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A refined third-order shear deformation theory (RTSDT), in which the transverse displacement is split into bending and shear
parts, is employed to formulate a four-node quadrilateral finite element for free vibration analysis of functionally graded sandwich
(FGSW) plates partially supported by a Pasternak foundation. An element based on the refined first-order shear deformation
theory (RFSDT) which requires a shear correction factor is also derived for comparison purpose. *e plates consist of a fully
ceramic core and two functionally graded skin layers with material properties varying in the thickness direction by a power
gradation law. *e Mori–Tanaka scheme is employed to evaluate the effective moduli. *e elements are derived using Lagrangian
and Hermitian polynomials to interpolate the in-plane and transverse displacements, respectively. *e numerical result reveals
that the frequencies obtained by the RTSDT element are slightly higher than the ones using the RFSDTelement. It is also shown
that the foundation supporting area plays an important role on the vibration of the plates, and the effect of the material dis-
tribution on the frequencies is dependent on this parameter. A parametric study is carried out to highlight the effects of the
material inhomogeneity, the foundation stiffness parameters, and the foundation supporting area on the frequencies and vibration
modes. *e influence of the layer thickness and aspect ratios on the frequencies is also examined and highlighted.

1. Introduction

With the development of advanced manufacturing methods
[1], functionally graded materials (FGMs)—a new type of
composite materials initiated by Japanese researchers in
mid-1980 [2], can be incorporated into sandwich con-
struction to improve performance of the structures. Func-
tionally graded sandwich (FGSW) structures can be
designed to have a smooth variation of properties, which
helps to avoid the interface separation problem as often seen
in the conventional sandwich structures. Investigations on
mechanical behaviour of FGSW structures have been in-
tensively reported in recent years, and contributions that are
most relevant to present work are discussed below.

Zenkour [3, 4] presented a sinusoidal shear deformation
plate theory for bending, buckling, and vibration analyses of

sandwich plates with a homogeneous ceramic core and two
FGM faces. Parametric studies carried out by the author
show the importance of the material distribution, aspect
ratio, and core thickness on the mechanical behaviour of the
plates. *e theory was then employed in [5] to study the
thermal buckling of FGSW plates. Xiang et al. [6] calculated
frequencies of sandwich plates with homogeneous core and
FGM face sheets using the nth-order shear deformation
theory and the meshless global collocation method. Neves
et al. [7] presented a quasi-3D shear deformation theory for
analyzing isotropic and FGSWplates, taking the extensibility
in the thickness direction into account. *e collocation with
radial basis functions was adopted by the authors to obtain
the static, buckling, and free vibration characteristics. *e
bending, buckling, and free vibration of FGSW plates were
also considered by *ai et al. [8] using a first-order shear
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deformation theory. *e shear stresses in the theory are
directly computed from transverse shear forces, and a shear
correction factor is not necessary to use. Iurlaro et al. [9]
adopted the refined zigzag theory to formulate the finite
element formulations for bending and free vibration analysis
of FGSW plates. *e numerical investigations by the authors
showed that the zigzag theory is superior in predicting the
mechanical behavior of the plates to the first-order and
third-order shear deformation theories. In [10], Pandey and
Pradyumna employed the higher-order layerwise theory to
derive an eight-node isoparametric element for static and
dynamic analyses of FGSW plates. *e efficiency and ac-
curacy of the derived element in evaluating the bending and
dynamic characteristics of the plates are shown through the
numerical investigation. Free vibration analysis of FGSW
plate was carried out by Belabed et al. [11] using a hyperbolic
plate theory. *e effect of porosities on bending of sandwich
plate with a homogeneous core and FGM skin layers was
considered by Daikh and Zenkour [12] using a high-order
shear deformation theory. Based on a quasi-3D shear de-
formation theory, Mahmoudi et al. [13] presented an ana-
lytical method for thermomechanical bending analysis of
FGSW plates resting on a Pasternak foundation. Navier’s
solution was employed by the authors to solve the governing
equations, and the effect of thermal loads and foundation
stiffness on the bending behaviour of the plates was ex-
amined in detail.

A shear deformation theory is necessary to employ in
analyzing composite plates since the shear deformation is
important in mechanical behaviour of the plates. In addition
to the well-known plate theories [14–16], a number of shear
deformation theories have been proposed in the last two
decades. Several authors kept the transverse displacement
unchanged as in the above theories and tried to modify the
in-plane displacements [16–22]. On the other hand, the
transverse displacement in some newly proposed theories is
modified by adding some terms to account for a variation in
the plate thickness. Ghugal and Sayyad [23] proposed six-
unknown plate theories by adding trigonometric terms to
the displacements of Kirchhoff theory. Nine-unknown si-
nusoidal and hyperbolic plate theories with the transverse
displacement quadratically varying in the thickness were
proposed by Neves et al. [24, 25], respectively. Zenkour
[26, 27] used the trigonometric and hyperbolic functions to
modify the displacement field to form the four-unknown
shear deformation theories for bending analysis of FGM
plates. Some authors refined the plate theories by splitting
the transverse displacement into bending and shear parts. In
this line of works, Shimpi and Patel [28] and *ai and Kim
[29] proposed third-order shear deformation theories for
free vibration and bending analyses of plates. *e theories
have only four unknowns which could improve computa-
tional efficiency. A first-order shear deformation theory
which can be considered as a special case of the third-order
theory in [28] has been recommended by Shimpi et al. [30].
*e theory is very simple, but it needs shear correction
factors to correct the discrepancy between the actual par-
abolic transverse shear stress distribution and the computed
one. *ai and Vo [31], Meiche et al. [32], and Daouadji et al.

[33] also split the transverse displacement into bending and
shear parts, but used trigonometric and hyperbolic functions
to modify the in-plane displacements in their four-unknown
plate theories. Bessaim et al. [34] proposed a five-unknown
theory by adding hyperbolic functions to the transverse
displacements to account for the thickness variation of this
displacement. Zaoui et al. [35] established the two-dimen-
sional and quasi-3D theories for modeling the free vibration
of FGM plates on Pasternak foundation. *e theories
employed a shear strain shape function which enables to take
both the transverse shear and thickness stretching effects
into account.

Among the above discussed shear deformation
theories, the four-unknown refined theories proposed
by Shimpi and his co-workers in [28, 30] are simple, and
they are employed herein to study free vibration of
FGSW plates on a Pasternak foundation. In addition, it
has been shown that the method of analysis and the
behaviour of structures partially supported by a
foundation are much different from that of the ones
fully supported by the foundation [36, 37]. *e objec-
tives of the present paper are two-fold. One is to derive
finite element formulations for evaluating vibration
characteristics of FGSW plates partially supported by
Pasternak foundation, which to the authors’ best
knowledge has not been reported in the literature. *e
other is to study how the plate frequencies obtained by
finite elements based on the newly proposed first-order
and third-order shear deformation theories are differ-
ent. *e plates considered herein consist of three layers,
a pure ceramic core and two functionally graded skin
layers with material properties varying the thickness
direction by a power gradation law. *e finite elements
considered in the present work are four-node quadri-
lateral elements, and they are derived by using Lagrange
and Hermite polynomials to interpolate the in-plane
and transverse displacements, respectively. Parametric
studies are carried out to highlight the effects of the
material distribution and the foundation support on the
vibration characteristics of the plates.

2. Problem Formulation

2.1. FGSW Plate on Foundation. A rectangular FGSW plate
with length a, width b, and thickness h, partially supported
by a Pasternak foundation as depicted in Figure 1, is con-
sidered. *e plate consists of three layers, a homogeneous
ceramic core and two metal-ceramic FGM skin layers. In
Figure 1, the (x, y) plane is coincident with the midplane,
and z0 � −h/2, z1, z2, and z3 � h/2 are, respectively, the
vertical coordinates of the bottom surface, the two layer
interfaces, and the top surface. *e foundation is the Pas-
ternak type, and it is represented by Winkler springs of
stiffness kW and a shear layer with stiffness kG. *e foun-
dation is assumed to support the plate on a rectangular area
(af, bf) at the lower left corner, as shown in Figure 1. *e
volume fractions of the ceramic V(k)

c and metal
V(k)

m (k � 1, . . . , 3) are considered to vary in the plate
thickness according to
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where n (0≤ n≤∞) is the material grading index. *e
subscripts ‘c’ and ‘m’ in equation (1) and hereafter stand for
“ceramic” and “metal,” respectively.

*e Mori–Tanaka scheme [38] is employed herewith to
evaluate the effective properties of the FGM layers.
According to the Mori–Tanaka scheme, the effective bulk
modulus K

(k)
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plate are given by
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where Kc, Gc, Km, and Gm are the bulk and shear moduli of
ceramic and metal, respectively.

*e effective Young’s modulus E
(k)
f and Poisson’s ratio

](k)
f are calculated via the bulk and shear moduli as
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*e effective mass density of the kth layer ρ(k)
f evaluated

by Voigt’s model is of the form

ρ(k)
f � ρc − ρm( V

(k)
c + ρm, (4)

where ρc and ρm are the mass density of the ceramic and
metal, respectively.

2.2. Refined Shear Deformation �eories. In the refined
third-order shear deformation theory (RTSDT) of Shimpi
and Patel [28], the transverse displacement is split into

bending and shear parts, wb and ws, and the displacements
of a point in x, y, and z directions, u(x, y, z, t), v(x, y, z, t),
and w(x, y, t), respectively, are given by

u(x, y, z, t) � u0(x, y, t) − zwb,x(x, y, t) − f(z)ws,x(x, y, t),

v(x, y, z, t) � v0(x, y, t) − zwb,y(x, y, t) − f(z)ws,y(x, y, t),

w(x, y, t) � wb(x, y, t) + ws(x, y, t),

(5)

where u0(x, y, t) and v0(x, y, t) are the in-plane displace-
ments of a point on the (x, y) plane, and

f(z) � z −
1
4

+
5
3

z

h
 

2
 . (6)

In equation (5) and hereafter, a subscript comma is used
to denote the derivative with respect to the variable that
follows. When f(z) � 0, equation (5) results in the dis-
placement field of the refined first-order shear deformation
theory (RFSDT) proposed by Shimpi et al. in [30].

*e strains resulted from equation (5) are of the forms

(a, b)
h

a

y

b

x

z

z3

z2

z1
z0

(af, bf)

(0, 0)Shear layer (kG)

Winkler springs (kw)

Foundation

Figure 1: An FGSW plate partially supported by a Pasternak foundation.
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z � 5
1
4

−
z

h
 

2
 .

(8)

If we denote membrane strains εm, bending curvatures
κb, shear curvatures κs, and shear strains εs as

εm � u0,x v0,y u0,y + v0,x  
T

,

κb � − wb,xx wb,yy 2wb,xy 
T
,

κs � − ws,xx ws,yy 2ws,xy 
T
,

εs � ws,x ws,y 
T
,

(9)

then the strains in equation (7) can be written in the form

ε1 � εm + zκb + f(z)κs,

ε2 � g(z)εs,
(10)

with ε1 � εx εy cxy 
T
and ε2 � cxz cyx 

T
.

*e constitutive equations for the plate based on linear
behaviour assumption are of the forms
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*e shear stresses τxz and τyz, as seen from equations (7),
(8), and (11), vanish on the plate surface for the present
RTSDT. By setting f(z) � 0 and g(z) � ψ, with ψ being a
shear correction factor, the above equations result in
equations of the RFSDT.

2.3. Energy Expressions. Instead of deriving differential
equation of motion, the equation of motion in the context of
finite element analysis will be derived. Assuming the plate is
divided into a number of elements, Hamilton’s principle for
free vibration states that

δ
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⎡⎣ ⎤⎦dt � 0, (14)

where nEP and nEF are, respectively, the total number of
elements used for plate and foundation; UP

e and UF
e are,

respectively, the strain energies stemming from the plate and
foundation deformation; and Te is the element kinetic
energy. Hamilton’s principle leads to discrete equation of
motion in the form

M €D + KD � 0, (15)

where M, K, D, and €D are, respectively, the global mass
matrix, stiffness matrix, and vectors of nodal displacements
and accelerations. Assuming a harmonic form for the vector
of nodal displacements, equation (15) leads to an eigenvalue
problem for determining the frequency ω as

K − ω2M D � 0, (16)

where ω is the frequency and D is the vibration amplitude.
*e strain energy UP

e for an element is given by
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where Ve andΩe are, respectively, the volume and midplane
area of the element and dΩ � dxdy for the present rect-
angular element.

By expressing ε1 in the form

ε1 � I3 zI3 f(z)I3  εm κb κs 
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with I3 being a (3 × 3) order identity matrix, one can write
the strain energy (17) in the form
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*e strain energy for the RFSDTis obtained by removing
the terms corresponding to the shear curvature κs in
equation (19) and setting g(z) in equation (20) to ψ.

*e strain energy stemming from the foundation de-
formation is simply given by
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Using matrix I3, one can write the displacement field in
equation (5) in the form
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*e kinetic energy for the element can be written in the
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where overdot denotes the derivative with respect to the time
variable t and Ii(i � 0, . . . , 5) are the mass moments, defined
as
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with the effective mass density ρ(k)
f given by equation (4).

3. Element Formulations

*e stiffness and mass matrices for a four-node quadrilateral
element based on the RTSDTand RFSDTare derived in this
section. *e nodal displacements and derivatives of the
bending and shear displacements are taken as degrees of
freedom, and the element vector of nodal displacements
contains 40 components as

d
40×1

� dm db ds 
T
, (26)

where dm � du dv 
T with

du
4×1

� u01 u02 u03 u04 
T
,

dv
4×1

� v01 v02 v03 v04 
T
,

(27)

db
16×1

� Δb1 Δb2 Δb3 Δb4 
T
,

ds
16×1

� Δs1 Δs2 Δs3 Δs4 
T
,

(28)

with

Δbi � wbi wb,xi wb,yi wb,xyi 
T
,

Δsi � wbi ws,xi ws,yi ws,xyi 
T
, (i � 1, . . . , 4).

(29)

Lagrange and Hermite polynomials are employed herein
to interpolate the displacements as [39]
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where Ni (i � 1, . . . , 4) and Hi (i � 1, . . . , 16) are, respec-
tively, the Lagrange and Hermite functions. In a matrix
form, equation (30) can be written as
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are the matrices of the interpolation functions.
Using the above interpolations, one can write the strains

and curvatures in the forms
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Cb
3×16

� Cs
3×16

� −

H,xx

H,yy

2H,xy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Bs
2×16

�
H,x

H,y

 .

(33)

Substituting equations (32) and (33) into equation (19),
one can write the strain energy UP

e in the form
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U
P
e �

1
2
dTkP

e d �
1
2

dm

db

ds

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

T kmm kmb kms

kT
mb kbb kbs

kT
ms kT

bs kss

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dm

db

ds

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(34)

where kP
e is the element stiffness matrix resulted from the

plate deformation; kmm, kbb, and kss are, respectively, the
membrane, bending, and shear stiffness matrices with the
following forms

kmm
8×8

� 
Ωe

BT
mA0Bmdx dy,

kbb
16×16

� 
Ωe

CT
b A2Cbdx dy,

kss
16×16

� 
Ωe

CT
s A5Csdx dy + 

Ωe

BT
s DsBsdx dy,

(35)

and the coupling stiffness matrices kmb, kms, and kbs have the
forms

kmb
8×16

� 
Ωe

BT
mA1Cbdx dy,

kms
8×16

� 
Ωe

BT
mA3Csdx dy,

kbs
16×16

� 
Ωe

CT
bA4Csdx dy.

(36)

*e stiffness matrix for the element based on the RFSDT
is simply obtained by setting the terms corresponding to Cs

in equations (35) and (36) to zeros.
*e strain energy UF

e given by equation (21) can now be
written in the form

U
F
e �

1
2
dTkF

e d, (37)

where the element foundation stiffness kF
e has the form

kF
e

40×40
�

0 0 0

0 kF
bb kF

bs

0 kF
bs kF

ss

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (38)

with

kF
bb

16×16
� kF

ss � kF
bs � 

Ωe

HT
kWH + HT

,xkGH,x + HT
,ykGH,y dx dy.

(39)

*e kinetic energy Te in equation (24) can also be
written in the form

Te �
1
2

_d
T
me

_d �
1
2

_dm

_db

_ds

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

T mmm mmb mms

mT
mb mbb mbs

mT
ms mT

bs mss

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_dm

_db

_ds

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(40)

where me is the element mass matrix formed from the
following submatrices:

mmm
8×8

� 
Ωe

NTI0N 0,

0 NTI0N
⎡⎣ ⎤⎦dx dy,

mbb
16×16

� 
Ωe

HT
I0H + HT

,xI2H,x + HT
,yI2H,y dx dy,

mss
16×16

� 
Ωe

HT
I0H + HT

,xI5H,x + HT
,yI5H,y dx dy,

(41)

and the coupling mass matrices have the forms

mmb
8×16

� −
Ωe

NTI1H,x

NTI1H,y

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦dx dy,

mms
8×16

� −
Ωe

NTI3H,x

NTI3H,y

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦dx dy,

mbs
16×16

� 
Ωe

HT
I0H + HT

,xI4H,x + HT
,yI4H,y dx dy.

(42)

Since f(z) � 0 in the RFSDT, then I3 � I4 � I5 � 0, and
thus the element mass matrix for the RFSDT element is
obtained by setting the terms corresponding to I3, I4, and I5
in equations (41) and (42) to zeros.

4. Numerical Results

Numerical investigation is carried out in this section to study
the effect of various parameters on the vibration of the
FGSW plate. Otherwise stated, an FGSW plate with a/b � 2
formed from aluminum (Al) and alumina (Al2O3) with the
following properties is employed:

(i) Em � 70GPa, ]m � 0.3, and ρm � 2707 kg/m3 for Al
(ii) Ec � 380GPa, ]c � 0.3, and ρc � 3800 kg/m3 for

Al2O3

*ree types of boundary conditions, namely, simply
supported at all edges (SSSS), simply supported at two longer
edges and clamped at the others (SCSC), and clamped at all
edges (CCCC), are considered. For convenience of discus-
sion, the following dimensionless parameters for the plate
frequencies and foundation stiffness introduced in [40] are
adopted herewith

μi �
ωia

2

h

��ρ0
E0



,

k1 �
kWa4

Dc

,

k2 �
kGa2

Dc

,

(43)

where ωi is the ith frequency, Dc � Ech
3/12(1 − ]2), E0 � 1

GPa, and ρ0 � 1 kg/m3. Also, two dimensionless parameters,
ra � af/a and rb � bf/b, are used for the foundation sup-
porting area. *ree numbers in brackets are used to denote
the layer thickness ratio, e.g., (1-2-1) means that the
thickness ratio of the bottom, core, and top layers is 1 : 2 :1. A
shear correction factor ψ � 5/6 is used for the RFSDT.

6 Mathematical Problems in Engineering



*e accuracy of the formulated elements is firstly veri-
fied. To this end, Table 1 compares the fundamental fre-
quency parameters of a SSSS square plate fully resting on the
Pasternak foundation obtained by the elements in the
present work to the result of Akavci [40]. Regardless of the
material index, layer thickness ratio, and foundation stiff-
ness, Table 1 shows a good agreement between the frequency
parameters of the present work with that of Ref. [40], where
the hyperbolic shear deformation theory and Navier tech-
nique have been used. Note that the result in Table 1 was
obtained for the plate made of aluminum and zirconia with
the material data given in [40].

Tables 2–4, respectively, list the fundamental frequency
parameter of the SSSS, SCSC, and CCCC plates with a/h � 5,
(ra, rb) � (1/4, 1/4), and various values of the index n and
the layer thickness ratio. *e frequency parameter in the
tables decreases by the increase of the index n, and it in-
creases by increasing the core thickness, regardless of the
boundary condition and the foundation stiffness. *e de-
pendence of the frequency parameter upon the grading
index and the layer thickness ratio can be explained by the
change of the constituent volume fraction, as seen from
equation (1), and this leads to the change of the plate ri-
gidities Aij. *ough the mass moments Iij also alter by the
change of the index n, the change of Aij is more significant
than that of Iij, and thus the decrease of the frequency by
increasing n is resulted from the more significant decrease of
Aij. As expected, at the given values of the index n and the
layer thickness ratio, the frequency prameter of the SSSS
plate is smallest while that of the CCCC plate is highest. *e
tables also show that the RTSDT element-based frequency
parameters are slightly higher than that based on the RFSDT

element, irrespective of the boundary condition, the foun-
dation stiffness, the material grading index, and the layer
thickness ratio. *e effect of the foundation supporting area
on the vibration of the plate can be seen from Figures 2–4,

Table 1: Comparison of frequency parameter μ1 for SSSS square plate fully supported by Pasternak foundation.

a/h n (k1, k2) Source (1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1)

5

2

(10, 10)
Ref. [40] 1.32314 1.33409 1.34691 1.36107 1.37133
RFSDT 1.32372 1.33214 1.34386 1.36008 1.36842
RTSDT 1.32852 1.33743 1.34880 1.36440 1.37253

(100, 100)
Ref. [40] 2.56208 2.68234 2.75786 2.79373 2.84764
RFSDT 2.50594 2.64167 2.72792 2.76587 2.82687
RTSDT 2.50743 2.64291 2.72897 2.76662 2.82769

10

(10, 10)
Ref. [40] 1.30224 1.30448 1.31193 1.32742 1.33389
RFSDT 1.31403 1.31334 1.31937 1.33658 1.34044
RTSDT 1.31750 1.31919 1.32520 1.34157 1.34550

(100, 100)
Ref. [40] 2.31764 2.50435 2.61784 2.67072 2.74945
RFSDT 2.30053 2.49358 2.61182 2.66423 2.74622
RTSDT 2.30245 2.49521 2.61322 2.66492 2.74731

100

2

(10, 10)
Ref. [40] 1.42000 1.43000 1.44444 1.46227 1.47402
RFSDT 1.40810 1.41550 1.42804 1.44905 1.45836
RTSDT 1.40895 1.41618 1.42861 1.44957 1.45880

(100, 100)
Ref. [40] 3.34906 3.33441 3.32829 3.32997 3.32610
RFSDT 3.34422 3.32841 3.32566 3.32437 3.31938
RTSDT 3.34622 3.32998 3.32695 3.32553 3.32034

10

(10, 10)
Ref. [40] 1.40234 1.3967 1.40285 1.42192 1.42781
RFSDT 1.40072 1.39395 1.39830 1.42029 1.42330
RTSDT 1.40189 1.39488 1.39907 1.42099 1.42388

(100, 100)
Ref. [40] 3.37718 3.34801 3.33315 3.33266 3.3225
RFSDT 3.37670 3.34706 3.33583 3.33216 3.32075
RTSDT 3.37952 3.34925 3.33763 3.33377 3.32208

Table 2: Frequency parameter μ1 of SSSS plate for a/h � 5 and
(ra, rb) � (1/4, 1/4).

(k1, k2) n Element (1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1)

(10, 10)

0.3 RFSDT 2.0482 2.1228 2.1887 2.2474 2.2948
RTSDT 2.0620 2.1366 2.2012 2.2583 2.3046

0.5 RFSDT 1.8705 1.9564 2.0366 2.1124 2.1698
RTSDT 1.8854 1.9715 2.0503 2.1242 2.1806

1 RFSDT 1.6586 1.7484 1.8420 1.9412 2.0085
RTSDT 1.6746 1.7643 1.8564 1.9538 2.0201

5 RFSDT 1.4565 1.5062 1.5891 1.7195 1.7828
RTSDT 1.4738 1.5246 1.6050 1.7334 1.7956

(50, 50)

0.3 RFSDT 2.1249 2.1995 2.2652 2.3230 2.3703
RTSDT 2.1409 2.2153 2.2794 2.3353 2.3813

0.5 RFSDT 1.9478 2.0345 2.1147 2.1892 2.2468
RTSDT 1.9656 2.0520 2.1305 2.2029 2.2592

1 RFSDT 1.7348 1.8271 1.9215 2.0192 2.0875
RTSDT 1.7549 1.8465 1.9388 2.0342 2.1010

5 RFSDT 1.5247 1.5823 1.6684 1.7972 1.8637
RTSDT 1.5477 1.6065 1.6889 1.8146 1.8795

(100, 100)

0.3 RFSDT 2.1689 2.2453 2.3122 2.3704 2.4185
RTSDT 2.1878 2.2639 2.3289 2.3848 2.4316

0.5 RFSDT 1.9886 2.0779 2.1599 2.2350 2.2941
RTSDT 2.0097 2.0987 2.1786 2.2512 2.3087

1 RFSDT 1.7702 1.8666 1.9637 2.0623 2.1329
RTSDT 1.7941 1.8898 1.9843 2.0802 2.1490

5 RFSDT 1.5504 1.6146 1.7047 1.8352 1.9056
RTSDT 1.5776 1.6436 1.7295 1.8561 1.9246
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where the first four vibration modes of the SSSS, SCSC, and
CCCC plates with n � 0.5 and a/h � 10 are, respectively,
illustrated for (ra, rb) � (1/2, 1/2) and k1 � k2 � 50. *e

vibration modes of the plates partially supported by the
foundation, as seen from the figures, are much different
from that of the plates without or fully resting on the
foundation, and the first and fouth modes of the plates
partially supported by the foundation are no longer
symmetrical. Note that Figures 2–4 (and all the figures
below) are obtained by using the element based on the
RTSDT.

To examine the influence of the foundation supporting
area on the vibration frequency of the FGSW plate in some
more detail, Table 5 lists the fundamental frequency pa-
rameters of the (2-1-2) SSSS plates for various values of
the aspect ratio, foundation supporting area, and foun-
dation stiffness. *e frequency parameter in the table, as
expected, increases with the increase of the foundation
supporting area and the foundation stiffness, regardless of
the material index and the aspect ratio. *e difference
between the frequency parameter obtained by the two
elements can be seen again from the table, and the fre-
quencies obtained by the RTSDT element are always
higher than the ones obtained by the RFSDT element,
regardless of the aspect ratio, the foundation stiffness, and
the foundation supporting area. A careful examination of
Table 5 shows that the foundation supporting area plays
an important role on the dependence of the frequency
parameter upon the material index n, and the decrease of
the parameter μ1 with the increase of n is less significant
for the plate supported by a larger foundation area, re-
gardless of the aspect ratio. For example, with a/h � 10
and (k1, k2) � (10, 10), a decrease of 30.83% of the fre-
quency parameter μ1 based on the RTSDT element when
increasing the index n from 0.3 to 10 is seen from Table 5
for (ra, rb) � (1/4, 1/4), while the corresponding values are
24.95% and 19.02% in case (ra, rb) � (1/2, 1/2) and
(ra, rb) � (3/4, 3/4), respectively. *e decrease of the pa-
rameter μ1 with the increase of the index n, as seen from
Table 5, is less significant for the higher stiffness foun-
dation.*e effect of the foundation supporting area on the
vibration mode of the plate can be seen from Figure 5,
where the first mode of the (2-1-2) SSSS plate with n � 0.5,
a/h � 10, and (k1, k2) � (50, 50) is depicted for various
values of (ra, rb).

*e influence of the aspect ratio a/h on the frequency of
the plate can be seen from Table 5, where the fundamental
frequency parameter μ1 of the SSSS plate increases with the
increase of the aspect ratio a/h, regardless of the index n,
the foundation stiffness, and the foundation supporting
area. *e dependence of the frequency parameter upon the
aspect ratio a/h can also be seen from Figure 6, where the
length to thickness ratio versus the fundamental frequency
parameter of the SSSS and CCCC plates with n � 0.5 and
n � 5 is shown for (ra, rb) � (1/4, 1/4) and various values of
the foundation stiffness parameters. *e effect of the aspect
ratio, as seen from the figure, is the most significant for
a/h< 20, and it becomes less significant for a/h> 40, re-
gardless of the foundation stiffness and boundary condi-
tion.*e foundation stiffness can change the frequency, but
it hardly changes the influence of the aspect ratio on the
frequency.

Table 3: Frequency parameter μ1 of SCSC plate for a/h � 5 and
(ra, rb) � (1/4, 1/4).

(k1, k2) n Element (1-0-
1)

(2-1-
2)

(1-1-
1)

(2-2-
1)

(1-2-
1)

(10, 10)

0.3 RFSDT 2.3883 2.4775 2.5549 2.6183 2.6778
RTSDT 2.4113 2.5007 2.5760 2.6366 2.6945

0.5 RFSDT 2.1815 2.2854 2.3802 2.4607 2.5350
RTSDT 2.2063 2.3104 2.4030 2.4806 2.5533

1 RFSDT 1.9327 2.0435 2.1550 2.2582 2.3499
RTSDT 1.9589 2.0698 2.1790 2.2792 2.3694

5 RFSDT 1.6855 1.7573 1.8591 1.9898 2.0885
RTSDT 1.7132 1.7874 1.8853 2.0126 2.1099

(50, 50)

0.3 RFSDT 2.4407 2.5295 2.6065 2.6693 2.7283
RTSDT 2.4648 2.5536 2.6283 2.6882 2.7455

0.5 RFSDT 2.2353 2.3390 2.4333 2.5130 2.5869
RTSDT 2.2616 2.3653 2.4572 2.5338 2.6059

1 RFSDT 1.9872 2.0988 2.2101 2.3123 2.4037
RTSDT 2.0160 2.1271 2.2356 2.3345 2.4241

5 RFSDT 1.7367 1.8131 1.9161 2.0456 2.1449
RTSDT 1.7685 1.8470 1.9451 2.0707 2.1679

(100,
100)

0.3 RFSDT 2.4760 2.5644 2.6419 2.7049 2.7643
RTSDT 2.5009 2.5905 2.6656 2.7254 2.7830

0.5 RFSDT 2.2675 2.3728 2.4681 2.5481 2.6226
RTSDT 2.2964 2.4016 2.4941 2.5707 2.6432

1 RFSDT 2.0162 2.1305 2.2435 2.3463 2.4387
RTSDT 2.0482 2.1619 2.2717 2.3707 2.4611

5 RFSDT 1.7586 1.8404 1.9463 2.0774 2.1784
RTSDT 1.7942 1.8786 1.9791 2.1052 2.2041

Table 4: Frequency parameter μ1 of CCCC plate for a/h � 5 and
(ra, rb) � (1/4, 1/4).

(k1, k2) n Element (1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1)

(10, 10)

0.3 RFSDT 3.1143 3.2346 3.3343 3.4082 3.4861
RTSDT 3.1748 3.2955 3.3908 3.4587 3.5333

0.5 RFSDT 2.8564 2.9999 3.1235 3.2173 3.3168
RTSDT 2.9196 3.0641 3.1829 3.2702 3.3664

1 RFSDT 2.5384 2.6994 2.8480 2.9679 3.0948
RTSDT 2.6044 2.7661 2.9093 3.0223 3.1461

5 RFSDT 2.1883 2.3297 2.4757 2.6264 2.7749
RTSDT 2.2562 2.4049 2.5422 2.6843 2.8302

(50, 50)

0.3 RFSDT 3.1505 3.2704 3.3698 3.4434 3.5310
RTSDT 3.2108 3.3311 3.4261 3.4937 3.5680

0.5 RFSDT 2.8932 3.0364 3.1596 3.2531 3.3522
RTSDT 2.9567 3.1006 3.2190 3.3059 3.4017

1 RFSDT 2.5756 2.7366 2.8850 3.0045 3.1310
RTSDT 2.6424 2.8037 2.9465 3.0590 3.1823

5 RFSDT 2.2242 2.3673 2.5136 2.6641 2.8125
RTSDT 2.2940 2.4440 2.5812 2.7227 2.8681

(100, 100)

0.3 RFSDT 3.1743 3.2948 3.3946 3.4684 3.5463
RTSDT 3.2358 3.3566 3.4518 3.5195 3.5940

0.5 RFSDT 2.9158 3.0599 3.1838 3.2777 3.3771
RTSDT 2.9808 3.1255 3.2444 3.3314 3.4275

1 RFSDT 2.5961 2.7588 2.9082 3.0283 3.1554
RTSDT 2.6649 2.8277 2.9712 3.0839 3.2077

5 RFSDT 2.2401 2.3865 2.5347 2.6862 2.8357
RTSDT 2.3124 2.4660 2.6045 2.7465 2.8928
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(a) (b)

(c) (d)

Figure 2: *e first four vibration modes of SSSS (2-1-2) plate partially supported by foundation for n � 0.5, a/h � 10, (ra, rb) � (1/2, 1/2),
and (k1, k2) � (50, 50). (a) 1st mode, μ1 � 2.9155. (b) 2nd mode, μ2 � 4.9152. (c) 3rd mode, μ3 � 6.4357. (d) 4th mode, μ4 � 7.6243.

(a) (b)

(c) (d)

Figure 3: *e first four vibration modes of SCSC (2-1-2) plate partially supported by foundation for n � 0.5, a/h � 10, (ra, rb) � (1/2, 1/2),
and (k1, k2) � (50, 50). (a) 1st mode, μ1 � 3.3301. (b) 2nd mode, μ2 � 5.7109. (c) 3rd mode, μ3 � 6.7229. (d) 4th mode, μ4 � 8.7122.

(a) (b)

(c) (d)

Figure 4:*e first four vibration modes of CCCC (2-1-2) plate partially supported by foundation for n � 0.5, a/h � 10, (ra, rb) � (1/2, 1/2),
and (k1, k2) � (50, 50). (a) 1st mode, μ1 � 4.2418. (b) 2nd mode, μ2 � 6.3856. (c) 3rd mode, μ3 � 8.5778. (d) 4th mode, μ4 � 9.3137.
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Table 5: Frequency parameter μ1 of (2-1-2) SSSS plate with different foundation supporting areas, foundation stiffness, aspect ratios, and
power-law material indices.

a/h (k1, k2) (ra, rb) Element n � 0.3 n � 0.5 n � 1 n � 3 n � 5 n � 10

10

(10, 10)

(1/4, 1/4) RFSDT 2.3428 2.1486 1.9088 1.6797 1.6384 1.6174
RTSDT 2.3480 2.1541 1.9145 1.6858 1.6448 1.6241

(1/2, 1/2) RFSDT 2.5313 2.3544 2.1406 1.9443 1.9115 1.8968
RTSDT 2.5362 2.3596 2.1460 1.9503 1.9178 1.9034

(3/4, 3/4) RFSDT 2.7733 2.6162 2.4319 2.2732 2.2503 2.2432
RTSDT 2.7780 2.6211 2.4371 2.2790 2.2565 2.2497

(100, 100)

(1/4, 1/4) RFSDT 2.5004 2.3068 2.0651 1.8299 1.7867 1.7645
RTSDT 2.5071 2.3143 2.0735 1.8398 1.7973 1.7757

(1/2, 1/2) RFSDT 3.4388 3.2516 3.0086 2.7594 2.7131 2.6903
RTSDT 3.4486 3.2636 3.0237 2.7798 2.7354 2.7144

(3/4, 3/4) RFSDT 4.7366 4.6192 4.4870 4.3912 4.3880 4.3991
RTSDT 4.7450 4.6290 4.4985 4.4060 4.4042 4.4166

20

(10, 10)

(1/4, 1/4) RFSDT 2.4137 2.2098 1.9591 1.7215 1.6794 1.6585
RTSDT 2.4152 2.2114 1.9607 1.7232 1.6811 1.6603

(1/2, 1/2) RFSDT 2.6031 2.4170 2.1931 1.9895 1.9562 1.9419
RTSDT 2.6045 2.4185 2.1946 1.9912 1.9579 1.9438

(3/4, 3/4) RFSDT 2.8467 2.6810 2.4876 2.3228 2.2996 2.2931
RTSDT 2.8480 2.6824 2.4890 2.3244 2.3014 2.2950

(100, 100)

(1/4, 1/4) RFSDT 2.5837 2.3811 2.1292 1.8863 1.8427 1.8212
RTSDT 2.5856 2.3832 2.1315 1.8890 1.8457 1.8244

(1/2, 1/2) RFSDT 3.5608 3.3679 3.1189 2.8676 2.8230 2.8033
RTSDT 3.5635 3.3712 3.1231 2.8732 2.8292 2.8101

(3/4, 3/4) RFSDT 4.8738 4.7495 4.6100 4.5121 4.5110 4.5255
RTSDT 4.8764 4.7525 4.6135 4.5166 4.5159 4.5308

50

(10, 10)

(1/4, 1/4) RFSDT 2.4352 2.2283 1.9742 1.7340 1.6916 1.6708
RTSDT 2.4355 2.2285 1.9745 1.7343 1.6919 1.6711

(1/2, 1/2) RFSDT 2.6249 2.4359 2.2089 2.0031 1.9695 1.9554
RTSDT 2.6252 2.4361 2.2091 2.0033 1.9698 1.9557

(3/4, 3/4) RFSDT 2.8690 2.7006 2.5043 2.3376 2.3144 2.3081
RTSDT 2.8692 2.7008 2.5046 2.3379 2.3147 2.3085

(100, 100)

(1/4, 1/4) RFSDT 2.6091 2.4037 2.1486 1.9034 1.8597 1.8385
RTSDT 2.6094 2.4040 2.1490 1.9038 1.8602 1.8391

(1/2, 1/2) RFSDT 3.5978 3.4032 3.1524 2.9006 2.8567 2.8382
RTSDT 3.5983 3.4037 3.1531 2.9016 2.8578 2.8393

(3/4, 3/4) RFSDT 4.9168 4.7902 4.6483 4.5496 4.5491 4.5647
RTSDT 4.9172 4.7907 4.6489 4.5503 4.5499 4.5656

(a) (b)

(c) (d)

Figure 5: Effect of foundation supporting area on the first vibration mode of (2-1-2) SSSS plate with n � 0.5, a/h � 10, and
(k1, k2) � (50, 50). (a) (ra, rb) � (1/4, 1/4), μ1 � 2.4980, (b) (ra, rb) � (1/2, 1/2), μ1 � 2.9155, (c) (ra, rb) � (3/4, 3/4), μ1 � 3.7639,
(d) (ra, rb) � (1, 1), μ1 � 5.3462.
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5. Conclusions

*e four-unknown RTSDTand RFSDT have been employed
to derive quadrilateral finite elements for studying free vi-
bration of FGSW plates partially supported by a Pasternak
foundation. *e plates consist of three layers, a homoge-
neous ceramic core and two functionally graded skin layers
with material properties varying in the thickness direction
by a power graduation law. *e elements were derived by
using Lagrange and Hermite polynomials to interpolate the
in-plane and transverse displacements, respectively. *e
RFSDT element obtained herein as a special case of the
RTSDTelement is simple, but it requires the shear correction
factor to correct for the discrepancy between the real shear
stress distribution and those calculated by the RFSDT. Using
the formulated elements, the frequencies and vibration
modes have been computed for the plate with various
boundary conditions.*e effects of thematerial distribution,

foundation stiffness, and foundation supporting area on the
vibration behaviour of the plates have been examined in
detail. *e numerical result reveals that the frequencies
obtained by the RTSDTelement are slightly higher than that
based on the RFSDTelement. It has also been shown that the
foundation supporting area plays an important role on the
vibration characteristics of the plates, and the effect of
material distribution on the frequencies is dependent on this
factor. *e vibration modes of the plates are governed by the
foundation supporting area, and the symmetrical modes as
seen for the plates fully supported by foundation support can
be altered by the partial support. *e influence of the layer
thickness ratio and the plate aspect ratio on the frequencies
was also examined and discussed.

Data Availability

No data were used to support this study.
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Figure 6: Aspect ratio a/h versus frequency parameter μ1 of SSSS and CCCC plates with (ra, rb) � (1/4, 1/4) and various foundation
stiffness parameters. (a) SSSS plate, n� 0.5. (b) SSSS plate, n� 5. (c) CCCC plate, n� 0.5. (d) CCCC plate, n� 5.
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