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New hybrid SPEA/R-deep learning to
predict optimization parameters of cascade
FOPID controller according engine speed in
powertrain mount system control of half-car
dynamic model

Dinh-Nam Daoa,b,∗ and Li-Xin Guoa,∗
aSchool of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
bControl Technology College, Le Quy Don Technical University, Hanoi, Viet Nam

Abstract. In this article, a new methodology, hybrid genetic algorithm GA, algorithm SPEA/R with Deep Neural Network
(HDNN&SPEA/R). This combination gave computing time much faster than computing time when using genetic algorithms
SPEA/R. On the other hand, this combination also significantly reduces the number of samples needed for the training of deep
artificial neural networks. This is the task of finding out an optimal set that changes with the engine velocity of multi-objective
optimization involving 12 simultaneous optimization goals: proportional P, integral I, derivative D, additional integration n
and differentiation orders m factor, displacement amplification coefficient KDloop, acceleration amplification coefficient KAloop

in two controllers acceleration and displacement to enhance the ride comfort. This article has provided a control algorithm
of a Cascade FOPID controller to control the acceleration and displacement of the mount. Besides, the article also offers
solutions to optimize the 12 simultaneous parameters of the two controllers by the new hybrid method HDNN&SPEA/R
and suitable for the speed of rotation of the engine. To increase the safety factor in operation, we use magnetorheological
dampers (MR) in a powertrain mounting system and a continuous state damper controller that calculates the input voltage
to the damper coil. The results of this control method are compared with traditional PID systems, optimal PID parameter
adjustment using genetic algorithms (GA) and passive drive system mounts. The results are tested in both time and frequency
domains, to verify the success of the proposed Cascade FOPID algorithm. The results show that the proposed Cascade FOPID
controller of the MR engine mounting system gives very good results in comfort and softness when riding compared to other
controllers. This proposal has reduced 335 hours for optimal computation time and reduce vibration a lot.

Keywords: SPEA/R algorithm, feed forward artificial neural network, magnetorheological MR, powertrain mounting system,
FOPID controllers, PID controllers
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1. Introduction

The problem of shaking in cars is one of the most
important issues in Front Wheel Drive (FWD) cars.
Therefore, we need to enhance the stiffness of the
front body, the stiffness of steering support and the
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Fig. 1. Test engine vibration according to the rotation speed of the
engine.

floor stiffness on the body to reduce the vibration
impact. On the engine side, we need to make flexible
engine mounts to prevent the engine from falling off.
Many studies are showing that when the engine oper-
ates at different rotational speeds, the vibration forces
are different. Therefore, the design of the engine
mounts must have the stiffness of the mount, which
can flexibly change according to the vibration lev-
els of different engines to always create a feeling
of pleasure. On the other hand, two-speed ranges
are of particular interest: low idling and the speed
range of the loaded condition (1500 to 6000 RPM).
At low engine speed range, idle vibration can be an
important phenomenon because no-load speed can
coincide with the natural frequency of the structure.
Booming noise is another characteristic related to
vibration stimulation and it usually occurs at high
engine speeds. Resonance of the cavity is stimulated
by the inertial force of the engine that causes explo-
sive noise. Due to the interaction of the excitation
and transfer path, it requires low vibration amplitude
of the engine and high transmission loss in rubber
mounts and vehicle structure. From the characteris-
tics of the engine causing vibration during vehicle
operation, we need to design the engine mount control
system to have a flexible control mechanism accord-
ing to the operation mechanism of the vehicle to
achieve high efficiency in limiting vibrations arise on
the whole operation of the vehicle. Thereby to bring
comfort and softness for people when using cars.

From the features that are simple and easy to imple-
ment, the PID controller has been applied in various
engineering applications and industries worldwide
(Barbosa et al., [1]; Biswas et al., [2]; Jiang et al.,
[3]). Today, PID controllers are getting more and
more interested by researchers to improve control
performance. In addition to the FOPID or PInDm con-
troller, they have added two control parameters, n,
and m (integrative and derivative orders), which are
not being limited to integers that are fractions. This

new controller was published by Podlubny [4]. The
controller consists of five parameters: proportional,
integral, derivative gains, the integral and derivative
orders. The FOPID controller has superior perfor-
mance and strength compared to the classical PID
controller, and this has been demonstrated through the
research articles mentioned previously. The FOPID
controller has the advantage of denying steady-state
error, robustness toward plant uncertainties and also
good disturbance elimination. Vibration reduction
and control are extremely suitable when using FOPID
controllers (Aldair and Wang, [5]; Zhihuan et al., [6]).
Aldair and Wang [5] have announced improvements
to the FOPID controller. They have used evolution
optimization algorithms to modulate control param-
eters and are applied in a full vehicle nonlinear active
suspension of the car system. Hydraulic turbine reg-
ulating system was Zhihuan et al. [6] uses the FOPID
controller that is optimized by a genetic algorithm
that is not dominated by II.

Nowadays, From the requirements for easy execu-
tion, low power requirements, high power capacity,
dynamic range and higher durability, the application
of MR dampers is becoming popular in the semi-
active Powertrain mounting system. Furthermore, the
ability to supply the voltage/current needed to cre-
ate a continuously variable damping force can be
guaranteed on all modern vehicles today. Semi-active
control devices use MR dampers with simple con-
trol requirements. It is only the voltage control lever
applied to the electromagnetic coil that can be sup-
plied directly. In addition to the system, the controller
determines the damping force required for the system
to achieve outstanding performance, a damping con-
troller is required to calculate the voltage applied to
the MR dampers.

Multi-objective evolutionary algorithms (MOEAs)
are common tools for solving multi-objective opti-
mization problems in the technical field, because of
their performance on issues with large design spaces
and scenes difficult exercise. Inside, SPEA2 (Inten-
sity 2 Evolutionary Algorithm) is used to evaluate the
Pareto solution due to the good performance of a vari-
ety of solutions different from normal multi-objective
reliability assessment. There are some researchers
in this field like Tommasi et al. [8] who have pro-
posed a multi-objective optimization for RF circuit
blocks through replacement models and NBI and
SPEA2 methods. Sokratis Sofianopoulos [9] pro-
posed a model-based machine translation system
using large monolithic blocks in the target language
from which statistical information was extracted.
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This study reported using a specific machine trans-
lation to represent the test that SPEA2 was chosen
as the optimization method. Zhao. F et al. [10] pro-
posed a SPEA2 algorithm based on adaptive selection
evolutionary operators (AOSPEA). The proposed
algorithm can selectively adapt simulated binary
interference, polynomial mutations, and differential
evolutionary operators in their evolution according to
their contribution to the external repository. IMEN
et al. [11] proposed the Pareto Strength (SPEA2)
Evolution Algorithm for the Economic / Environmen-
tal Power Distribution (EEPD) problem. In the past,
minimizing fuel costs is the only objective function
of economic power coordination. Due to the mod-
ification of clean air behavior has been applied to
reduce emissions of polluting emissions from power
plants, utilities have also changed strategies to reduce
pollution and atmospheric emissions, minimizing
generation Waste when other target functions turn
economic capacity (EPD) into a versatile-objective
problem with conflicting goals. Shouyong et al. [7]
published a new SPEA based on the reference direc-
tion, denoted SPEA/R, to optimize multiple goals. a
significant extension of the early SPEA algorithms is
SPEA/R. It applies to the advantage of SPEA2’s phys-
ical assignment in quantifying solutions Diversity and
convergence in one method It is appropriate to replace
the most time-consuming density estimator with an
algorithm based on the reference direction. Their
proposed exercise duties also take into account the
convergence both local and global. However, MOEAs
algorithms still need a lot of computational time to
evaluate the objective function in the typical prac-
tical problem-solving process. When the problem is
more difficult and complicated, the time to solve such
problems requires many minutes or half an hour for
an evaluation. Combined, this could make the use of
MOEAs algorithms impractical. Therefore the best
way to reduce computation time is to use artificial
neural networks with multiple hidden layers plus deep
learning algorithms to accelerate calculations.

The artificial neural network (ANNs) with hidden
layers combined with deep learning algorithms is one
of the most widely used and accurate predictive mod-
els. Many researchers have applied this method in
areas such as economics, engineering, society, for-
eign exchange, securities issues, etc. [12–20]. The
application of neural networks in predictive mod-
els optimizes many goals based on the ability of
neural networks to predict non-fixed behavior is
very accurate. For traditional mathematical models
or statistical models, it is inconsistent with unusual

data patterns that cannot be written as functions or
deduced from a formula, while ANN algorithms can
work with chaotic components. Currently, there are
some researchers such as Yanxia Shen, Xu Wang,
and Jie Chen [21], who have come up with potential
uncertainties of wind power and have since pro-
posed options for building intervals prediction (PI)
with predictive models using wavelet neural net-
work (WNN). In which the upper and lower limit
estimate (LUBE) of PI has been implemented by
minimizing the multi-objective function including
the probability of span width and coverage range.
Christopher Smith; John Doherty; Yaochu Jin [22],
They announced a recurrent neural network used
as an alternative method to predict long-term mod-
els of fluid dynamics simulation in computation. In
particular, hybrid multi-objective evolutionary algo-
rithms have been trained and optimized structures
from introduced recurrent neural networks. Amir-
Hasan Kakaee et al. [23], published a method of using
artificial neural networks (ANN) followed by multi-
objective optimization using the NSGA-II evolution
algorithm and SPEA2 optimization algorithm to opti-
mize the operating parameters of a compression
ignition (CI) heavy-duty diesel engine. A Vieira and
R S Tome [24], they published two different methods
to increase the search speed of the multi-objective
evolution algorithm (MOEA) using artificial neural
networks. Duan, Lixiang, et al. [34] used deep learn-
ing to diagnose errors.

In this paper, a new hybrid optimization method
is proposed for optimizing multi-objective problems.
This is a combination of genetic algorithm (GA),
Deep Neural Network (DNN) and Strength Pareto
evolutionary algorithm based reference direction for
Multi-objective (SPEA/R) to find the best of the
Pareto-optimal front of Parameter of Cascade FOPID
controllers according to the speed. This combination
gave computing time much faster than computing
time when using genetic algorithms SPEA/R. On
the other hand, this combination also significantly
reduces the number of samples needed for the train-
ing of deep artificial neural networks. Therefore
it has facilitated and quickly in the application to
find the optimal set of parameters of the Cascade
FOPID controller, which is optimal according to the
engine’s rotation speed. This article has provided a
control algorithm of the Cascade FOPID controller
to control the acceleration and displacement of the
mount through an optimize set of 12 simultaneous
parameters of the two controllers to suitable for the
speed of rotation of the engine. The results of this
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control method are compared with traditional PID
systems, optimal PID parameter adjustment using
genetic algorithms (GA) and passive drive system
mounts. The results are tested in both time and fre-
quency domains, to verify the success of the proposed
Cascade FOPID algorithm. The results show that
the proposed Cascade FOPID controller of the MR
engine mounting system gives very good results in
comfort and softness when riding compared to other
controllers.

The organization of this paper is as follows:
Section 2 describes the proposed new hybrid
HDNN&SPEA/R method and design Semi-active
engine mount control system using MR dampers in
a half-car dynamic model, formulation the objective
functions for controller tuning, the proposed method
of turning the Cascade FOPID controller use hybrid
HDNN&SPEA/R method. Section 3 describes the
Numerical simulation and results. Finally is a con-
clusion.

2. Structure

2.1. Many-objective optimization SPEA/R
algorithm

Shouyong et al. (2017) proposed SPEA/R algo-
rithm is presented in the flowchart of SPEA/R is
shown in Fig. 2.

2.2. New hybrid HDNN&SPEA/R method

2.2.1. Design a Deep Neural Network(DNN)
Artificial neural networks are simulations of sim-

plified models of the human brain. They have the
ability to estimate complex nonlinear relationships
between corresponding input and output data param-
eters [23–27]. As shown in Fig. 3, the neural network
has a link structure consisting of three types of
classes. It is an input layer, hidden layer, and output
layer. Each network layer consists of some neurons
and is organized into layers. In which the nerve cells
of different layers in the network are connected by
connections connected to independent weights (W).
Also, an independent bias (b) can be added to each
neuron. On the other hand, the transfer function deter-
mines the influence of the weights and biases of the
neuron on the neurons of the next layer and can be
linear or nonlinear. Also, there are several types of
transfer functions (such as pureline, logic, tansig),
some neurons and some hidden layers are hyper-

Fig. 2. Flowchart of SPEA/R.

parameters of neural networks to create different
structures of the network. neuron. Finally, weights
and biases adjustment process are called the network
training process and they are usually evaluated by
minimizing the average square error (MSE) between
the predicted outputs of the neural network and the
output reality.

In this article, we use the (MLP) multilayer per-
ceptron neural network structure. Network MLP is
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Fig. 3. The architecture of a feedforward artificial neural network with M neurons in input, N in hidden layer and K in output layers.

a feedforward artificial neural network defined by an
input layer with M neurons. N layers hidden, in which
each hidden layer has Nh number of neurons and an
output layer has K neurons. In the MLP network struc-
ture, each layer has full connections to the next layer,
which means that each neuron output in layer N is the
input of each neuron in the N + 1 layer. Figure 2 shows
one example of an MLP network with input neuron
M, N hidden layer with each hidden layer has Nh neu-
ron and the output layer has K neurons. MLP network
can be described with: nn = [M Nh1 Nh2 . . . NhN K].

2.2.2. DNN network optimize
Recently, some researchers have published some

new effective methods to train ANN neural networks.
In which the weights and biases of neural networks
are optimized by the GA algorithm [22]. In the pro-
cess of network training, the GA algorithm finds
weight and bias values quickly and optimally for neu-
ral networks. That makes the number of iterations in
network training greatly reduced. Thus, the time for
training is faster. Besides, the global ability of search-
ing and the evolution of parameters is a key feature
of GA. Therefore, the GA algorithm was introduced
in this study. This method uses the theory of natural
selection and biological evolution. It is the choice,
cross-exchange, and mutation of individuals to select
the best and most suitable member. The initial weight
and bias of the DNN network have been evolved in
the process of training neural networks. The interac-
tion between the GA algorithm and the DNN network
is done through weight and bias exchange. The DNN
network was started to get a random weight and biases
[W, b] as shown in Fig. 3. This is the initial popula-

tion included in the GA algorithm. Then, the next
generation is generated by the GA algorithm based
on the current population. To evaluate the difference
between the predicted output values and the actual
output values, it is used as the fitness function. Decide
on acceptable parameters if the total average square
of GA is less than 0.005. Weight and biases are cal-
culated by the equations (1)

Nw = (In + 1)Nh + (Nh + 1)Op (1)

Where Nw is a number of weights and deviations,
In is a number of neurons in the input layer, Nh is
some hidden neurons and an Op number of neurons
in the output layer. Through the training process, the
optimal GA value has been achieved. Algorithm GA
with population size is 20, the mutation rate is 0.15
and the crossover rate is 0.65 has been chosen for
GA operation. GA algorithm has been run for 250
generations.

2.2.3. The deep learning training algorithm
Let the DNN neural network learn the optimal

analytical characteristics of many objects from the
SPEA/R algorithm. We have combined DNN training
with the optimal analysis of the SPEA/R algorithm
as shown in Figs. 4 and 5. This process started
with the SPEA/R algorithm with a random popula-
tion of input variables P1. After that, summing up
the population Q at time t is created by population
P1 and population P2 (where P2 is generated from
P1 parents’ population through the use of conven-
tional genetic operators such as selection, mutations
and cross exchanges). After that, all individuals were
combined into populations Q. From this population,
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Fig. 4. Training structure for the hybrid method.

Algorithm 1
Training DNN network optimize

1:Input: Pareto temporary front set
2: Output: weight and bias values optimized
3: Initializing parameters

Population size
Number of generation
Probabilities of selection
Crossover and mutation
Fitness function
Mean square error

4: Creating initial population parent encoding weight and bias
5: while stopping criterion not met do
6: Calculation fitness
7: Evolution of population
8: Fitness ranking
9: Selection crossover
10: Selection of fitness and update
11: Record the best chromosome
12: end while

individuals were selected to enhance reproduction
instead of random selection. It is therefore very use-
ful for optimizing many goals when remote parents
are unable to create good solutions. The use of sim-
ple normalization based on the worst value of each
SPEA/R goal deliberately gives higher priority to
diversity than convergence when making environ-
mental choices leading to printing performance for
MOP issues. From there, the best Pareto fronts were
selected (stored on the top of the list) and transferred
to the new parent group Pt . Through this process, the
most quintessential nuclei were selected. Since the
size of the Pt population is only half of Q (in fact the
size of Pt is equal to the size of P1) so half of the
Pareto front will be deleted during the transfer. This
process will be continued until all individuals of a

specific Pareto front cannot be completely provided
in the parent population of Pt . Therefore, for choos-
ing the exact number of individuals of that particular
front for filling remained space of the population
Pt , an associate population with reference points to
keep a constant number of individuals (POP: pop-
ulation size). Finally, the population update process
Pt will be used to replace population P1 in the next
generation of the SPEA/R algorithm and the Pareto
temporary front optimization will be defined after a
specific generation can. Therefore, after each cycle
of population update (Pt) in the SPEA/R algorithm,
Pareto temporarily will be transferred to the DNN
network including input data and output data (that is
the Temporary Pareto front) to train the DNN net-
work. From here, we see a lot of Temporary Parero
font files created from the SPEA/R algorithm, which
means there are many standard data sets for training
DNN networks. Therefore, the combined training of
the DNN network has the full characteristics of the
SPEA/R algorithm, but it has a fast calculation speed
and converges faster of neural networks. The search
area is larger than the SPEA/R algorithm because the
DNN network is trained on many standard samples.

Thus, through this deep learning training, the artifi-
cial neural network has learned all the characteristics
of the Many-objective optimization SPEA / R algo-
rithm. But due to the characteristic of the neural
network working in parallel and at the same time in
the neurons, the calculation speed to find the opti-
mal parameters is much faster than the SPEA / R
algorithm. SPEA / R is the process of performing
calculations through the loop cycle, so that the calcu-
lation process takes a lot of time when the number of
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Fig. 5. Training algorithm.

iterations increases. Thus, this deep learning method
has created a deep neural network capable of finding
optimal parameters quickly.

2.2.4. Leave one out cross-validation (LOOCV)
method

Cross-validation is the most common and effective
way to verify models in statistical machine learn-
ing. This method is intended to estimate predictive
models that they have learned from training data.
How it will do on data that has not been tested in
the future. In other words, by this method, we can
measure the generalized power (accuracy) of our
trained model in practice and avoid overfitting when

the use of techniques cross-validation. Leave-one-
out cross-validation (LOOCV) is the most common
cross-authentication method. This technique is often
applied when the amount of training and testing data
is not too large or too difficult to create a large train-
ing/test data set for model learning. With this method,
in each iteration, a sample of the temporary data
point is considered the validation data and the remain-
ing data is used for model training. Through each
model training process, its prediction errors will be
calculated on the validation data. If the initial train-
ing data contains Iter max samples, this procedure
repeats Iter max times (it equals the number of obser-
vations in the initial training set). Then, the average of
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Algorithm 2
Training DNN network

1: Input: N (population size)
2: Output: Pareto-optimal front set
3: Create a diverse set of reference directions F:

F: = Reference Create ();
4: Create an original parent population P1
5: while stop criterion not met do
6: Apply this genetic operator P1 to create offspring
7: Q: = P1 ∪ P2;
8: Normalize the goals of internal members Q:

Q: = Objective normalization(Q)
9: for each reference direction i ∈ F do
10: Identify members of Q close to i:

H(i) : = Associate(Q, F, i);
11: Perform calculations fitness values of members in

H(i): Fitness assignment(H(i))
12: end for
13: Pt: = Choose the environment(Q, F)
14: Call Algorithm 1
15: end while

these errors is reported as the predictive error of our
predictive model across the entire data set in terms
of expressions by equations (2). Thus, with this vali-
dation method, in its iterations Iter max, all patterns
have the opportunity to act as a prototype. For more
information on LOOCV, refer to [24].

∑
error

=
(

Iter max∑
i=1

|Iter−i|
)

/Iter max (2)

2.3. Design semi-active engine mount control
system using MR dampers in a half-car
dynamic model

2.3.1. A mathematical model of the semi-active
engine mount control system in a half-car
dynamic model

The mounts play an important role in the car
dynamics system. The principle diagram of the
semi-active engine mount control model with the
transmission system is shown in Fig. 6.

By using Newton’s law, the mathematical model
of Fig. 6 can be written as below:

Mẍi + Kẋi + Cxi = Q(t) (3)

In which:
xi: Vector-column of displacements and angular

oscillations of masses.
M: Matrix of inertial coefficients of car parts.
C: Matrix of coefficients of stiffnesses and tor-

sional rigidity.
K: Matrix of damping coefficients.
Q(t): Column vector of the perturbing forces and

moments.
q2(t) = q1(t + τ) with τ: time interval, va vehicle

speed.

Fig. 6. Half-car dynamic model with a semi-active engine mount.
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Fig. 7. Control system structure of semi-active MR engine mount.

Q(t) =⎡
⎢⎢⎢⎢⎢⎣

2k�M
1 · q̇1(t) + 2C�M

1 · q1(t), 2k�M
2 · q̇2(t)+

2C�M
2 · q2(t), 0, 0, Pj(t), Pj(t) · l10, F · l6, 0, 0,

M(t), 0, 0, 0, 0, γ ·
[

2 · k�M
1 · q̇1(t) + 2 · C�M

1 · q1(t)
]

,

γ ·
[

2 · k�M
2 · q̇2(t) + 2 · C�M

2 · q2(t)
]

, 0, 0, 0

⎤
⎥⎥⎥⎥⎥⎦

T

(4)

X =
[

z1, z2, z0, ϕ
y
0, zca, ϕ

y
ca, zpk, ϕ

x
ca, ϕ

x
pk,

ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8, ϕ�M, ϕ3M

]T

(5)

2.3.2. Design semi-active engine mount control
system

This control system consists of two controllers
which are Cascade FOPID controllers and damping
controllers. In which the Cascade controller consists
of two closed control loops to control the accelera-
tion and displacement of the mount for calculation
desirable damping force Fd. The damping controller
receives the control request from the Fd Cascade
FOPID controller, thus calculating the voltage V
applied to the damping coil and always monitoring its
actual force Fa with the desired Fd force to make the
decision suitable controller. The entire semi-active
engine mount system incorporating the MR damper
process described in Fig. 7.

2.3.3. Actual MR damper controller
Sims et al., [28] published a continuous state

control (CSC) algorithm. They applied this algo-
rithm in the model of an ER damper. Next, some
researchers (for example, Metered et al., [29]; Gad et
al., [30]) also gave an algorithm to calculate the volt-
age command applied to the male MR Damper coil.

Fig. 8. Modified Bouc-Wen model.

Table 1
Parameters of Modified Bouc-Wen model (Lai and Liao, [31])

Parameter Value Parameter Value

coa 784 Nsm–1 �a 12441 Nm–1

cob 1803 NsV–1m–1 �b 38430 NV–1m–1

ko 3610 Nm–1 � 136320 m–2

caa 14649 Nsm–1 � 2059020 m–2

cab 34622 NsV–1m–1 δ 58
ka 840 N m–1 n 2
xo 0.0245 m η 190 s–1

It allows the command voltage V to change continu-
ously between the minimum and maximum values 0,
Vmax according to the following equation.

v =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0; G(Fd − LFd) sgn(Fd) < 0

G(Fd − LFa) sgn(Fa); 0 ≤ G(Fd − LFd)

sgn(Fd) ≤ V max

Vmax; G(Fd − LFd) sgn(Fd) > Vmax
(6)

(Fd-LFd) is the error signal. with L is the feedback
gain. CSC is only activated when the error and the
damping force are the same sign. With the maximum
voltage is Vmax and the minimum voltage is Vmin,
the desired damping force is Fd and the actual MR
damper force is Fa, the scaled gain is G.

The historical time elements of the voltage applied
to the coil from V and the relative displacement x on
the dampers are parameters that affect the damping
force MR of the semi-active engine mount system (x
is the distance to move the mount).

x = xs − x1 (7)

Lai and Liao [31] improved the Bouc - Wen model
as shown in Fig. 8 to calculate the actual MR damping
force. By solving the modified Bouc - Wen model of
this MR damper based equations from 8 to 14, we
obtained the given signals V and x, the Fa force, and
the parameters listed in Table 1.

Fa = ca

.
y +ka(x − x

0
) (8)

.
y = 1

c0 + ca

{
αz + c0

.
x +k0(x − y)

}
(9)
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.
z = −γ

∣∣∣ .x − .
y
∣∣∣ ∣∣∣z|n−1z − β(

.
x − .

y)
∣∣∣ z|2 + δ(

.
x − .

y)

(10)

α = α(u) = αa + αbu... (11)

ca = ca(u) = caa + cabu... (12)

c0 = c0(u) = c0a + c0bu... (13)

.
u = −η(u − v)... (14)

y is Internal displacement of MR liquid damper.
u is an output of the first order filter.
v is Voltage command sent to the current driver.
ka is Hardness accumulated
ca is viscous shock absorbers observed at high

speeds.
C0 is viscous shock absorbers observed at low

velocities.
k0 is Control hardness at high speed.
The effect of the accumulator is calculated by x0.
expand the values for the modified Bouc–Wen

model.
g, c, b, and A: The elements are used to adjust the

ratio/shape of the delay ring.

2.3.4. FOPID controller structure
As the introduction says the advantages of the

FOPID controller. The structure of the FOPID con-
troller is shown in Fig. 9. This is the most common
structure of the FOPID controller, it is PIn Dm involv-
ing integrator of order n and a differentiator of order
m where n and m can be any real number. The transfer
function of the controller shown as Laplace transform
as follows:

Gc = Kp + Ki

1

sn
+ Kds

m(m and n > 0) (15)

The five unknown gains in the optimization prob-
lem are n and m, along with Kp, Ki, and Kd that
provide more possibility to recognize the optimum
control performance. In addition, the error signal is a
relative shift between the engine mount and chassis.

Fig. 9. FOPID controller structure.

In equation (15), when we set n and m equal to
1, we transferred the FOPID controller to the PID
controller form. Similarly, set n to 1 and m to 0, we get
the normal PI controller. Set n to 0 and m to 1 we get
the normal PD controller. This can be further in-depth
in designing the FOPID controller in the frequency
domain published by (Das et al., [32]).

2.3.5. Design of the cascade FOPID controller
We provide the cascade FOPID control method

as shown in Fig. 10. For the controller to meet the
design requirements such as creating a sense of com-
fort and safety for humans when sudden acceleration
and deceleration, the bumps of the road surface cause.
Thus the controller needs to eliminate disturbances
from the outside. On the other hand, relatively large
stiffness is also needed to eliminate inertial distur-
bances caused by experimental loads. Therefore, to
achieve very high control quality with strict response
requirements of the required micro load of test load
(Li et al., [33]), the FOPID controller with single-loop
will be difficult to achieve. From that requirement,
we designed the cascade FOPID controller with two
closed loops that are controlled consecutively to
control stability and simultaneously both the dis-
placement and acceleration parameters of engine
mount to vibration isolation. If the payload generates
any disturbing acceleration then the accelerometer
controls the corresponding force and matches the

Fig. 10. Schematic diagram of the cascade FOPID control system.
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false signal to counteract inertial motion. The float
can float due to its acceleration. The main function
of the main controller is to adjust the settings of the
secondary circuit through its outer ring to change the
initial acceleration; on the other hand, the function of
the secondary controller (or accelerator controller)
is to receive the output of the main controller and
perform the corresponding regulation according to
the accelerometer measurements to ensure accelera-
tion. Loads can monitor various settings and timely
adjustments can be made according to the move-
ment of the buoy, and its displacement eventually
returns to its center. For the Cascade FOPID con-
troller to work perfectly, the most difficult thing is
to calibrate the parameters of the two accelerator
and displacement controllers simultaneously. Here
we suggest using HDNN&SPEA/R hybrid algorithm
to optimize these parameters according to the differ-
ent rotation speed ranges of the engine so that there
is the most optimal parameter set that meets the most
sudden and harsh changes in the operation of the
vehicle.

2.3.6. Formulation the objective functions for
controller tuning

In this paper, the multi-objective optimization
problem needs to be solved in order to find the opti-
mal set of parameters (n, m, Kp, Ki, Kd, KDloop) of
Displacement FOPID controller and (n, m, Kp, Ki,
Kd, KAloop) of Acceleration FOPID controller based
on the following objective functions. The objective
of the object functions and the constraints to create a
feeling of comfort and softness possible for humans.
With ωcg is gain crossover frequency, and �m is phase
margin. These two parameters selected as the two
objectives for the optimization problem of the FOPID
controller.

Maximize J1 = wcg and Maximize J2 = �m

(16)
Through equation (16), we see, this is a condition to

ensure the stability of the system when it is controlled
under the FOPID controller. Next is equation (17)
and (18) are the gain cross over frequency and phase
margin of the controlled system respectively.

20 log
∣∣C(jwcg)G(jwcg)

∣∣ = 0 dB (17)

Arg(C(jwcg)G(jwcg)) = −π + �m (18)

Thus, for equation (16) is to maximize the ride
comfort and efficiency of the controller the control
system to operate very fast when ωcg is very high

value. To implement the optimization algorithm to
maximize the goals in equation (16), a set of con-
straints has been combined for search with only
solutions that bring positive and phase margins to
bring good system stability. Their limitations and
purposes are defined as follows:

1) If closed-loop transfer function has a small
magnitude at a specified frequency ω to be less
than specified gain H then it will reject the high-
frequency noise as defined in the equation (19).

C(jw)G(jw)

1 + C(jw)G(jw)dB

≤ H (19)

2) Perform the fractional integrator of the order
k + λ, k ∈ N, 0 < λ < 1 to eliminate the
steady state error.

3) Two functions are extremely important, it
directly affects the feeling of the human, that is
the mean square acceleration (MSA), and mean
square displacement (MSD) of the powertrain
mount system is the smallest.

4) Equation (20) has performed the function of
removing high frequencies from the system.
This is significant because it ensures the robust-
ness of the system

1

1 + C(jw)G(jw)dB

≤ N (20)

2.3.7. Method of turning the cascade FOPID
controller

As mentioned in the introduction, during the oper-
ation of the vehicle, the engine causes unwanted
effects. It vibrates to the chassis. Therefore, it makes
the tired feeling uncomfortable for passengers. These
unwanted vibrations vary with the speed of the
engine’s rotation. When the car is fast or slow, vibra-
tion is different. This process is completely random
and nonlinear, it is difficult to control. Therefore,
this paper has proposed a solution to the design con-
trol system with two closed feedback loops using 2
FOPID controllers combined with an optimal con-
trol parameter set according to the change of speed
engine.

2.3.8. Build the optimal parameter set for the
adaptive control system according to the
engine speed

Cascade FOPID controller consists of two accel-
eration and displacements controllers. So for the
Cascade FOPID controller to work well, it is neces-
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sary to optimize the parameters of the two controllers.
From the object functions and the constraints, we
need to find the data set (n, m, Kp, Ki, Kd, KAloop)

Fig. 11. Flow chart of an optimal parameter of cascade FOPID
controller.

Fig. 12. Road surface profiles.

of acceleration controllers and data set (n, m, Kp, Ki,
Kd, KDloop) of displacements controllers is optimal.
We suggest using a hybrid HDNN&SPEA/R algo-
rithm to save time on simulation calculations. Here,
we used artificial neural networks with 4 hidden lay-
ers. This neural network is trained to learn deeply
based on SPEA/R gene algorithm. Thus, this neural
network has the same function as the SPEA/R gene
algorithm but with higher accuracy and faster calcula-
tion time many times. In order to match the vehicle’s
performance characteristics such as sudden accelera-
tion and deceleration and the controller’s processing
time, we have divided the engine rotation speed range
(700RPM-6000 RPM) into 500 revolutions in each
level. At each level, the HDNN&SPEA/R algorithm
will be used to find the optimal set of parameters for
the control system. Thus, the comfort and safety of the
ride have been significantly enhanced. The Algorithm
diagram calculates the optimal coefficients varying
according to engine speed to be included in the cas-
cade FOPID controller as shown in Fig. 11.

3. Numerical simulation and results

3.1. Simulated input parameters of the vehicle

Road surface profiles: When the vehicle moves
many factors cause the vibration, the factors can be
told: The internal force in the car; External forces
appear in the process of using acceleration, brak-
ing, revolving; Exterior conditions such as wind and
storm; boring face street. Among the factors on the

Table 2
Geometric parameters of engine (m)

l1 l2 l3 l4 l5
1,225 1,175 1,330 0,520 0,190
l6 l7, l8 l9 l10
0,187 0,623 0,760 0,210 0,030

Table 3
General settings information of vehicle

Mass of the equipped automobile, m0, kg 1210
Payload, kg 400
The weight of the front wheels, m1, kg 37
The weight of the rear wheels, m2, kg 37
The weight of the power unit, mca, kg 152,2
Transfer Case Weight, mpk, kg 27,8
Radius crank, r, M 0,04
The ratio of the crank radius to the length of the

connecting rod, λ

0,308

Wheel radius in slave mode, rk, M 0,325
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Table 4
Model parameters of SPEA/R algorithm and DNN network

Maximum number of iterations Iter max = 1000

Population Size 100
Crossover percentage 0.5
Mutation percentage 0.5
DNN network parameters nn = [100 200 200 200 200

100]
Mutation rate = 0.02 0.02
Number of parnets (offsprings) 2*round

(pCrossover*nPop/2)
Number of mutants round (pMutation*nPop)
Mutation step size 0.1*(VarMax-VarMin)
Generating reference points nDivision=10

Zr = GenerateReference
Points(nObj, nDivision);

bumpy side of the road is the oscillation cause of
the vehicle. To simulate the most general calculation,
we use the road surface profile as a random function
as in Fig. 12, and simulated parameters as shown in
Tables 2–4.

Table 5
Set of optimal parameter cascade FOPID controller

Revolutions Acceleration FOPID controller
level(RPM) n m Kp Ki Kd KDloop

700–1200 0.73 0.45 71522.8 21455.2 4122.1 1.66
1200–1700 0.66 0.29 61341.3 30465.8 3827.5 1.84
1700–2200 0.65 0.37 51563.6 41556.4 4252.7 2.35
2200–2700 0.72 0.59 42563.3 31351.3 5262.2 1.33
2700–3200 0.75 0.53 55522.5 29405.3 6103.4 4.69
3200–3700 0.55 0.47 78542.9 51710.9 5332.7 1.50
3700–4200 0.58 0.36 61724.1 60938.1 7062.8 5.68
4200–4700 0.82 0.45 58520.2 51732.9 5162.3 6.45
4700–5200 0.78 0.25 76555.7 44450.6 6020.0 5.67
5700–6000 0.95 0.46 81614.8 70154.8 7139.3 2.85

Revolutions Displacement FOPID controller
level(RPM) n m Kp Ki Kd KDloop

700–1200 0.78 0.35 66555.7 45450.6 6220.0 4.78
1200–1700 0.77 0.57 62725.1 67928.1 7072.8 2.07
1700–2200 0.39 0.78 61352.3 30065.8 3429.5 5.37
2200–2700 0.46 0.45 57563.6 45586.4 4257.7 3.35
2700–3200 0.77 0.65 79562.8 27495.2 4162.1 5.78
3200–3700 0.63 0.82 61644.8 77150.8 7239.3 6.80
3700–4200 0.85 0.46 53570.2 53782.9 5662.3 2.64
4200–4700 0.45 0.55 45572.5 39475.3 6173.4 7.44
4700–5200 0.58 0.38 77512.9 57799.7 5432.7 4.64
5700–6000 0.52 0.56 42362.3 41380.3 5862.2 3.84

Parameters optimized of Acceleration FOPID controller

Parameters optimized of Displacement FOPID controller  

Fig. 13. Parameters optimized of Acceleration, Displacement FOPID controller at speed range of 2200-2700(RPM).
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4. Results

Through Matlab software to simulate, we have
selected the optimal data set for the Cascade FOPID
controller as shown in Table 5. Simulation analysis is
performed in this section to evaluate the ride comfort.

In Fig. 13. (shows the results in the form of 4D,
4-dimensional space via the Isosurfaces function in
Matlab) is the result of a case of a rotation speed range
at 2200-2700(RPM) as shown in Table 5. In the fig-
ure, the Pareto optimization front is set according to
the parameters of accelerator and displacement con-
trollers. Based on the need to rejuvenate comfort and
softness, we have selected the values that correspond
to the mean square acceleration (MSA), and mean
square displacement (MSD) of the powertrain mount
system is the smallest in this Pareto front set (Those
are the red circles with the bold net).

In Fig. 14 is the result of a case of a rotation speed
range at 2200-2700(RPM). The black points in the
figure show the results of calculating the acceleration
and displacement values of the MR engine mount
corresponding to the stiffness values of the mount
to be controlled. This value is given by the Cascade
FOPID controller to Control the actual MR damper
force.

In Figs. 15–18, symbol A corresponds to the
passive drive system mounts, B is traditional PID sys-
tems, C is optimal PID parameter adjustment using
genetic algorithms (GA), D is Cascade FOPID con-
troller.

In Figs. 15 and 16. With the Cascade FOPID con-
troller, we see that the acceleration and displacement
of the chassis are the smallest and it is much smaller
than the results of the remaining controllers. Thus, the
Cascade FOPID controller has superior advantages
compared to other controllers. It has eliminated high-
frequency noise, preventing the sudden acceleration
and deceleration of the vehicle.

Pareto front of MSD at the
front engine mount.

Pareto front of MSA at the 
front engine mount

Fig. 14. Global Pareto front of MSD, MSA front engine mount.

Fig. 15. Acceleration of the vehicle frame.

Fig. 16. Displacement of the vehicle frame.

Fig. 17. Respond by frequency.

Fig. 18. Respond by time.
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Based on the simulation results in the frequency
domain as shown in Fig. 17 at both resonance points,
the Cascade FOPID controller achieves lower oscil-
lation transmission than the other three systems.
Therefore the system achieves better performance,
creating a feeling of comfort and smooth ride softer.
Simulated in the time domain as shown in Fig. 18,
Cascade FOPID controller has the smallest oscilla-
tion amplitude, also the shortest damping time. Thus
the Cascade FOPID controller has demonstrated opti-
mal control over the other three controllers. It has
brought more comfort to people.

5. Conclusion

This paper has published a new combination
method between SPEA/R, DNN, and GA. So artificial
neural networks with many hidden layers are trained
with intelligent deep learning algorithms, it has cre-
ated a deep learning network to realize the optimal
problem simultaneously of many objects in the tech-
nology. This method is extremely effective and highly
practical because: Firstly, it offers a way of deep
learning of the network with a much smaller num-
ber of standard samples than previous deep-learning
networking methods announced. For test cases Opti-
mal parameter Cascade FOPID controller, we only
need a standard set of 10 samples to train deep neu-
ral networks. It is this combination of training that
the actual number of samples generated for the train-
ing process is 10×(Iter max) = 10000 samples. While
training with the old method is extremely difficult
to collect a large number of samples. Secondly, for
test cases, Optimal parameter Cascade FOPID con-
troller, the time for multi-objective optimal analysis
of HDNN&SPEA/R hybrid methods at 1 Revolutions
level(RPM) is only 1.5 hours while using SPEA/R
algorithm takes 35 hours. So the total time for cal-
culating the entire process for the optimal controller
will be (35-1.5)×10 = 335 hours.

Thus, This article has published the Cascade
FOPID controller and control algorithms. This con-
troller has an optimal set of control parameters that
adapt to the changing of the speed range of the engine
rotation. The Cascade FOPID controller has been
designed successfully. It has demonstrated superior
advantages over previous controllers. On the other
hand, it has met the requirements set out to prevent
vibrations during a sudden increase or decrease of
the engine when the engine changes different rotation
speeds, from which it creates a comfortable feeling.

roof, soft when riding for people. This is completely
proven in the simulation results.
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