip method (FSM). Seong-Min and McCullough [19]
surveyed the dynamic responses for the plates resting on a
viscous Winkler foundation. )e influences of the varying
amplitudes and a constant velocity on dynamic responses of
the plates were considered in this paper. Also, Tran et al. [20]
used the FSDT and FEM to study the dynamic responses of
the sandwich composite plates with auxetic honeycomb core
resting on the EF subjected to moving oscillator loads.

In a different aspect regarding the properties of materials,
porosity can be appeared in the FG materials during the
manufacturing process or intentionally created. Fundamen-
tally, porosity reduces the stiffness of the structure; however,
with excellent engineering properties like lightweight, good
energy-absorbing capability, and strong thermal resistant
properties, the FG porous (FGP) materials have still attracted
the attention of many researchers. For example, Kim et al. [21]
used an analytical method based on the modified couples stress
to analyze the bending, free vibration, and buckling of the FGP
microplates. Also, Coskun et al. [22] used a general third-order
shear deformation theory (TSDT) to investigate the static, free
vibration, and buckling of the FGP microplates. Rezaei and
Saidi [23, 24] used an analytical method to study the free
vibration of the rectangular and porous-cellular plates. Zhao
et al. [25, 26] examined the free vibration and the dynamic
responses of the FGP shallow shells by using an improved
Fourier method. Regarding nonlinear problems, Li et al. [27]
analyzed the nonlinear free vibration and dynamic buckling of
the sandwich FGP plates with graphene platelet reinforcement
(GPL) on the EF. Sahmani et al. [28] used the nonlocal theory
to analyze the nonlinear large-amplitude vibrations of the FGP
micro-/nanoplates with GPL reinforcement. Wu et al. [29]
studied the dynamic of the FGP structures by using the FEM.
In addition, Barati and Zenkour [30] used the FSDT and
Galerkin’s method to analyze the free vibration of the FGP
cylindrical shells reinforced by the GPL. Zenkour and Barati
[31] considered the electro-thermoelastic free vibration of the
FGP plates integrated with piezoelectric layers using an ana-
lytical method. Daikh and Zenkour [32] calculated the free
vibration of the FG sandwich plates. Sobhy and Zenkour [33]
considered the effects of the porosity distribution on the free
vibration of the FG nanoplate using quasi-3D refined theory.
Nguyen et al. developed the polygonal finite element method

(PFEM) combined with HSDTto calculate the free vibration of
FGP plates reinforced by the GPL [34] and active-controlled
vibration of the FGP plate reinforced by the GPL [35].
Moreover, Tran et al. [36] investigated the free vibration of the
FGP variable-thickness plates using an edge-based smoothed
finite element method (ES-FEM). Lurlaro et al. [37] used the
refine zigzag theory to analyze the free vibration of FG
sandwich plates.

In another aspect regarding the development of nu-
merical methods, the original MITC3 element [38] was
integrated with an edge-based smoothed finite element
method (ES-FEM) [39–44] to give so-called ES-MITC3 [45]
for analysis of different structures. For example, Chau-Dinh
et al. [45] proposed ES-MITC3 to study the free vibration for
the isotropic plates. Nguyen et al. [46] extended ES-MITC3
to analyze the free vibration of the FG plates based on the
TSDT. Pham et al. [9, 47–50] developed ES-MITC3 to in-
vestigate the static and vibration of structures.)e numerical
results in these works have almost shown that ES-MITC3 has
the following advantageous properties: (1) ES-MITC3 can
avoid the shear locking phenomenon even with the ratio of
the thickness to the length of the structures reaching 10− 8;
(2) ES-MITC3 has better accuracy than some available
triangular elements in the literature such as MITC3 [38],
DSG3 [51], and CS-DSG3 [52] and is a good competitor with
the quadrilateral element MITC4 [53].

Based on the aforementioned literature review, the ob-
jective of this work is to further extend the ES-MITC3 element
for investigating the dynamic responses of the FGP plates
resting on the EFTIM subjected to moving loads. In this study,
the forced vibration equation is based on the FSDT due to
simplicity and high computational efficiency (which means
that it can ensure a high accuracy with a lower computational
cost). )e accuracy and reliability of the proposed method are
performed by comparing the present numerical results with
those of other published works in the literature. Furthermore,
the influences of geometric parameters, material properties,
and loads on the dynamic responses of the FGP plates subjected
to the moving loads are also examined in detail.

2. Functionally Graded Porous Plates on the EF

Consider an FGP plate resting on the EFTIM subjected to a
moving load as shown in Figure 1.

)e FGP materials with the variation of two parameters
and three distribution cases of porosity along with thickness
are expressed as follows [21, 22]:

case 1: Λ(z) � Ω cos
πz

h
 ,

case 2: Λ(z) � Ω cos
π
2

z

h
+ 0.5  ,

case 3: Λ(z) � Ω cos
π
2

z

h
− 0.5  ,

(1)

where Ω is the maximum porosity distribution value. )e
property of the FGP materials is obtained by formulation:

2 Shock and Vibration



P(z) � Pt − Pb( 
z

h
+ 0.5 

k

+ Pb (1 − Λ(z)), (2)

where Pt and Pb are the typical material properties at the top
and the bottom surfaces, respectively, and k is the power-law
index. )e distributions of porosity through thickness of the
plate are shown in Figure 2(a). )e porosity distribution of
case 1 is symmetric corresponding to the midplane-en-
hanced distribution, and those of case 2 and case 3 are
bottom- and top surface-enhanced distributions, respec-
tively. In addition, Figures 2(b)–2(d) show the distributions
of the normalized typical property associated with three
different cases of the porosity distributions with parameters
Ω � 0.5, k � 0, 1, 5, and Pt/Pb � 10.

)e EFTIM model is built based on the Win-
kler–Pasternak foundation by adding a mass parameter of
the foundation:

qe � k1w(x, y, t) − k2
z2

zx2 +
z2

zy2 w(x, y, t) + mf
z2w(x, y, t)

zt2
,

(3)

where w is the vertical displacement of the FGP plate;
k1 and k2 are the Winkler foundation stiffness and shear
layer stiffness of the Pasternak foundation, respectively;
mf � βμFρ in which the parameter β(kg− 1) is the influence
level of the foundation mass on the free vibration response
of the structures, which is determined by experiments;
and μF is the density ratio of the foundation to the plate
material (ρF/ρ). From equation (3), it can be seen that the
investigation of the EFTIMmodel andWinkler–Pasternak
foundation model on the static analysis is similar.
However, these two models become complex in the dy-
namic response problems. If the influence of the foun-
dation mass parameter is ignored, the EFTIM model will
be equivalent to the Winkler–Pasternak foundation
model, and hence, the EFTIMmodel will be close to the EF
model in practice.

3. The First-Order Shear Deformation Theory
and Weak Form for FGP Plates

3.1. &e First-Order Shear Deformation &eory for the FGP
Plates. )e displacement at any point of the FGP plates in

the present work based on the FSDTmodel can be expressed
as

u(x, y, z) � u0(x, y) + zθx(x, y),

v(x, y, z) � v0(x, y) + zθy(x, y),

w(x, y, z) � w0(x, y),

⎧⎪⎪⎨

⎪⎪⎩
(4)

where u, v, w, θx, and θy are five unknown displacements of
the midsurface of the plate, and the bending strain field of
the plate can be expressed as

ε � εm + zκ, (5)

in which the membrane strain is defined as

εm �

u0,x

v0,y

u0,y + v0,x

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (6)

)e bending strain is defined as

κ �

θx,x

θy,y

θx,y + θy,x

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (7)

and the transverse shear strain is defined as

γ �
w0,x + θx

w0,y + θy

⎧⎨

⎩

⎫⎬

⎭. (8)

FromHooke’s law, the linear stress-strain relations of the
FGP plates can be expressed as

σx

σy

τxy

τxz

τyz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q55 0

0 0 0 0 Q44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εx

εy

cxy

cxz

cyz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (9)

where

X
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Figure 1: )e FGP plate resting on the EFTIM subjected to a moving load.
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Q11 � Q22 �
E(z)

1 − v2
;

Q12 � Q21 �
vE(z)

1 − v2
;

Q44 � Q55 � Q66 �
E(z)

2(1 + v)
,

(10)

in which E(z) is effective Young’s modulus calculated by
equation (2), and v is Poisson’s ratio.

3.2. Weak Form Equations. To obtain the equations of the
motion of the FGP plate for the dynamic analysis, Hamil-
ton’s principle is applied with the following form:


t2

t1

(δu + δv − δk)dt � 0, (11)

where u, k, and v are the strain energy, the kinetic energy,
and the work done by applied forces, respectively.

)e strain energy is expressed as

u � u
p

+ u
f

, (12)

where the strain energy of the foundation is computed by

u
f

�
1
2


Ψ

k1w
2

− k2
z2w

zx2 

2

+
z2w

zy2 

2
⎡⎣ ⎤⎦⎛⎝ ⎞⎠dΨ, (13)

and the strain energy of the FGP plate is computed by

u
p

�
1
2


Ψ

εTDε + γTSγ dΨ, (14)

in which
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Figure 2: Distribution of porosity and typical material property. (a) Distribution of porosity along the z-axis. (b) Distribution material
property with k� 0. (c) Distribution material property with k� 1. (d) Distribution material property with k� 5.
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ε � εm κ 
T
,

D �
A B
B H

 .
(15)

And A,B,H, and S are given by

(A,B,H) � 
h(x,y)/2

−h(x,y)/2
1, z, z

2
 

Q11 Q12 0
Q21 Q22 0
0 0 Q66

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

S � 
h(x,y)/2

−h(x,y)/2

Q55 0
0 Q44

 dz.

(16)

)e kinetic energy is defined as

k � k
p

+ k
f

, (17)

where the kinetic energy of the FGP plate is computed by

k
p

�
1
2


Ψ

_u
Tmp _udΨ, (18)

in which uT � u0 v0 w0 θx θy ϕx ϕy , and mp is the
mass matrix which is defined as follows:

mp �

I1 0 0 0 0

0 I1 0 0 I2

0 0 I1 0 0

0 0 0 I3 0

0 0 0 0 I3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

with (I1, I2, I3) � 
h(x,y)/2
−h(x,y)/2 ρ(1, z, z2)dz.

)e kinetic energy of the mass of the foundation is
defined as

k
f

�
1
2


Ψ

_wT
mf _wdΨ. (20)

)e work done by applied forces is given by

V � 
Ψ

qwTdΨ. (21)

Substituting equations (14) and (17) into equation (11),
the weak-form formulation for the dynamic analysis of FGP
plates resting on the EF is finally obtained as


Ψ
δεTDεdΨ + 

Ψ
δγTSγdΨ

+ 
Ψ
δwT

k1w − k2
z2w
zx2 +

z2w
zy2  dΨ + 

Ψ
qδwTdΨ

� 
Ψ

_uTmp _udΨ + 
Ψ

_wTmf _wdΨ.

(22)

4. Formulation of the ES-MITC3 Method for
FGP Plates

4.1. Formulation of the Finite Element Using the MITC3
Element. )e middle surface of plate ψ is discretized into ne

finite three-node triangular elements with nn nodes such that
ψ ≈ 

ne

e�1 ψe and ψi � ∅, i≠ j. )e generalized displace-
ments at any point ue � [ue

j, ve
j, we

j, θ
e
xj, θ

e
yj]

T for elements of
the FGP plates are approximated as

ue
� 

nne

j�1

NI(x) 0 0 0 0

0 NI(x) 0 0 0

0 0 NI(x) 0 0

0 0 0 NI(x) 0

0 0 0 0 NI(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

de
j � 

nne

j�1
N(x)de

j,

(23)

where nne is the number of nodes of the plate element and
N(x) and de

j � [ue
j, ve

j, we
j, θ

e
xj, θ

e
yj]

T are the shape function
and the nodal degrees of freedom (DOF) of ue associated
with the jth node of the element, respectively.

Similar to the standard triangular element, the linear
membrane and the bending strains of a MITC3 element can
be expressed in matrix forms as follows:

εe
m � Be

m1 Be
m2 Be

m3 de
� Be

md
e
, (24)

κe
� Be

b1 Be
b2 Be

b3 de
� Be

bd
e
, (25)

where

Be
m1 �

1
2Ae

b − c 0 0 0 0

0 d − a 0 0 0

d − a b − c 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Be
m2 �

1
2Ae

c 0 0 0 0

0 −d 0 0 0

−d c 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Be
m3 �

1
2Ae

−b 0 0 0 0

0 −d 0 0 0

−d c 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Be
b1 �

1
2Ae

0 0 0 b − c 0

0 0 0 0 d − a

0 0 0 d − a b − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Be
b2 �

1
2Ae

0 0 0 c 0

0 0 0 0 −d

0 0 0 −d c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Be
b3 �

1
2Ae

0 0 0 −b 0

0 0 0 0 a

0 0 0 a −b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(26)

To avoid the shear locking problem when the thickness
of the FGP plates becomes very thin, the formulation of the
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transverse shear strains of the triangular element based on
the FSDT [38] in this paper is given by

γe
� Be

sd
e
, (27)

in which

Be
s � Be

s1 Be
s2 Be

s3 , (28)

with

Be
s1 � J− 1

0 0 −1
a

3
+

d

6
b

3
+

c

6

0 0 −1
d

3
+

a

6
c

3
+

b

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Be
s2 � J− 1

0 0 1
a

3
−

d

6
b

3
−

c

6

0 0 0
d

6
c

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Be(0)
s3 � J− 1

0 0 0
a

6
b

6

0 0 1
d

2
−

a

6
c

2
−

b

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(29)

where

J− 1
�

1
2Ae

c −b

−d a

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (30)

in which a � x2 − x1, b � y2 − y1, c � y3 − y1, and d � x3 −

x1 are pointed out in Figure 3, and Ae is the area of the three-
node triangular element.

Substituting the discrete displacement fields into equa-
tion (22), we obtained the discrete system equations for the
dynamic response analysis of the FGP plates resting on the
EF, respectively, as

M€d + Kd � F(t), (31)

where K is the stiffness matrix of the FGP plates resting on
the EF and M is the mass matrix, and they are
assembled by

K� 
ne

e�1
Ke
p + Ke

f ,

M� 
ne

e�1
Me

p + Me
f ,

F(t) � 
ne

e�1
Fe

(t),

(32)

where Ke
p is the element stiffness matrix of the plates and is

computed by

Ke
p � 
ψe
BTDBdψe + 

ψe
BT

S SBSdψe, (33)

in which

Be
� Be

m Be
b , (34)

and Ke
f is the element stiffness matrix of the EF and is

computed by

Ke
f � k1

ψe
NT

wNwdψe + k2
ψe

zNw

zx
 

T
zNw

zx
  +

zNw

zy
 

T
zNw

zy
 ⎡⎣ ⎤⎦dψe,

(35)

with

Nw � 0 0N1 0 0, 0 0N2 0 0, 0 0N3 0 0 . (36)

)e mass matrix of the plate is given by

Me
p � 
ψe
NTmpNdψe, (37)

where Me
f is the element mass matrix of the EF and is

computed by

Me
f � mf

ψe
NT

wNwdψe. (38)

In this work, we consider the moving loads depending
on the time P(t). )is load moves via the direction per-
pendicular of the FGP plates corresponding to the variable
velocity v as shown in Figure 1. )e equivalent distributed
force is a function of the moving load at the position (x �

ξ; y � η) and the Dirac delta function [11]:

q(x, y, t) � P(t) · δ(x − ξ)(y − η). (39)

)e nodal force vector of the element is computed from
the distributed force q(x, y, t) applying on the element as
follows:

y

d

c

a

b

x

2 (x2, y2)

3 (x3, y3)

1 (x1, y1)

Figure 3: )ree-node triangular element in the local coordinates.
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Fe
(t) � 

ψe
q(x, y, t)NT

wdψe � 
ψe

P(t) · δ(x − ξ)(y − η)NT
wdψe.

(40)

In the case of taking into account the structural damping,
we have the force vibration equation of the plate given by

M€d + C _d + Kd � F(t), (41)

in which C� αM+βK and α and β are Rayleigh drag coef-
ficients [11].

Equation (41) includes the linear differential equation
with coefficients depending on time. In order to solve the
system of equations, we use the Newmark-beta method [11]
with the flowchart given in [54].

4.2. Formulation of an ES-MITC3Method for the FGP Plates.
In the ES-MITC3 formulation, the computation of the local
stiffness matrix is no longer based on the element domain
but on the smoothing domain, in which the smoothing
domain ψk is constructed based on the edges of the trian-
gular elements such that ψ � ∪ nk

k�1ψ
k and

ψk
i ∩ψk

j � ∅ for i≠ j An edge-based smoothing domain ψk

associated with the inner edge k is formed by connecting two
end-nodes of the edge to the centroids of adjacent triangular
elements, as shown in Figure 4.

)en, by using the edge-based smoothed technique of
the ES-FEM [46], the smoothed membrane, bending strains
κk, εk

m, and the smoothed shear strain ck over the smoothing
domain ψk are computed by

εk
m � 

ψk

εmΦ
k
(x)dψ, (42)

κk
� 

ψk

κΦk
(x)dψ, (43)

γk
� 

ψk

γΦk
(x)dψ, (44)

where εm, κ, and c are the compatible membrane, bending
strain, and the transverse shear strain, respectively, of the
MITC3 triangular elements given in equations (5) and (8)
and Φk(x) is a smoothing function that satisfies at least the
unity property ψkΦk(x)dψ � 1.

In the present work, we use the constant smoothing
function:

Φk
(x) �

1
Ak

, x ∈ ψk,

0, x ∉ ψk,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

in which Ak is the area of the smoothing domain ψk and is
defined by

A
k

� 
ψκ
dψ �

1
3



nek

i�1
A

i
, (46)

where nek is the number of the adjacent triangular elements
in the smoothing domain ψk and Ai is the area of the ith
triangular element attached to the edge k.

By substituting equations (42), (43), and (44) into
equations (24), (25), and (27), the approximation of the
smoothed strains on the smoothing domain ψk can be
expressed as

εk
m � 

nnk

j�1

Bk

mjd
k
j ,

κk
� 

nnk
sh

j�1

Bk

bjd
k
j ,

γ � 

nnk
sh

j�1

Bk

sjd
k
j ,

(47)

where nnk
sh is the total number of nodes of the MITC3 tri-

angular elements attached to edge k(nnk
sh � 3 for boundary

edges and nnk
sh � 4 for inner edges, as shown in Figure 4); dk

j is
the nodal dof associated with the smoothing domain ψk; and
Bk

mj,
Bk

bj, and Bk

sj are the smoothed membrane, bending,
and shear strain gradient matrices, respectively, at the jth
node of the elements attached to the edge k computed by

Bk

mj �
1

Ak


nek

i�1

1
3
A

iBe
mj,

Bk

bj �
1

Ak


nek

i�1

1
3
A

iBe
bj,

Bk

sj �
1

Ak


nek

i�1

1
3
A

iBe
sj.

(48)

)e stiffness matrix of the FGP plates using the ES-
MITC3 method is assembled by

Γ(m)

ψ(m)

Boundary
edge m

Γ(k)

ψ(k)

Inner
edge k

Field node
Centroid of triangles

Figure 4: )e edge-based smoothing domain ψk is constructed
from triangular elements.
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K � 

nk
sh

k�1

Kk
, (49)

where Kk is the ES-MITC3 stiffness matrix of the smoothing
domain ψk expressed by

Kk
� 

ψκ
BkTDBk

+ BkT

s SBk

s dψ � BkTDBkAk
+ BkTSBk

sA
k
,

(50)

in which

BkT
� Bk

mj
Bk

bj
 . (51)

)e ES-MITC3 element has some advantages such as (1)
it is easy and flexible for discretizing the problem domain
into three-node triangular elements, even for arbitrary
complicated geometry domains; (2) it has the number of
degrees of freedom similar to that of the standard triangular
element or of the original MITC3 element; (3) it can avoid
the shear locking phenomenon even with the ratio of the
thickness to the length of the structures reaching 10−8; and
(4) it has better accuracy than some available triangular
elements in the literature such as MITC3 [38], DSG3 [51],
CS-DSG3 [52] and is a good competitor with the quadri-
lateral element MITC4 [53].

5. Accuracy Study

To evaluate the accuracy and reliability of the proposed
method in this paper, we investigate the free vibration of the
plate resting on the EF without including the featured-index
of the mass of the foundation (β � 0). )e numerical results
of the present work are compared with those of published
works in the literature. For convenience, the stiffness
foundation and dimensionless frequencies of plates are given
by

K1 �
k1a

4

X
,

K2 �
k2a

2

X
,

λ �
ωa2

π2

���
ρh

X



withX �
Eh3

12 1 − v2( )
.

(52)

)e convergence of the first two dimensionless fre-
quencies in the case of the fully simple support (SSSS) plate
and the fully clamped (CCCC) plate with h/a � 0.1, K1 �

100, andK2 � 10 is shown in Figure 5. It can be seen that the
natural frequencies of plates under different boundary
conditions using 18 × 18 mesh size are all converging. Ta-
ble 1 shows the first three dimensionless frequencies of the
plate resting on the EF in the present work, together with the
available results in the literature. It can be observed that the
obtained results of ES-MITC3 match well with those of the
analytical solution in the published works [5, 6] and FEM
[4]. Based on these results, the present method will use the

mesh size 18 × 18 to analyze the dynamic response of the
plates in all numerical examples of the upcoming sections.

Let us now consider an SSSS rectangular plate with
length a� 10m, width b � 10m, thickness h � 0.0655m,
modulus of elasticity E � 200GPa, Poisson’s ratio v � 0.3,
and mass density ρ � 7850 kg/m3 under concentrated load
P(t) � 5.1 kN along the edge of plate y � b/2 as presented in
[14]. In this case, the FGP plate is considered as the isotropic
plate with Et � Eb � E, k1 � k2 � 0, and β � 0. From Fig-
ure 6, it is observed that the deflections of the central point of
the plate in the present work agree excellently with those of
Song et al. [14] in both shape and magnitude.

6. Numerical Results and Discussion

In this section, we use the material properties of the FGP
plate as presented in [21]. )e moduli and mass densities of
two components are presented in Table 2.

We now analyze an SSSS FGP plate for case 1 of the
porosity distribution.)e geometric parameters are given by
h � 0.1m, a � 100h, and b � a/2, and the material proper-
ties of the FGP plate are given as follows: the maximum
porosity distribution Ω � 0.5, power-index k � 1, Winkler
foundation stiffness k1 � 50 kPa/m, shear layer stiffness of
the Pasternak foundation k2 � 5 kPa · m, the density ratio of
the foundation μF � 0.5, and featured-index β � 0.5. )e
first six frequencies of the FGP plate are shown in Table 3,
and the first six mode shapes are illustrated in Figure 7.

6.1. Influence of the Cases of Porosity Distributions. In this
section, we examine the effects of porosity distributions on
the dynamic response of the SSSS rectangular FGP plate with
three different cases of porosity distributions: case 1, case 2,
and case 3. A moving load with magnitude P � 5 kN moves
along via the edge of the plate y � b/2 with velocity v � 5m/s.
)e responses of deflection, velocity, and stress (z � 0) at the
center of the plate versus time are shown in Figures 8(a)–
8(c). Figure 8(d) displays the stress at the center of the plate
through thickness when the load moves to the midpoint of
the plate. Maximum values of deflection, velocity, and stress
at the central point of the plate are illustrated in Table 4.
From these figures and Table 4, it is seen that, with the same
geometrical parameter and material properties, case 1 of the
porosity distribution gives the minimum value of the de-
flection response of the FGP plate, while case 3 of the po-
rosity distribution gives the maximum value. In addition, it
is also observed that case 1 of the porosity distribution helps
reduce the oscillates better than the remaining two cases of
the porosity distribution.

6.2. Influences of Velocity of Moving Loads. In this example,
we consider the effects of velocity ] on the response of the
SSSS rectangular FGP plate in case 1 of the porosity dis-
tribution. )e moving load with magnitude P � 5 kN travels
along the edge of the plate y � b/2 with the variation of
velocity v � 5, 10, 15, 20, 25m/s. )e responses of central
deflection, velocity, and stress (z � 0) of the plate versus
time are shown in Figures 9(a)–9(c). Figure 9(d) plots the
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9

10

λ2

6 1610 18 208 12 144
Mesh (n × n)

(b)

Figure 5: )e convergence of the dimensionless frequencies of the plate: (a) dimensionless frequency λ1; (b) dimensionless frequency λ2.

Table 1: Dimensionless frequencies of plates.

Plates K1 K2 Authors λ1 Δ(%) λ2 Δ(%) λ3 Δ(%)

SSSS
v � 0.3
h/a � 0.1

200 10

Ferreira et al. [6] 2.7902 5.3452 7.8255
Zhou et al. [5] 2.7756 0.52 5.2954 0.93 7.7279 1.25
Xiang et al. [3] 2.7842 0.22 5.3043 0.77 7.7287 1.24

MITC3 2.7874 0.10 5.3258 0.36 7.7719 0.68
ES-MITC3 2.7887 0.05 5.3362 0.17 7.7971 0.36

1000 10

Ferreira et al. [6] 3.9844 6.0430 8.3112
Zhou et al. [5] 3.9566 0.70 5.9757 1.11 8.1954 1.39
Xiang et al. [3] 3.9805 0.10 6.0078 0.58 8.2214 1.08

MITC3 3.9827 0.04 6.0266 0.27 8.2619 0.59
ES-MITC3 3.9836 0.02 6.0358 0.12 8.2856 0.31

CCCC
v � 0.15
h/a � 0.015

1390.2 166.83

Ferreira et al. [6] 8.1669 12.821 16.842
Zhou et al. [5] 8.1675 0.01 12.823 0.02 16.833 0.05

Omurtag et al. [4] 8.1375 0.36 12.898 0.60 16.932 0.53
MITC3 8.1842 0.21 12.909 0.69 17.010 1.00

ES-MITC3 8.1729 0.07 12.872 0.40 16.939 0.58
Note that Δ(%) � 100 × (|λpr − λre|/|λre|) with λpr and λre which are the dimensionless frequencies of the present method and the dimensionless frequencies
in references, respectively.

×10–4

Present
[14]

–12

–10

–8

–6

–4

–2

0
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w 
(m

)

0.2 0.4 0.6 0.80 1
v.t/a 

Figure 6: Dynamic deflections of the central point of the SSSS rectangular plate versus time.
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stress at the center of the plate through thickness when the
load moves to the midpoint of the plate. )e maximum
deflections, velocities, and stresses at the central point of the
plate are illustrated in Table 5. From Figure 9 and Table 5, it
can be seen that the deflection along the z-axis of the plate
decreases slightly when the velocity of the moving load is less
than 10m/s but increases rapidly when the velocity of the
moving load varies from 10 to 25ms. )ese results dem-
onstrate that the speed of the moving load affects signifi-
cantly the dynamic response of the FGP plate.

6.3. Influence of the Parameters of EFTIM. In this example,
we study the effect of Winkler foundation stiffness k1 on the
dynamic responses of the FGP plate in case 1 of the porosity
distribution. We examine k1 varying from 0 to 100, and the
shear layer stiffness of the Pasternak foundation is fixed with
k2 � 5 kPa · m. )e moving load with magnitude P � 5 kN
moves along the edge of the plate y � b/2 with velocity v �

5m/s . )e responses of deflection, velocity, and stress (z �

0) at the center of the plate versus time are shown in
Figures 10(a)–10(c). Figure 10(d) presents the central stress
of the plate through thickness when the load moves to the
midpoint of the plate. )e maximum deflections, velocities,
and stresses at the central point of the plate are illustrated in

Table 6. From these numerical results, it can be seen that the
increase of the Winkler foundation stiffness k1 leads to the
increase of the FGP plate stiffness and hence makes decrease
the deflection of the plate.

Next, we consider the effects of shear layer stiffness of
Pasternak foundation k2 on the dynamic response of the
FGP plate in case 1 of the porosity distribution. )e moving
load with magnitude P � 5 kN moves along the edge of the
plate y � b/2 with velocity v � 5m/s. )e variation of the
shear layer stiffness of the Pasternak foundation is given by
k2 � 0, 5, 25, 50, 100 kPa · m, and the Winkler foundation
stiffness is fixed at k1 � 50 kPa/m. )e responses of de-
flection, velocity, and stress (z � 0) at the center of the plate
versus time are shown in Figures 11(a)–11(c). Figure 11(d)
shows the central stress of the plate through thickness when
the load moves to the midpoint of the plate. )e maximum
deflections, velocities, and stresses at the central point of the
plate are illustrated in Table 7. From these numerical results,
it can be found that the increase of the foundation stiffness
k2 leads to the decrease of the deflection of the plate. )is
implies that the increase of the Winkler foundation stiffness
k2 leads to the increase of stiffness of FGP plates. However,
when the foundation stiffness factor k2 is less than 50, the
response of the deflection of the plate can be negligible, and

Table 2: Material properties of the FGP plate.

Material properties Young’s moduli Mass densities Poisson’s ratio
Top surface Et � 14.4GPa ρt � 12200 kg/m3 v � 0.38
Bottom surface Eb � 1.44GPa ρb � 1220 kg/m3 v � 0.38

Table 3: First six natural frequencies of the FGP plate on the EFTIM (Hz).

λ1 λ2 λ3 λ4 λ5 λ6
2.5424 3.5324 5.5324 6.8785 8.1836 8.3744

(a) (b) (c)

(d) (e) (f )

Figure 7: )e first six mode shapes of the FGP plate on EFTIM. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e) Mode 5. (f ) Mode 6.
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the effect of factor k2 on the stiffness of the plate is less than
the effect of factor k1.

To investigate the effects of the featured-index of the
mass of the foundation β on the dynamic response of the
FGP plate in case 1 of the porosity distribution, we
consider the plate under the moving load P � 5 kN

traveling along the edge of the plate y � b/2 with the
velocity v � 5m/s and other parameters given as the
Winkler foundation stiffness k1 � 50 kPa/m, the shear
layer stiffness of Pasternak foundation k2 � 5 kPa · m, and
the variation of the mass of the foundation
β � 0, 0.25, 0.5, 0.75, and 1. )e responses of deflection,

×10–3

k1 = 50kPa/m; k2 = 5kPa·m;
Ω = 0.5; µF = 0.5; β = 0.5; k = 1 
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Figure 8: )e responses of deflection, velocity, and stress at the central point of the plate with three different cases of the porosity
distribution: (a) deflection versus time; (b) velocity versus time; (c) stress σx versus time; (d) stress σx through thickness.

Table 4: Maximum deflections, velocities, and stress at the central point of the plate versus time.

Maximum values Case 1 Case 2 Case 3
w(m) 0.0030 0.0032 0.0034
v(m/s) 0.0087 0.0112 0.0122
σx(Pa) × 105 0.7373 1.1914 0.6913
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velocity, and stress (z � 0) at the center of the plate versus
time are shown in Figures 12(a)–12(c). Figure 12(d) plots
the central stress of the plate through thickness when the
load moves to the midpoint of the plate. )e maximum
deflections, velocities, and stresses at the central point of
the plate are illustrated in Table 8. From these numerical

results, it can be seen that the increase of the mass of the
foundation β varying from 0 to 1 leads to the increase of
the deflection of the plate, but this change is not much.
)is demonstrates that the mass of the EF involved in the
plate’s vibration makes decrease the stiffness of FGP
plates.
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Figure 9: )e responses of deflections, velocities, and stresses at the central point of the FGP plate versus time with the variation of the
moving load velocity v: (a) deflection w versus time; (b) velocity v versus time; (c) stress σx versus time; (d) stress σx through thickness.

Table 5: Maximum deflections, velocities, and stresses at the central point of the FGP plate versus time.

Maximum values v � 5m/s v � 10m/s v � 15m/s v � 20m/s v � 25m/s
w(m) 0.0030 0.0027 0.0036 0.0030 0.0048
v(m/s) 0.0087 0.0184 0.0318 0.0508 0.0691
σx(Pa) × 105 0.7373 0.8007 1.0311 1.1827 1.9683
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6.4. Influencesof theParameters-FGPto theDynamicResponse
of the FGPPlate on the EFTIM. In this example, we study the
effects of the material properties on the dynamic response of
the FGP plate in case 1 of the porosity distribution. )e
power-law index is chosen as k � 0, 5, 10, 20, 50, and the
porosity distribution Ω varies from 0 to 1. )e SSSS

rectangular FGP plate rests on the EFTIM with parameter
β � 0.5, μF � 0.5, k1 � 50 kPa/m, and k2 � 5 kPa · m. )e
responses of deflections, velocities, and stresses at the central
point of the FGP plate are shown in Figures 13 and 14, and
these maximum values are presented in Tables 9 and 10.
From Figure 13 and Table 9, it can be seen that the increase
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Figure 10: )e responses of deflections, velocities, and stresses at the central point of the FGP plate versus time with the variation of the
foundation stiffness k1: (a) deflection w versus time; (b) velocity v versus time; (c) stress σx versus time; (d) stress σx through thickness.

Table 6: Maximum deflections, velocities, and stresses at the central point of the FGP plate versus time.

Maximum values k1 � 0 kPa/m k1 � 25 kPa/m k1 � 50 kPa/m k1 � 75 kPa/m k1 � 100 kPa/m

w(m) 0.0036 0.0032 0.0030 0.0028 0.0026
v(m/s) 0.0109 0.0096 0.0087 0.0108 0.0112
σx(Pa) × 105 0.9066 0.8318 0.5802 0.7279 0.7015
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of the power-law index k leads to the increase of the response
of the deflections and velocities of the plate because the
increase of the power-law index k makes the plate become
metal-rich and hence makes decrease the hardness of the
plate. However, it is noted that when the porosity

distribution Ω increases, the response of deflections, ve-
locities, and stresses of the plate also increases. )is is be-
cause the increase of the distribution of porosity makes
decrease the stiffness of FGP plates. )ese results are il-
lustrated in Figure 14 and Table 10.
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Figure 11: )e responses of deflections, velocities, and stresses at the central point of the plate versus time with the variation of the
foundation stiffness k2: (a) deflection w versus time; (b) velocity v versus time; (c) stress σx versus time; (d) stress σx through thickness.

Table 7: Maximum deflections, velocities, and stresses at the central point of the FGP plate versus time.

Maximum values k2 � 0 kPa·m k2 � 5 kPa·m k3 � 25 kPa·m k4 � 50 kPa·m k5 � 100 kPa·m

w(m) 0.0030 0.0030 0.0029 0.0028 0.0025
v(m/s) 0.0088 0.0087 0.0098 0.0104 0.0091
σx(Pa) × 105 0.7421 0.7372 0.4865 0.70274 0.6659

14 Shock and Vibration



7. Conclusions

)is work presents an extension of ES-MITC3 using three-
node triangular elements for dynamic analysis of the
functionally graded porous (FGP) plates subjected to
moving loads resting on the elastic foundation taking into
mass (EFTIM). )e obtained numerical results of the

proposed approach in different contexts are compared with
other available solutions in the literature. )e effect of the
geometrical parameters and material properties on the
dynamic response of the FGP plate resting on the EFTIM is
also examined in detail. From the present formulation and
the numerical results, we can withdraw some following
points:
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Figure 12:)e responses of deflections, velocities, and stresses at the central point of the FGP plate versus time with the variation of mass of
the foundation β; (a) deflection w versus time; (b) velocity v versus time; (c) stress σx versus time; (d) stress σx through thickness.

Table 8: Maximum deflections, velocities, and stresses at the central point of the FGP plate versus time.

Maximum values β � 0 β � 2.5 β � 5 β � 0.75 β � 1
w(m) 0.0029 0.0030 0.0030 0.0032 0.0032
v(m/s) 0.008 0.0087 0.0089 0.0093 0.0097
σx(Pa) × 105 0.7180 0.7372 0.2727 0.8129 0.7406
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(i) )e numerical results by the ES-MITC3 element
agree excellently with those of some other compared
elements and have better accuracy than that of the
original MITC3 element

(ii) )e EFTIM model can be used to accurately de-
scribe the EF model

(iii) )e increase in foundation parameters k1 and k2 of
the EF leads to the increase in the stiffness of the
FGP plates

(iv) )e increase in the mass of the EF leads to decrease
in the stiffness of the FGP plates

(v) )e material parameters k and Ω and the porosity
distribution of the FGP plates significantly affect the
dynamic response of the FGP plates

(vi) )e increase in the velocity of the moving load leads
to the increase in the vibration of the FGP plates

It is noted that, besides the advantages of using the first-
order shear deformation theory (FSDT) regarding the
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Figure 13: )e responses of deflections, velocities, and stresses at the central point of the FGP plate versus time with the variation of the
foundation stiffness k: (a) deflection w versus time; (b) velocity v versus time; (c) stress σx versus time; (d) stress σx through thickness.
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k1 = 50kPa/m; k2 = 5kPa·m;
μF = 0.5; β = 0.5; k = 1
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Figure 14: )e responses of deflections, velocities, and stresses at the central point of the FGP plate versus time with the variation of the
porosity distribution Ω: (a) deflection w versus time; (b) velocity v versus time; (c) stress σx versus time; (d) stress σx through thickness.

Table 9: Maximum deflections, velocities, and stresses at the central point of the FGP plate versus time (Ω � 0.5).

Maximum values k � 1 k � 5 k � 10 k � 20 k � 50
w(m) 0.0036 0.0066 0.0076 0.0092 0.0119
v(m/s) 0.0111 0.0186 0.0224 0.0252 0.0311
σx(Pa) × 105 0.9129 0.4729 1.8563 0.3923 0.3679

Table 10: Maximum deflections, velocities, and stresses at the central point of the FGP plate versus time (k � 1).

Maximum values Ω � 0 Ω � 0.25 Ω � 0.5 Ω � 0.75 Ω � 1
w(m) 0.0029 0.0032 0.0036 0.0042 0.0052
v(m/s) 0.0029 0.0032 0.0036 0.0042 0.0052
σx(Pa) × 105 1.1995 1.0858 0.9884 0.6197 0
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simplicity in formulations and computational efficiency, the
proposed method also has a limit regarding using the FSDT
to approximate displacement fields of the FGP plates. )is
limit somehow leads to the limited accuracy and hence
should be a topic for improvement in upcoming studies.
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