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Abstract – This paper presents the effects of stiffness and the variation of center of mass on 

the motion of a rocket model. The equations of motion are based on Meshchersky’s method 

and Lagrange’s equations for flexible-variable systems. The rocket model used in this study is 

built based on the 9M22Y rocket. The obtained results show good agreement with actual flight 

data. 
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Nomenclature 
 Mass density along the rocket length 

air  Mass density of the air 

m  Mass of the thrust 

 pitch angle in vertical plane 

0J Moment of inertia 

,X YF F  Resultant external force on the variable mass 

System 

thrustF  Effective thrust force 

( )tM Static moment, 

(  )

( )

rocket length

t xdx M  

( )d t

dt


M
= Derivation of Static moment 

U Velocity of jet flow 

m Mass of rocket 

  Mass flow rate 
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thrust

p

k

x
x





 
  
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Coefficient of effective thrust 

related to elasticity 

, ,RG RG RGJ R H            Additional inertial term related to 

the deformation of the rocket 

RGG    Additional stiffness term related to the deformation 

of the rocket 

Px  Position of thrust 

 RGd Vector of nodal displacements 

A    Transition matrix 

I. Introduction 
For rockets, it is necessary to reduce their mass and 

augment their slenderness in order to increase the effective 

range. Moreover, the reduction in the mass of rocket 

structures also may help install heavier payloads. On the 

other hand, it is relevant to note that more and more materials 

with advanced properties are being introduced to the 

aerospace industry. Due to these reasons, the structures of 

modern rockets may be more flexible. Previously, while 

studying rocket dynamics, a rocket was commonly regarded 

as a point mass [9], [12], [14] or a rigid body. This approach 

is acceptable for rockets with small deformation. For more 

flexible rockets, it is necessary to include the effect of 

flexibility to enhance the accuracy of the solution. Methods, 

which have been widely used to derive the equations of 

motions of rockets, are based on William Moore, 

Tsiolkovsky hay Meshchersky [dẫn chứng] or the 

Lagrange’s equation [2], [13]. Using this approach, in 

several studies, researchers assume that thrust acts as an 

external force and the loss in mass generates only a force 

along the body axis [13]. Moreover, the force component 

normal to the body axis formed by the interaction between 

the loss in mass and the transverse vibration of the body, as 

well as the rotation of the rocket is ignored. Previous studies 

also did not consider the variation of the location of the mass 

center. 

During flight, a rocket is affected by the 

aerodynamic force, the gravitational force and engine thrust. 

These forces make the rocket move, and at the same time, 

cause the vibrations of the rocket structure. These elastic 

vibrations affect the motions and the aerodynamics force, 

therefore, change the dynamic characteristics. In addition, 

while flying, the rocket loses mass, and thus, the location of 

the center of mass keeps varying. This variation also 

influence the dynamic characteristics of rocket flight. Up to 



the present moment, the research on this issue has not 

covered the entire phenomenon.  

In this study, we analyze the effects of the bending 

deformation and the variation of the location of the mass 

center simultaneously. The force component normal to the 

body axis generated by the interaction between the loss in 

mass, the vibration and rotation of the body is added to the 

system of equations of motion. The rocket is modeled as a 

free-free Euler-Bernoulli beam.  

II. Dynamics of rocket system  

2.1. The system  

Considering the system from the moment of time 

kt  to kt  , (in which 
 
is time variable),  the rocket at the 

moment kt  
transforms to a new system of exhaust and a 

rocket with different mass at the moment kt  . The mass 

of the rocket and exhaust system is conserved; hence, we can 

apply the Hamilton principle and the Lagrange equation in 

this case. 

 

Fig.1 The variable mass system 

 

 

Fig.2 Ground-fixed coordinate system and local 

body-fixed coordinate system 

The Lagrange equation can be written as follows: 
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where:  

rocket thrustT T T  : Kinetic energy

 
:eU  Elastic potential energy  

:iQ
 
Generalized force corresponding to the degree of 

freedom iq  

2.2. Kinetic Energy of Rocket System 

 The local velocity on the rocket body and the kinetic 

energy is: 
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2.3. Kinetic Energy of Thrust 
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2.4. Elastic Potential Energy 

In this study, we consider only bending deformation; hence, 

the elastic potential energy of the rocket, which is modeled 

as an Euler-Bernoulli beam, is determined by: 
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2.5. Generalized forces 

The generalized force used in the Lagrange equation is given 

as 
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where , ,x y zF F F  are external forces acting on the rocket 

system include the gravitational force and the aerodynamic 

force. It is noted that the thrust force is not included here. 

 



III. Equation of motion of rocket in vertical 

plane by finite element method 

Modelling the flexible rocket as an Euler-Bernoulli 

beam that consists of n-1 elements and each element 

includes 2 nodes (fig 3.1). Each node has two degrees of 

freedom which are ,
v

v
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.  

The rocket is assumed to fly only on the vertical plane (xy 

plane). 

 

Fig.3 Nodes along rocket body axis 
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Modelling the rocket as a free-free elastic beam, the 

boundary conditions of zero bending moment and shear 

force at the two ends must be satisfied. 

Considering the boundary conditions, we can obtain the 

kinetic and elastic potential energy of the rocket, the kinetic 

energy of the jet flow, and generalized forces through the 

nodal displacements as 
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  (2)              

Let m  the mass lost during k kt t   ,  the mass 

flow rate, and U  the jet flow speed.  
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thrust thrustF k U  into Eq. (2) and let  RGdQ  denote the 

generalized force vector of the whole structure 

corresponding to the generalized coordinate vector  RGd , 

we derive the equation system of motions of the flexible 

rocket in the vertical plane as follows:   
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IV. Numerical Simulation and Analysis 

Performing a numerical simulation for a rocket model 

and launch at 200: 

 

Fig.4 Model of rocket 

Some basic parameters of the rocket are given as follows: 

 

 



Mass of rocket: 

 

Fig.5 Mass of rocket depends on time 

Thrust force:  

 

Fig.6 Thrust force depends on time 

The distributions of mass and stiffness along the rocket 

body are given as: 

 

 

Fig.7 Distributions of mass and stiffness along the rocket 

Aerodynamic forces: FP 

2 2( , , )      ;           ( , , )L L air D D airF C x V V F C x V V      

,L DC C is aerodynamics coefficients, dependent on rocket’s 

velocity, angle of attack, position on rocket- defined as 

follows: 

  

Fig.8 Coefficient of normal force LC and drag force DC at 

V=500m/s 

4.1. Numerical Simulation Results 

We perform the simulation in several cases, including: 

- Rocket as variable mass - rigid body with 

the variation of center of mass. 

- Rocket as variable mass- flexible body. 

- Rocket as variable mass- flexible body 

with fixed center of mass. 

- Transverse vibration of the rocket, which 

is modelled as a free-free Euler-Bernoulli 

beam. 

 Effects of stiffness 

 

 

Fig.9 Trajectory of rocket 

Tab. 1. Long range and altitude of rocket 

Stiffness 0.05[Korigin] [Korigin] Rigid 

Body 

Xmax(m) 13239 13143 13140 

Ymax(m) 1350.7 1321.1 1319.9 

 

 

Fig.10 Velocity of center of mass 

Distributions of stiffness [Korigin] 

Initial distributions of mass 



 

Fig.11 Variation of angle of attack 

 

Fig.12 Variation of angle of pitch 

  

 

Fig.13 Vibrations of Rocket’s Tail and Tip when 

K=0.05[Korigin], K=[Korigin], K=100[Korigin] 

Tab. 2. Amplitude of bending vibration 

Stiffness 0.05[Korigin] [Korigin] 100[Korigin] 

Amplitude-

Tip (mm) 

0.77 0.028 2.65x10-4 

Amplitude-

Tail(mm) 

1.12 0.07 6.85x10-4 

 

 Effects of the variation of center of 

mass 

 



 

Fig. 14 Effect of the variation of center of mass on 

trajectory 

Tab. 3. Long range and altitude of rocket 

 Fix Center of mass Origin 

Xmax(m) 13149 13143 

Ymax(m) 1317.9 1321.1 

 

 

Fig.15 Effect of the variation of center of mass on the angle 

of attack 

  

 

Fig.16 Effect of the variation of center of mass on 

the angle of pitch  

 

 

Fig.17 Effect of the variation of center of mass on 

the angular velocity (derivative of angle of pitch) 

Conclusions: 

This paper presents the effects the flexibility of the rocket 

body and the variation of the location of the mass center on 

the motions of a rocket model. The result has shown that the 

coupling between the bending vibration and the mass loss 

creates an equivalent force acting on the rocket in a direction 

normal to its body axis. When including the effect of body 

deformation, the effective thrust decreases, the range and the 

maximum altitude may increase despite the reduction of the 

initial velocity of the center of mass. When the variation of 

the location of the mass center is ignored, the maximum 

altitude becomes greater while the range declines.  In this 

case, the amplitudes and the periods of the vibrations of the 



pitch angle and the angle of attack become larger; however, 

the solution is more linear 
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