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Compressive Radar Imaging of Stationary Indoor
Targets With Low-Rank Plus Jointly Sparse

and Total Variation Regularizations
Van Ha Tang , Abdesselam Bouzerdoum , Senior Member, IEEE, and Son Lam Phung , Senior Member, IEEE

Abstract— This paper addresses the problem of wall clutter
mitigation and image reconstruction for through-wall radar
imaging (TWRI) of stationary targets by seeking a model that
incorporates low-rank (LR), joint sparsity (JS), and total vari-
ation (TV) regularizers. The motivation of the proposed model
is that LR regularizer captures the low-dimensional structure of
wall clutter; JS guarantees a small fraction of target occupancy
and the similarity of sparsity profile among channel images; TV
regularizer promotes the spatial continuity of target regions and
mitigates background noise. The task of wall clutter mitigation
and target image reconstruction is formulated as an optimization
problem comprising LR, JS, and TV regularization terms.
To handle this problem efficiently, an iterative algorithm based on
the forward-backward proximal gradient splitting technique is
introduced, which captures wall clutter and yields target images
simultaneously. Extensive experiments are conducted on real
radar data under compressive sensing scenarios. The results show
that the proposed model enhances target localization and clutter
mitigation even when radar measurements are significantly
reduced.

Index Terms— Through-the-wall radar imaging, wall clut-
ter mitigation, compressed sensing, regularized optimization,
low-rank matrix recovery, sparse signal reconstruction, proximal
gradient technique.

I. INTRODUCTION

IN RECENT years, there has been a growing interest in
through-wall radar (TWR) imaging technology, which aims

to capture targets situated behind walls or inside enclosed
structures. The ability to sense through walls is useful for
numerous applications, e.g., detecting hidden hostages in
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police operations, tracking concealed hostile forces in mili-
tary missions, and locating buried victims in environmental
disasters [1]–[3]. In these applications, it is vital to provide a
high-resolution image of the indoor targets. This task, however,
is challenging due to several factors, including strong wall
clutter and prolonged data collection. To suppress wall reflec-
tions and alleviate the burden of data collection, the task of
wall clutter mitigation and target image reconstruction needs to
be tacked in the context of compressive sensing (CS) [4]–[6].

Early TWRI techniques perform target image formation
assuming that strong wall clutter has been entirely removed
using measurements collected from an empty scene devoid
of targets. The background measurements are then subtracted
from the measurements collected from a scene populated
with targets, and finally, the target image is formed using
backprojection (BP) techniques, such as delay-and-sum (DS)
beamforming [7]–[9]. The BP techniques are suitable for the
full sensing mode where all antennas and frequencies are
used. This full sensing operation, however, leads to a burden
on data collection and becomes ineffective in many applica-
tions. These issues can be addressed by using the CS tech-
nique. Most CS-based TWRI methods have used the sparsity
constraint for single-channel image formation [10]–[13] and
multi-polarization image reconstruction [14], [15]. It has been
shown that employing sparse regularization improves image
reconstruction even when the measurements are reduced.
However, the sparsity-based methods become ineffective in
the presence of wall clutter due to the dominance of wall
returns over target reflections. Consequently, the sparse image
recovery detects only pixels associated with the wall clutter.

In the presence of wall clutter, several TWRI approaches
have employed the sparsity penalty for wall clutter mitigation
and image formation [16]–[19]. In [16], a sparse represen-
tation (SR) was used for range profile estimation through
Fourier basis, followed by image formation through �1 con-
vex relaxation. In [17] and [18], the sparsity penalty was
imposed on a representation of radar signals in a combined
Fourier and wavelet bases for signal recovery and wall clutter
removal. In [19], SR was applied in a two-stage processing:
wall clutter estimation with the discrete prolate spheroidal
sequence (DPSS) basis and image reconstruction with �1
minimization. The multistage sparse-regularized processing,
however, can suffer from uncertainty and suboptimality. This
issue has been addressed by the studies presented in [20], [21],
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where wall signals and target returns are separated based on
a robust principal component analysis (RPCA) model. The
RPCA model comprised LR and sparse regularizers imposed
directly on the received signals. By processing the wall return
and the target signal jointly, RPCA has been shown to be
suitable for TWRI. However, this model does not exploit
the characteristics of TWR signals fully and could be inef-
fective with background clutter and artifacts, which typically
appear for non-homogeneous walls and in multi-channel radar
imaging.

This paper introduces an imaging model that comprises
low-rank, jointly sparse, and total variation regularizations
for wall clutter mitigation and target image reconstruction in
compressive TWRI. Instead of imposing the LR directly in the
signal domain, we employ a low-rank representation technique
with an analysis prior (AP) to model the low-dimensional
structure of wall clutter expansion in a transform domain. The
joint sparsity penalty ensures target pixels occupy only a small
fraction of the total image pixels. In addition, JS enforces the
same sparsity profile among channel images for multi-channel
imaging. Furthermore, because in the formed image targets
occupy regions of connected sets of pixels and outliers typi-
cally appear as isolated points, we incorporate a TV regularizer
to promote the continuity of the target regions and suppress the
artifacts. As a result, the TV regularization further benefits the
sparse representation of the target images. It is worth noting
that TV has been introduced in [22] and widely used for noise
removal, local spatial consistency, and structure preservation
in signal/image recovery [23]–[27]. In this paper, the original
sparse-derivative TV is extended to a joint derivative-sparsity
prior to maintain the same sparsity profile among channel
images in the gradient domain.

The task of wall clutter mitigation and target image forma-
tion is formulated as a low-rank analysis prior-jointly sparse
total variation (LRAP-JSTV) regularized least squares (LS)
minimization problem. Solving this minimization problem is
challenging due to the non-smooth nature of the regulariza-
tion terms. To deal with this issue, this paper introduces
an iterative algorithm using the proximal forward-backward
splitting (PFBS) technique [28]–[30] and its accelerated
variants [31]–[33]. The iterative minimization involves the
forward gradient evaluation of the LS term and backward prox-
imal operators for regularization terms. As the PFBS technique
allows the splitting of regularization terms, the proposed algo-
rithm is computationally efficient, especially when proximal
operators of the regularizers have closed-form expressions.
In the proposed model, LRAP and JS regularizer proximals
can be evaluated efficiently using shrinkage/thresholding tech-
niques. The evaluation of TV proximal, however, is compli-
cated and typically requires a nested optimization algorithm.
To maintain computational efficiency, we use the inexact
proximal technique and approximate the TV proximal as an
average of several simpler counterparts that have closed-form
solutions. As a result, wall clutter mitigation and target image
reconstruction are performed efficiently through shrinkage
techniques.

The main contributions of this study can be highlighted as
follows.

1) A new model is proposed to simultaneously solve three
important TWRI problems: wall clutter mitigation, target
image reconstruction, and background artifact suppres-
sion. The proposed model can be applied to both single
and multi-channel radar imaging, and it is capable
of handling the indoor radar imaging problem in the
CS context, thereby enabling fast data collection and
efficient data storage.

2) This paper introduces an imaging model that com-
prises LR, JS, and TV regularizations for compressive
TWRI. In the proposed model, instead of enforcing
LR directly on the signal domain, we propose an LR
representation technique with an analysis prior to model
the low-dimensional structure of wall clutter expansion
in a transform domain. Furthermore, the sparsity is
extended to JS to guarantee a small fraction of the
target pixels and capture the correlation among channel
images. The original TV prior is generalized to a joint
derivative-sparsity TV regularizer and incorporated into
the proposed model to ensure continuity of the target
regions, suppress the artifacts, and maintain the same
sparsity profile among channel images in the gradient
domain.

3) This paper also develops an efficient algorithm to solve
the joint LRAP-JSTV regularized LS optimization prob-
lem based on PFBS technique. The key idea is to decom-
pose the composite problem into subproblems that can
be handled more efficiently. In the proposed algorithm,
the proximal operations of LRAP and JS regularization
terms are evaluated efficiently through their convex
relaxation of nuclear-norm and �2,1-norm, respectively.
The proximal evaluation of TV term generally requires
a nested optimization algorithm, thereby increasing the
computational complexity. This paper addresses this
issue by developing an inexact proximal technique that
approximates the TV proximal as an average of several
simpler counterparts having closed-form expressions.
This new strategy makes the overall algorithm compu-
tational efficient. Furthermore, an acceleration approach
is incorporated into the forward gradient evaluation,
leading to a fast convergence rate for the proposed
algorithm.

4) The proposed LRAP-JSTV model is evaluated using
several real radar datasets under different CS opera-
tions. Through extensive experimental validation, com-
parison, and analysis, we find that the proposed
approach enhances indoor target localization signifi-
cantly, even when the measurements are significantly
reduced. In compressive TWR sensing, the proposed
method outperforms the existing CS-based indoor radar
imaging models in terms of target-to-clutter ratio.

The remainder of the paper is organized as follows.
Section II introduces the TWR signal model. Section III
describes the proposed LRAP-JSTV regularization model
and an iterative algorithm for wall clutter mitigation and
image reconstruction. Section IV presents the experimental
results and analysis. Finally, Section V gives the concluding
remarks.
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II. TWR SIGNAL MODEL

This section briefly presents the signal model of a mono-
static stepped-frequency TWR used to image targets situated
behind a wall. Let us consider the TWR sensing operations
where the indoor targets are imaged by L channels: L = 1
for single-channel TWRI, and L > 1 for multi-polarization
TWRI. A transceiver is placed at several scan positions parallel
to the wall to synthesize a horizontal N-element linear antenna
array. Each antenna transceives a stepped-frequency signal
comprising M frequencies, equally spaced over the sensing
bandwidth, to image the indoor scene. Suppose that the scene
contains P targets placed behind the wall. Let zl(m, n) denote
the mth frequency radar signal received by the nth antenna
through the lth channel. The signal zl(m, n) can be modeled as
a superposition of the wall reflection zw

l (m, n) (including the
wall reverberations), target return zt

l (m, n), and noise υl(m, n):

zl(m, n) = zw
l (m, n)+ zt

l (m, n)+ υl(m, n). (1)

The wall component zw
l (m, n) can be expressed as [16], [34]

zw
l (m, n) =

R∑
r=1

σwar e− j2π fmτ r
n,w , (2)

where σw is the reflectivity of the wall, R is the number of wall
reverberations, ar is the path loss factor of the r th wall return,
and τ r

n,w is the propagation delay of the r th wall reverberation.
The target return is modeled as the superposition of all the
target reflections [19], [35]:

zt
l (m, n) =

P∑
p=1

σ l
pe− j2π fmτn,p , (3)

where σ l
p is the reflectivity of the pth target at the

lth channel, and τn,p is the round-trip travel time of the signal
from the nth antenna location to the pth target. By stacking
M frequency measurements collected along the nth antenna,
zl,n = [zl(1, n), . . . , zl(M, n)]T , the signal model in (1) can
be represented in vector-form:

zl,n = zw
l,n + zt

l,n + υl,n . (4)

Arranging the N vectors zl,n , for n = 1, . . . , N , as columns
of matrix Zl ∈ CM×N , we have the following matrix form:

Zl = [zl,1, . . . , zl,N ] = Zw
l + Zt

l +ϒl . (5)

For image formation, it is essential to formulate a linear
model that relates the target component Zt

l to a target image.
In doing so, the target space is partitioned into a rectangular
grid comprising Q pixels along the crossrange and downrange.
Let sl(q) denote a weighted indicator function representing the
pth target reflectivity at the lth channel:

sl(q)=
{

σ l
p, if the qth pixel includes the pth target;

0, otherwise.
(6)

From (3) and (4), the target signal at the nth antenna of
the lth polarization, zt

l,n , can be related to the target image
sl = [sl(1), . . . , sl(Q)]T as

zt
l,n = An sl , (7)

where An ∈ CM×Q with the (m, q)th entry given by
An(m, q) = exp(− j2π fmτn,q ). Here τn,q is the focusing delay
between the nth antenna and the qth pixel, considering the
penetration delay of signal through the wall [7], [9]. Stacking
all measurements collected from the N antennas yields

zt
l = vec(Zt

l ) = A sl , (8)

where zt
l = [(zt

l,1)
T , . . . , (zt

l,N )T ]T , A= [AT
1 , . . . , AT

N ]T , and
hereafter vec(· ) denotes the vectorization operator forming a
composite column vector by stacking the columns of a matrix
in lexicographic order.

From (8), the lth channel image sl can be recovered from
the target signal zt

l using DS beamforming or sparsity-driven
techniques. DS beamforming reconstructs an image sl by pre-
multiplying the target signal zt

l with the adjoint operator AH :

sl = AH zt
l . (9)

The DS beamformed image typically contains sidelobes and
background noise that affect target localization and resolution.
To overcome this issue, the sparsity-based model has been
proposed in [10]–[12] which yields an image sl by solving
the following �1 minimization problem,

min
sl
‖sl‖1 subject to‖zt

l − A sl‖22 ≤ �, (10)

where � is a noise bound. An efficient approach considers
solving this problem in Lagrangian form:

sl = arg min
sl

{
1

2
‖zt

l − A sl‖22 + λ ‖sl‖1
}

, (11)

where λ is a positive parameter used to trade off between
the error and the penalty terms. Standard convex analysis
theory proves that Problems (10) and (11) are equivalent [36],
provided that � and λ obey certain relationships. The precise
relationship between a constrained optimization problem and
its Lagrangian version is discussed in [30], [37], and [38].

Note that in practice the target signal zt
l used for image

formation in Eqs. (9) and (11) with DS beamforming or
�1-minimization is unavailable. Instead, we have only the radar
signal zl , which is the target signal corrupted by the wall
component zw

l and noise υl . Thus, prior to image formation,
the target component needs to be segregated from the wall
interferences. If full measurements or same frequencies are
available along antennas, wall clutter mitigation techniques,
such as spatial filtering [39] or subspace projection [40]–[42],
can be applied to Zl in (5) to estimate zt

l . In general com-
pressed sensing TWR, however, only a subset of frequency
samples is acquired, which may vary from one spatial position
to another. To address this issue, several CS-based imaging
techniques have been considered previously, where the missing
measurements are first estimated, followed by wall clutter
mitigation applied to the estimated data measurements. The
issue with these CS approaches is that the image formation
depends on the accuracy of the signal recovery and wall clutter
mitigation operations. The next section describes the proposed
LRAP-JSTV regularized model for simultaneous wall clutter
mitigation and target image reconstruction.
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III. LRAP-JSTV REGULARIZED TWRI

In this section, we first describe the formulation of
the proposed LRAP-JSTV regularized LS problem in
Subsection III-A. We then introduce an iterative algorithm
for solving the optimization problem in Subsection III-B, and
provide an analysis of the computational complexity of the
proposed algorithm in Subsection III-C.

A. Problem Formulation

The signal model presented in Eqs. (4) and (5) assumes
a full set of measurements collected at all N antennas using
all M frequencies. For fast data acquisition and efficient data
storage, we consider the problem in the CS operation where
the radar system uses a reduced number of antennas and
frequencies for imaging targets. Suppose only K (K < N)
randomly selected antennas are used for data collection. Let
k ∈ {1, . . . , N} be the index of a selected antenna. Instead of
recording a full of M measurements, the kth antenna acquires
only J (J � M) frequency samples. Let ϕk ∈ RJ×M denote
a sensing matrix in which each row has only one non-zero
element (equal to 1) indicating the selected frequency at the
kth antenna. The relation between the compressed measure-
ment vector yl,k with J entries and full data vector zl,k can
be expressed as

yl,k = ϕk zl,k . (12)

Arranging K measurement vectors yl,k , for k = 1, . . . , K into
a column vector yl = [yT

l,1, . . . , yT
l,K ]T , �= [ϕT

1 , . . . ,ϕT
K ]T ,

it follows from Eqs. (5) and (8) that

yl = � vec(Zl) = � vec(Zw
l + Zw

l +ϒl). (13)

Note that matrix Zl can be obtained from vector yl as
Zl = mat(�†yl), where mat denotes the operator reshaping
a column vector of M K elements into an M × K matrix, and
† denotes the pseudoinverse operator.

Given the measurement vector yl , a low-rank matrix Zw
l

carrying wall returns and a sparse matrix Zt
l containing target

signals can be obtained by solving the following problem:
min

Zw
l ,Zt

l

∥∥Zw
l

∥∥∗ + λ
∥∥Zt

l

∥∥
1

subject to
∥∥yl −� vec(Zw

l + Zt
l )

∥∥2
2 ≤ �. (14)

Here,
∥∥Zw

l

∥∥∗ denotes the nuclear-norm defined as the sum
of the singular values of the matrix,

∥∥Zw
l

∥∥∗ = ∑V
v=1 λv(Zw

l )
with λv(Zw

l ) being the vth largest singular value of matrix
Zw

l of rank at most V ,
∥∥Zt

l

∥∥
1 is the �1-norm defined as

the sum of absolute entries, ‖Zt
l‖‖1 =

∑
m

∑
k |Zt

l (m, k)|,
λ is a regularization parameter reflecting a trade off between
the low-rank and sparse terms, and � is a noise bound.
The resulting target signal Zt

l can be used to form a target
image [20], [21]. The formulation in (14) can be considered
as RPCA model since it involves the estimates of LR and
sparse components. In this paper, we aim to integrate the
image formation stage into the optimization model, upgrade
LR to LRAP, sparsity to JS, and incorporate a TV regularizer
to enforce the continuity property of the target occupancy and
stabilize the solution.

The clutter mitigation and target image reconstruction can
be performed in an optimization framework by exploiting the
relation between target signal and image as well as process-
ing multi-channel signals simultaneously. It follows from (8)
and (13) that

yl = � vec(Zl) = � vec(Zw
l )+� A sl +� vec(ϒl). (15)

Now, we arrange the measurement sets along L chan-
nels into a matrix Y = [y1, . . . , yL], the wall reflections
into a matrix Zw = [Zw

1 , . . . , Zw
L ], the multi-channel

images S = [s1, . . . , sL ]. Defining an operator A(Zw) =
[� vec(Zw

1 ), . . . ,� vec(Zw
L )], and � = � A, the wall clutter

matrix Zw and target image S can be estimated by solving the
following optimization problem:

min
Zw,S

∥∥� Zw
∥∥∗ + λ ‖S‖2,1 + γ ‖S‖TV

subject to
∥∥Y− [A(Zw)+� S]∥∥2

F ≤ �. (16)

It is worth noting that in (16), nuclear-norm regularization is
not directly imposed on Zw , but on a representation of Zw

through the low-rank analysis operator � ∈ CH×M . In this
analysis model, the resulting matrix R = � Zw is expected to
be low-rank. The mixed �2,1-norm is used, instead of �1-norm,
to promote the joint sparsity among the L channel images,
defined as ‖S‖2,1 =

∑Q
q=1 ‖sq‖2 with sq being the qth row

of S. The joint sparsity structure of the L images stored in
the columns of S is because they represent the targets of the
same scene. The term ‖S‖TV denotes a variant of TV defined
as ‖S‖TV = ‖D S‖2,1. Here, the gradient matrix D is applied
to each image sl yielding a vector containing the magnitude
of the discrete gradient of sl at all pixels:

[Dsl ]q = |sl(q)− sl(q + 1)|. (17)

This sparse-derivative promoting penalty is known as the
anisotropic TV, which enforces local spatial consistency,
removes noise, and preserves edges in image recovery [23],
[25], [27]. Here, this sparse-derivative is extended to joint
derivative-sparsity to enforce the same sparsity profile among
channel images in the gradient domain. To solve Problem (16)
efficiently, we cast this problem into its Lagrangian form:

min
Zw,S

{ f (Zw, S) = 1

2

∥∥Y− [A(Zw)+� S]∥∥2
F

+ β
∥∥� Zw

∥∥∗ + λ ‖S‖2,1 + γ ‖D S‖2,1}, (18)

where β is a positive parameter controlling the strength of
the LR term. Minimizing f (Zw, S) produces the wall clutter
matrix Zw and multi-channel images S jointly.

B. Iterative Algorithm

This subsection introduces an iterative algorithm to solve the
LRAP-JSTV regularized LS problem in (18). Although this
minimization problem is convex, it is complicated to solve
it directly due to the non-smoothness of the regularization
terms. To handle this issue, we develop an algorithm based
on the PFBS technique. Before presenting the algorithm, let
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us consider a generic case of minimizing a composite objective
function:

min
X
{ f (X) = g(X)+ h(X)}, (19)

where g(X) is convex and differentiable with a C-Lipschitz
continuous gradient ∇g, and h(X) is convex but not necessary
smooth. Problem (19) is minimized by an iterative scheme that
involves a forward gradient evaluation of g(X) and a backward
proximal operator of h(X). Let Xt denote an estimate of the
solution at the tth iteration. The next estimate is obtained by

Xt+1 = proxμt h︸ ︷︷ ︸
backward step

(Xt − μt∇g(Xt ))︸ ︷︷ ︸
forward step

. (20)

Here, the stepsize μt satisfies 0 < μt ≤ 1/C to ensure
convergence, and the proximal operator is defined as

proxμt h(Z) = arg min
X
{1
2
‖Z− X‖2F + μt h(X)}. (21)

In other words, let Zt denote the result of the gradient step
evaluated using the current estimate Xt ,

Zt = Xt − μt∇g(Xt), (22)

the next estimate of the solution is obtained by proximal
evaluation

Xt+1 = proxμt h(Zt ). (23)

As the forward gradient is simple, the proximal eval-
uation is the main computation cost. Hence, this algo-
rithm is computational-efficient if the proximal operator
has a closed-form solution. For example, if h(X) is the
�1-norm, i.e., h(X) = ‖X‖1, its proximal is equivalent
to the soft-thresholding operator, and the overall estimation
scheme reduces to an iterative shrinkage/thresholding algo-
rithm (ISTA) [37], [43]–[45]. In theory, the PFBS technique
or its instance ISTA achieves a global convergence rate of
O(1/t). Accelerated PFBS or its instance of fast iterative
shrinkage/thresholding algorithm (FISTA) can obtain the con-
vergence rate of O(1/t2) and remain the computational cost
[28], [31], [33]. The acceleration is mainly achieved by
modifying the forward gradient step. In this step, instead
of exploiting only Xt , accelerated PFBS uses an auxiliary
variable Ut obtained as a linear combination of Xt and Xt−1,
which leads to the following scheme:

Ut = Xt + qt−1 − 1

qt
(Xt − Xt−1) (24)

Zt = Ut − μt∇g(Ut ), (25)

Xt+1 = proxμt h(Zt ), (26)

qt+1 =
(

1+
√

1+ 4q2
t

)
/2. (27)

We use the accelerated computation scheme in (24)–(27) to
solve the LRAP-JSTV regularized LS TWRI problem in (18).
Consider the variable X = A(Zw)+�S, g(X) is the quadratic
term, and h(X) is the sum of regularization terms. Defining an
adjoint operator A∗(Y) = [mat(�† y1), . . . , mat(�† yL)], and

noting that Zw and S are separable, the gradient evaluation
involves

Uw
t = Zw

t +
qt−1 − 1

qt
(Zw

t − Zw
t−1), (28)

Us
t = St + qt−1 − 1

qt
(St − St−1), (29)

Zt =Uw
t +A∗(� Us

t )−A∗(A(Uw
t )+� Us

t −Y). (30)

In Eq. (30), the stepsize μt is omitted because it is set
to μt = 1/C with C = λmax(�

T �) = 1. The proxi-
mal operator of h(X) is separated into the evaluation for
h1(Zw) = β‖�Zw‖∗ and h2(S) = λ ‖S‖2,1 + γ ‖D S‖2,1. The
next estimate (Zw

t+1, St+1) is obtained by

Zw
t+1 = proxh1

(Zt −A∗(� St )), (31)

St+1= arg min
S

{1

2
‖A(Zt−Zw

t+1)−� S‖2F + h2(S)
}
. (32)

The separation in proximal evaluation is similar to the alter-
nating technique in which the resultant estimate of Zw

t+1 is
used for the next estimate of St+1. Subproblem (32) can be
solved by applying the gradient computation for the quadratic
term and evaluating the proximal of h2(S), yielding

Bt = Us
t − κt�

H [
� Us

t −A(Zt − Zw
t+1)

]
, (33)

St+1 = proxκt h2
(Bt ), (34)

where the stepsize κt is set to κt = 1/λmax(�
H�) for fast

convergence.
The task now is to evaluate the proximal operators of the

two convex functions h1(Zw) in (31) and h2(S) in (34). Func-
tion h1(Zw) is the nuclear-norm with the analysis operator �,
and thus its proximal operator has a closed-form expression
through the singular value soft-thresholding (SVT):

Zw
t+1 = �†D(�[Zt −A∗(� St )], β). (35)

In (35), the SVT operator D(Z, τ ) is a nonlinear function
which applies a soft-thresholding at level τ to the singular
values of the input matrix Z:

D(Z, τ ) = U T (�, τ ) VH , (36)

where Z = U � VH is the singular value decomposition of Z,
and T (�, τ ) is the component-wise shrinkage function,

T (x, τ )=sgn(x) max(|x | − τ, 0)= x

|x | max(|x | − τ, 0). (37)

The proximal operator of h2(S) consists of an �2,1 term and
a TV term. For single channel imaging (L = 1), this proxi-
mal evaluation is referred as fused lasso signal appropriator
(FLSA) [46]. Here it can be regarded as an extension of FLSA
to the multiple measurement vector (MMV) problem (L > 1).
Let Stv

t+1 denote the resultant proximal evaluation of the TV
regularizer htv(S) = γ ‖D S‖2,1,

Stv
t+1 = proxκt htv

(Bt ),

= arg min
S

{
1

2
‖Bt − S‖2F + κt htv(S)

}
. (38)
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Using Stv
t+1, the proximal operator of h2(S) is reduced to the

proximal evaluation of the �2,1 function, which is equivalent
to the row-shrinkage operator R(X, τ ):

St+1 = proxκtλ‖S‖2,1
(Stv

t+1) = R(Stv
t+1, κtλ). (39)

In (39), the row-shrinkage R(X, τ ) is a nonlinear function that
applies the soft-thresholding operator at level τ to the �2-norm
of the rows of the input matrix X:

R(X, τ ) = xq

‖xq‖2 max(‖xq‖2 − τ, 0), q = 1, . . . , Q, (40)

where xq denotes the qth row of matrix X.
The remaining task is to evaluate the TV proximal or

equivalently solve the TV-minimization problem in (38), which
typically requires a nested optimization algorithm [24], [26].
This leads to computation complexity and makes the overall
algorithm inefficient. To overcome this issue, we use the
inexact proximal operator and approximate the exact TV prox-
imal as an average of several operators that have closed-form
expressions. This aim is achieved by considering the relation
between TV regularization and cycle spinning with Haar
wavelets [47]. The Haar wavelet transform applying to the
qth pixel of image s yields coefficients,

cq = 1√
2
(s2q−1 + s2q ), dq = 1√

2
(s2q−1 − s2q), (41)

where q = 1, . . . , Q/2, assuming that Q is even. The vectors c
and d are known as coarse and detail coefficients, respectively.
Denoising is performed by applying a shrinkage operator to
the detail coefficient component d, which plays the role as the
derivative vector. From Eqs. (17) and (41), TV regularization
is deemed to be equivalent to Haar wavelet shrinkage (HWS).
The studies in [27], [48], [49] have shown that HWS with cycle
spinning is equivalent to a single iteration of TV denoising.
The HWS with cycle spinning works by first denoising the
wavelet expansion of shifted versions of the image and then
applying inverse circulant shift operator to the denoised image;
the results for a range of shifts are averaged to obtain the final
image.

Here, the HWS with cycle spinning is exploited for
efficient TV proximal approximation. Let W denote the
orthogonal wavelet transform (e.g., Haar wavelet basis) and
Sg(s) be the circulant shift operator of vector s by g,
Sg(sq) = s(q+g) mod Q . This operator is unitary and hence
invertible S−1

g (·) = S−g(·). The TV regularizer can be
expressed as the following sum:

htv(S) = γ
√

2
G∑

g=1

‖W Sg(S)‖2,1. (42)

Note that a 1D Haar representation of a 2D image can be
computed by applying the transform either horizontally or
vertically. Hence, we need four (G = 4) orthogonal 1D
Haar transforms—two for each dimension of the gradient.
Here the circulant operator Sg(S) is applied to each channel
image stored as a column in matrix S. Because both analysis
operators W and Sg are invertible, Problem (38) admits the

TABLE I

ALGORITHM 1: ACCELERATED GRADIENT AND PROXIMAL EVALUATIONS
OF LRAP-JSTV REGULARIZERS FOR WALL CLUTTER MITIGATION

AND TARGET IMAGE RECONSTRUCTION

following closed-form solution,

Stv
t+1 =

1

G

G∑
g=1

WT S−1
g [R(W Sg(Bt ),

√
2 G κt γ )]. (43)

In summary, the iterative steps of the algorithm for solv-
ing Problem (18) are provided in Table I. The algorithm
takes an input set of the data matrix Y, the parameters
β, γ , λ, and a predefined tolerance tol. The regularization
parameters β, γ , and λ are problem-dependent and need
to be tuned appropriately. Further discussion on selecting
suitable parameters is given in the experimental section IV-A.
The algorithm performs two major tasks: wall-component
estimation (Step 3) and image reconstruction (Step 4). It is
observed that the wall-component is estimated by applying
soft-thresholding on the singular values of the data matrix
after subtracting the target component. The target images
are obtained by solving a joint �2,1 and TV regularized LS
minimization problem in which the measurement matrix is
obtained from the data matrix after removing the estimated
wall component. The algorithm is computationally efficient
because (1) it incorporates an acceleration gradient evaluation
(Step 2) and (2) it evaluates the proximals of LRAP, JS, and
TV through operators that have closed-form expressions. The
algorithm stops when it converges to a local optimum. In this
implementation, the algorithm terminates if the relative change
of the objective function is negligible (see Step 5). After
that, the sparse columns in S are rearranged into 2D maps
representing the formed multi-channel images of the behind-
the-wall targets.
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C. Complexity and Convergence Analysis of
LRAP-JSTV Algorithm

This subsection presents the computational analysis of
the proposed LRAP-JSTV algorithm. This algorithm has
two major stages: forward gradient and backward proximal
evaluation. Because the computation of forward gradient is
simple, the evaluations of the proximal operators are the
most time-consuming steps and constitute the computational
complexity of Algorithm 1. Let Y ∈ C

K J×L , � ∈ C
K J×Q ,

Zw ∈ CM×K L , � ∈ CH×M , and S ∈ CQ×L , where Q 	
H 	 M 	 N 	 K 	 L. The proximity evaluation of
the LRAP for wall-component estimation in (Step 3) involves
SVD operation, which has the computational complexity of
O(H K 2 L2). The time complexity of the row-shrinkage
operator in Step 4 is O(L Q). Thus, the overall computational
complexity of the LRAP-JSTV algorithm is O(t (H K 2 L2 +
L Q)), where t is the number of iterations.

The convergence of the proposed algorithm can be analyzed
based on the generic framework of PFBS and its variant
(accelerated PFBS). In theory, PFBS has a global convergence
rate of O(1/t), and accelerated PFBS has a convergence
rate of O(1/t2) [28], [31], [33]. In this paper, the proposed
LRAP-JSTV is developed using the accelerated PFBS scheme
in Eqs. (24)–(27). The convergence of this computation
scheme depends on that of the proximal operations. Here,
the LRAP-JSTV involves the evaluation of three proximity
operators: LRAP, JS, and TV. The LRAP operator is evaluated
through SVT, whose convergence has been proven in [50]. The
convergence of the proximal evaluations of JS and TV is based
on the row-shrinkage operator, whose convergence proof is
given in [30]. Subsection IV-C.5 provides experimental results
which illustrate the convergence of the proposed LRAP-JSTV
algorithm, with and without the acceleration feature.

D. Estimation of Regularization Parameters

The LRAP-JSTV algorithm has three regularization para-
meters β, λ, and γ to control the importance of the
LR, JS, and TV regularization terms, respectively. Using
large regularization parameters suppresses background clutter
but also removes target pixels, while small regularization
parameters yield imaging results with heavy clutter. Thus,
the regularization parameters need to be tuned appropriately.
A cross-validation grid search can be used to seek the suitable
regularization parameters. For large search area, however,
this technique is time-consuming. A different approach is to
use Bayesian optimization that has been shown to be more
effective for the selection of regularization parameters than
grid search and random search techniques [51], [52]. Due to
its efficiency for the global optimization of functions with
expensive evaluations, Bayesian optimization with Gaussian
processes has been used for tuning the hyperparameters of
several optimization models, including convolutional neural
networks [53], deep generative models [54], and radar signal
detection [55]. In this paper, Bayesian optimization with
Gaussian processes (GP) is employed for finding the optimal
regularization parameters of the LRAP-JSTV model.

Let f (ω) be the objective function that yields the quality
score of the target image S, that is the target-to-clutter ratio
resulted from the LRAP-JSTV using the set of hyperpara-
meters ω = [β, λ, γ ] ∈ �, where � is the bounded
hyperparameter space. Bayesian optimization finds the optimal
hyperparameters by solving the following maximization,

ω̂ = arg max
ω∈� f (ω). (44)

Bayesian optimization is fundamentally a sequential approach
to solving Problem (44). In particular, it first defines
a prior function p( f ) and constructs an acquisition function
a : �→ R

+ to determine which point in � used for the
next evaluation. Then, the sequential optimization involves the
following three steps: (i) select the new hyperparameter ωt+1
by optimizing acquisition function ωt+1 = arg maxω∈� a(ω);
(ii) query the objective function to obtain yt+1 ≈ f (ωt+1), and
augment the resulting point (ωt+1, yt+1) to the set of observed
data Dt+1 = {ω j , y j }t+1

j=1; and (iii) update the statistical
model p( f |Dt+1) and a( f |Dt+1). A Gaussian process is
the most common choice for p( f ) due to its flexibility and
tractability in terms of conditioning and inference. By GP,
p( f ) is completely defined by its mean function m(ω) and
covariance function c(ωi ,ω j ) that can be derived in a closed
form. Furthermore, if the prior mean function is zero, then the
Gaussian process is fully determined by the covariance func-
tion. For the estimation of hyperparameters, the covariance
function is typically defined using the automatic relevance
determination (ARD) Matérn 5/2 kernel [56]

cM52(ωi ,ω j ) = θ

(
1+√5d(ωi ,ω j )+ 5

3
d(ωi ,ω j )

2
)

× exp(−√5d(ωi ,ω j )). (45)

Here, d(ωi ,ω j ) denotes the Mahalanobis distance, and θ is the
characteristic length scale, which determines how far apart the
input ω can be for the response value to be uncorrelated.

Bayesian optimization can select several acquisition func-
tions, such as probability of improvement [57], expected
improvement [58], or upper confidence bound [59]. In this
paper, we define the acquisition function using the expected
improvement given by

J (ω) = max(0, f (ω)− f (ω̂)), (46)

where ω̂ is the current best hyperparameters at iteration t ,
ω̂ = arg maxω∈�1:t f (ω). The acquisition function is defined
on the expected value of J (ω) as

arg max
ω

E(J (ω)|Dt ), (47)

where the closed form of E(J (ω)) can be expressed as [58]

E(J (ω))=
{

(m(ω)− f (ω̂))η(z)+ s(ω)κ(z), if s(ω) > 0;
0, if s(ω) = 0.

(48)

Here, z = (m(ω)− f (ω̂))/s(ω), s(ω) is the standard deviation
function of the GP, and η(·) and κ(·) denote the cumulative
distribution function and the probability density function of a
standard normal distribution, respectively.
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Fig. 1. Layout of the scene with a wooden wall and one dihedral target for
TWR data acquisition.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
using real radar datasets collected from the Imaging Lab-
oratory at the University of Wollongong, Australia and the
Radar Imaging Laboratory at Villanova University, USA.
Subsection IV-A describes the radar systems, the scenes, and
the parameters used in the experiments. Subsection IV-B gives
the performance evaluation and metrics, and Subsection IV-C
presents imaging results, performance analysis, and com-
parison for several TWRI methods under different sensing
scenarios.

A. Experimental Methods

Real multi-channel radar datasets were acquired from two
real scenes which consist of different targets and types of
walls. The first scene contains one dihedral target placed
behind a wooden wall, whereas the second scene comprises
one target behind a homogeneous concrete wall. The first
scene, shown in Fig. 1, is illuminated by a stepped-frequency
synthetic aperture radar system. The aperture array has
81 elements, with an inter-element spacing of 0.01 m. The
stepped-frequency signal comprises 801 frequencies, equi-
spaced over 2 GHz bandwidth centered at 2.0 GHz with
2.5 MHz frequency step. The radar system was placed at a
standoff distance of 1.0 m from the wall made up of 0.16 m
thick wooden boards.

The second scene, shown in Fig. 2, contains a 0.4 m high
by 0.3 m wide dihedral, placed on a turntable made of
two 1.2 m x 2.4 m sheets of 0.013 m thick plywood. A full
polarization stepped-frequency radar system was used for data
collection. Datasets for co- and cross-polarizations were col-
lected by placing the radar system in front of a concrete wall
of thickness 0.15 m. A transceiver is moved along the wall to
synthesize a 57-element linear antenna array. At each antenna,
a set of 801 monochromatic signals, covering a frequency
range of [0.7–3.1] GHz, is transmitted to illuminate the scene
behind the wall. Both scenes partitioned into 100×100 pixels
have the downrange and crossrange extending from 0 to 3 m,
and −1.5 to 1.5 m, respectively.

Fig. 2. Layout of the scene with a concrete wall and one dihedral target for
TWR data acquisition.

The proposed LRAP-JSTV model has three hyperparame-
ters β, λ, and γ , that can be determined using the Bayesian
optimization technique. The Gaussian process Bayesian opti-
mization requires the initialization of the search boundary of
the parameters. The parameter β is used in SVT to estimate
the low-rank matrix, see Step 3 in Algorithm 1. Setting β
to a very large value, e.g., β = 0.99‖A∗(Y)‖2, leads to the
solution of Zw being rank 1, whereas choosing a small value,
e.g., β = 10−3‖A∗(Y)‖2 makes the algorithm converge very
slowly. The values 10−3‖A∗(Y)‖2 and 0.99‖A∗(Y)‖2 can be
regarded as the lower and upper bounds for β, respectively.
Here, in the experiments, the search boundary for β was set
to [10−2βmax, 0.5βmax] where βmax = ‖A∗(Y)‖2.

The parameter λ guarantees the sparsity level of the
multi-channel image S. For λ greater than λmax =
max{‖(� H yl)‖∞}Ll=1, the unique solution to Problem (18)
for S is the zero matrix. Here, the boundary values of λ
were set to [10−3λmax, 10−1λmax]. Similarly, the search
interval for γ was set to [10−2γmax, 10−1γmax] where
γmax = max{‖W (�H yl)‖∞}Ll=1. The algorithm converges if
the relative change of the objective function is smaller than
tol = 10−4 (see Step 5 in Algorithm 1). The analysis oper-
ator � is constructed with the discrete prolate spheroidal
sequence (DPSS) basis. The reason is DPSS is more suit-
able to represent TWR signals than the Fourier or wavelet
counterparts [19], [35].

B. Performance Evaluation and Metrics

To quantify the capability of clutter mitigation and target
reconstruction for different approaches, the target-to-clutter
ratio (TCR) performance measure is used. Let I denote the
formed image. The TCR of image I is defined as the ratio
between the average power of the target region and the average
power of the clutter region (in dB):

TCR = 10 log10

(
Ptarget

Pclutter

)
. (49)
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Fig. 3. Multi-polarization images of the wooden-wall dihedral scene formed
with DS beamforming using measurements after background subtraction:
(a) HH channel, (b) HV channel, (c) VH channel, and (d) VV channel.

The target region consists of pixels that belong to the target
responses, while the clutter region comprises pixels that indi-
cate wall reflections, multi-path interferences, and other image
artifacts, such as sidelobe clutter. For a region R (R = target,
clutter) in the image I , the average power of R is defined as

PR = 1

NR

∑
(x,y)∈R

|I (x, y)|2, (50)

where NR is the number of pixels in region R.
To form the ground-truth pixels belonging to the target

region, the target image is first obtained by DS beamforming
and background subtraction (BS) using the full measurements.
The BS is performed by using the measurements collected
from a reference scene, which contains the wall but no targets.
The background signals are then subtracted from those of
the actual scene, consisting of the front wall and the targets.
Finally, DS beamforming is applied to the residual measure-
ments to form an image of the indoor targets. Figs. 3 and 4
show the images of the wooden-wall scene formed with DS
beamforming with and without clutter mitigation, respectively.
Fig. 5(a) shows the target image formed by using the addi-
tive fusion of channel images in Fig. 3. Fig. 5(b) presents
the target region (target mask) obtained by thresholding the
target image shown in Fig. 5(a) using a threshold of constant
false alarm rate (CFAR) detector. Here, the cell-averaging
CFAR with (FAR = 5%) is used to determine the threshold
value. Fig. 5(c) shows the clutter image, on the other hand,
obtained by additive fusion of the DS beamforming images
without background subtraction. Fig. 5(d) presents the cor-
responding clutter mask, which indicates pixels that belong
to the wall clutter, sidelobes, and other background noise,
but excludes the target pixels. A similar strategy is applied
to the second concrete-wall scene data, which yields target

Fig. 4. Multi-polarization images of the wooden-wall dihedral scene formed
with DS beamforming using radar measurements without background subtrac-
tion: (a) HH channel, (b) HV channel, (c) VH channel, and (d) VV channel.

Fig. 5. Target and clutter regions of the dihedral scene with a wooden
wall: (a) target image formed with additive fusion of DS beamforming
images after background subtraction, (b) target mask obtained by thresholding
the target image, (c) clutter image formed with addtive fusion of DS
beamforming images without clutter mitigation, and (d) clutter mask obtained
by thresholding the clutter image.

and clutter images shown in Figs. 6 and 7. Fig. 8 shows
the ground-truth target and clutter regions of the second real
dihedral scene, which are used for computing the performance
measure TCR of the images reconstructed by different imaging
approaches.
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Fig. 6. Multi-polarization images of the concrete-wall dihedral scene formed
with DS beamforming using measurements after background subtraction:
(a) HH channel, (b) HV channel, (c) VH channel, and (d) VV channel.

Fig. 7. Multi-polarization images of the concrete-wall dihedral scene formed
with DS beamforming using measurements without background subtraction:
(a) HH channel, (b) HV channel, (c) VH channel, and (d) VV channel.

C. Experimental Results and Analysis

This subsection presents the results, analysis, comparison,
and performance evaluation for the proposed LRAP-JSTV
approach and other imaging methods using several real radar
datasets.

1) Clutter Mitigation & Image Reconstruction with Differ-
ent Subset Frequencies for Reduced Antennas: This experi-
ment aims to evaluate the performance of the LRAP-JSTV
approach under generic CS operations where both antennas

Fig. 8. Target and clutter regions of the dihedral scene with a concrete
wall: (a) target image formed with additive fusion of DS beamforming
images after background subtraction, (b) target mask obtained by thresholding
the target image, (c) clutter image formed with additive fusion of DS
beamforming images without clutter mitigation, and (d) clutter mask obtained
by thresholding the clutter image.

and frequencies are reduced. For the first wooden-wall dihedral
scene, the reduced dataset was generated by randomly select-
ing J = 160 out of M = 801 (20%) of the total frequencies
at half the antenna locations (K = 41 out of N = 81)
selected randomly. Therefore, L = 4 datasets considered in
this experiment collectively represent only 10% of the full
measurements. The input measurement matrix Y is of size
K J × L = 6,560 ×4. The dictionary � is overcomplete
with the size of K J × Q = 6,560 ×10,000. Using Y, �,
and the selected parameters, Fig. 9 shows the output target
image S estimated by the LRAP-JSTV model. It can be
observed that the target is reconstructed and its structure is
preserved as target pixels are connected spatially. Furthermore,
clutter is suppressed significantly for all channel images. For
the second concrete-wall dihedral scene, the reduced dataset
was generated in a similar protocol: selecting only half the
antenna locations and using 40% of total frequencies at each
chosen antenna (collectively representing of 20% of total mea-
surements). Fig. 10 presents the target images reconstructed by
LRAP-JSTV approach. The target is localized, and clutter is
considerably suppressed.

2) Comparison With Different CS-Based Clutter Mitiga-
tion & Image Reconstruction Methods: In this experiment,
the proposed LRAP-JSTV approach is compared with five
other clutter mitigation and image reconstruction methods in
the CS context: (1) Extended RPCA [35], (2) RPCA [20], [21],
(3) two-stage CS using subspace projection (SP) and the
�1-norm minimization [16], [42], (4) two-stage CS using
spatial filtering (SF) and the �1-norm minimization [16], [39],
and (5) direct �1 minimization [10], [11]. The extended
RPCA (ERPCA) model uses LR and JS representa-
tions, i.e., LR-JS, for wall clutter mitigation and target
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Fig. 9. Multi-polarization images of the wooden-wall dihedral scene
reconstructed by the proposed LRAP-JSTV approach using 20% frequencies
and 50% antennas; this reduced dataset collectively represents only 10% of
the full measurements: (a) HH channel, (b) HV channel, (c) VH channel, and
(d) VV channel.

Fig. 10. Multi-polarization images of the concrete-wall dihedral scene
reconstructed by the proposed LRAP-JSTV approach using 40% frequencies
and 50% antennas; this reduced dataset collectively represents only 20% of
the full measurements: (a) HH channel, (b) HV channel, (c) VH channel, and
(d) VV channel.

image formation. Thus, it is equivalent to the proposed
LRAP-JSTV model without the analysis prior and the TV
regularization term. The RPCA regularizes the wall clutter
with LR, but imposes sparsity on the target image (LR-S).
While ERPCA and RPCA process wall and target signals
simultaneously, the two-stage CS methods mitigate wall clutter

Fig. 11. Multi-polarization images of the wooden-wall dihedral scene
reconstructed by the ERPCA (LR-JS) model using 20% frequencies and
50% antennas: (a) HH channel, (b) HV channel, (c) VH channel, and
(d) VV channel.

and reconstruct the target image independently. Note that in
the two-stage CS approaches, prior to wall clutter mitigation,
missing measurements need to be recovered since the subset
of frequencies varies along the reduced set of antennas.

Using the 10% reduced datasets collected from the
wooden-wall dihedral scene, Fig. 11 depicts the multi-channel
image S reconstructed by the ERPCA model. The target
is detected, but the target pixels are not connected well.
Moreover, the level of background clutter suppression is not
as high as that of the LRAP-JSTV approach. Fig. 12 shows
the target images reconstructed by the RPCA model. Although
strong wall clutter is mitigated, the sparsity constraint is not
effective for cross-polarization channels. Fig. 13 presents the
�1-norm-based polarimetric images formed after applying SP
to the recovered radar signals. The dominant wall clutter
is suppressed, but the recovered target is contaminated with
heavy background clutter, especially in the cross-polarization
images. Fig. 14 shows that the quality of image reconstruction
degrades even further when using the SF (instead of SP) for
clutter mitigation. Fig. 15 shows the images obtained when
applying the CS-based sparse image reconstruction directly,
without clutter mitigation. Clearly, the wall clutter dominates
the target of interest.

Table II shows the TCR values of the images reconstructed
by the different imaging techniques. The TCR values are
averaged over all the channels. It can be seen that the proposed
LRAP-JSTV approach significantly improves image quality
and yields the highest TCR value (31.61 dB). A similar
experimental protocol is used for evaluating the different
clutter mitigation and image reconstruction methods with
the 20% reduced datasets acquired from the concrete-wall
dihedral scene. Table III lists the performances of the different
approaches in terms of TCR. LRAP-JSTV achieves 30.57 dB,
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Fig. 12. Multi-polarization images of the wooden-wall dihedral scene
reconstructed by the RPCA (LR-S) model using 20% frequencies and
50% antennas: (a) HH channel, (b) HV channel, (c) VH channel, and
(d) VV channel.

Fig. 13. Multi-polarization images of the wooden-wall target scene recon-
structed by the two-stage wall clutter mitigation with subspace projection and
sparse image reconstruction using 20% frequencies and 50% antennas: (a) HH
channel, (b) HV channel, (c) VH channel, and (d) VV channel.

followed by ERPCA with a TCR of 21.83 dB and RPCA with
a TCR of 17.08 dB.

3) Effects of Data Reduction on Performance: This subsec-
tion evaluates the performance of the proposed LRAP-JSTV
model under different levels of compressive data measure-
ments. These datasets were generated from the concrete-wall
dihedral scene by randomly selecting only 40% of total
frequencies at a randomly selected antenna subset. The number

Fig. 14. Multi-polarization images of the wooden-wall target scene recon-
structed by the two-stage wall clutter mitigation with spatial filtering and
sparse image reconstruction using 20% frequencies and 50% antennas: (a) HH
channel, (b) HV channel, (c) VH channel, and (d) VV channel.

Fig. 15. Multi-polarization images of the wooden-wall target scene recon-
structed by applying direct �1-norm minimization with 20% frequencies
and 50% antennas: (a) HH channel, (b) HV channel, (c) VH channel, and
(d) VV channel.

of selected antennas is varied from 14 (25%) to 28 (50%)
of the total antennas. Therefore, the datasets considered in
this experiment collectively represent only 10% to 20% of
the total measurements. For each dataset, the rank of the wall
component Zw , the number of iterations, TCR values of the
formed images S, and the relative change of the objective
function are recorded after convergence. Table IV presents the
obtained values for all datasets, averaged over 50 trials for the
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TABLE II

AVERAGE TARGET-TO-CLUTTER RATIO (TCR) OVER ALL THE
POLARIZATION IMAGES FORMED BY DIFFERENT CLUTTER

MITIGATION AND IMAGE RECONSTRUCTION METHODS,
USING 20% FREQUENCIES AND 50% ANTENNAS OF

THE TOTAL MEASUREMENTS COLLECTED FROM
THE WOODEN-WALL DIHEDRAL SCENE

TABLE III

AVERAGE TARGET-TO-CLUTTER RATIO (TCR) OVER ALL THE
POLARIZATION IMAGES FORMED BY DIFFERENT CLUTTER

MITIGATION AND IMAGE RECONSTRUCTION METHODS,
USING 40% FREQUENCIES AND 50% ANTENNAS OF THE

TOTAL MEASUREMENTS COLLECTED FROM
THE CONCRETE-WALL DIHEDRAL SCENE

TABLE IV

PERFORMANCE MEASURES OF THE LRAP-JSTV ALGORITHM FOR
DIFFERENT REDUCED DATASETS OBTAINED FROM

THE CONCRETE-WALL DIHEDRAL SCENE

LRAP-JSTV algorithm. It can be observed that LRAP-JSTV
converges well for the different CS datasets and yields good
TCR values. In addition, the TCR increases and the number
of iterations decreases with the number of measurements used
for wall clutter mitigation and image reconstruction.

4) Effect of the Regularization Terms on Performance: This
experiment aims to investigate the contributions of the LR, JS,
and TV terms in the proposed model. The LR term is used
to capture the wall clutter, the JS term is used to enforce
joint sparsity among channel images, and the TV term is
used to promote target continuity and remove artifacts. The
performance of the model with the three regularization terms
introduced simultaneously is compared to the performance
when the regularization terms are used individually or in
pairs. The experiment was conducted using a reduced dataset
collected by 50% of the antennas and 50% of the frequencies
from the wooden-wall dihedral scene.

Table V lists the TCR values of the images reconstructed
by the proposed model using the different combinations of

TABLE V

PERFORMANCE OF THE PROPOSED MODEL IN TERMS OF TCR AVERAGED
OVER ALL THE POLARIZATION IMAGES FORMED BY COMBINING

DIFFERENT REGULARIZATION TERMS, USING 50% FREQUENCIES

AND 50% ANTENNAS OF THE TOTAL MEASUREMENTS

COLLECTED FROM THE WOODEN-WALL
DIHEDRAL SCENE

the regularizers. It is evident that using LR, JS, and TV
together yields the highest TCR of 38.46 dB. The pairs (LR,
JS) and (LR, TV) produce TCR values of 27.41 dB and
30.51 dB, respectively. The model without the LR term has
low TCR values: 6.54 dB for (JS, TV), 2.62 dB for JS, and
5.27 dB for TV. These results show that including the LR term
in the model is necessary for separating the weak target signals
from the dominant wall clutter. Furthermore, using the three
regularizers together enhances the TCR of the formed image
significantly.

5) Acceleration and Convergence Analysis of the Proposed
Algorithm: The proposed LRAP-JSTV algorithm consists of
forward gradient and backward proximity evaluations. It can
be observed from Algorithm 1 that the proximal evaluations
of the LRAP, LS, and TV are performed efficiently through
the shrinkage technique with closed-form expressions. The
computational efficiency is further achieved through the inte-
gration of the acceleration feature in the forward gradient
evaluation at Step 2, see Algorithm 1. In this step, both
current and previous estimates of wall clutter and target image
(Zw

t , St ) and (Zw
t−1, St−1) are used for computing the auxiliary

variables (Uw
t , Us

t ). In the case of without acceleration, only
current estimates are used for gradient evaluation, i.e., Uw

t ←
Zw

t and Us
t ← St . To investigate the effect of the acceleration

scheme on the convergence rate, we use the 25% reduced
dataset collected from half of the antennas and half of the
frequencies, and evaluate the performance and convergence of
the proposed model, with and without acceleration. Further-
more, we compare the running times of the proposed algorithm
with those of several existing CS TWRI algorithms. All the
algorithms were implemented in MATLAB and executed on a
PC with Intel Core i7-3820 3.6GHz CPU and 32GB RAM.

Fig. 16 shows the convergence curves of f (Zw, S) as
a function of the number of iterations. The value of the
objective function decreases during minimization. Further-
more, the objective function converges more rapidly with the
acceleration scheme than with the standard gradient evaluation.
The algorithm with acceleration reaches a steady-state (a value
of 4.52) in 18 iterations, whereas the algorithm without
acceleration takes 36 iterations to reach the same value.

Fig. 17 presents the rank values of Zw recorded as a
function of the number of iterations. It can be observed that
for both cases (with and without acceleration), the algorithm
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Fig. 16. Evolution of the objective function f (Zw, S) during the minimiza-
tion of LRAP-JSTV with acceleration (solid line) and without acceleration
(dashed line), using 50% of frequencies and 50% of available antennas.

Fig. 17. The rank values of the estimated wall component Zw as a function
of the number of iterations by LRAP-JSTV with acceleration (solid line) and
without acceleration (dashed line), using 50% of frequencies and 50% of
available antennas.

TABLE VI

RUNNING TIMES OF SEVERAL CLUTTER MITIGATION AND IMAGE

RECONSTRUCTION ALGORITHMS EVALUATED USING 50%
FREQUENCIES AND 50% ANTENNAS OF THE TOTAL

MEASUREMENTS COLLECTED FROM THE

WOODEN-WALL DIHEDRAL SCENE

achieves a low-rank representation of the wall signals, reaching
a value of 6 at the steady-state, starting from a rank of 164,
min(M, K × L) = min(801, 41 × 4), at the first iteration.
However, the rank of Zw obtained with the acceleration
scheme converges faster than the one without the acceleration
scheme.

The running times of the different clutter mitigation and
image reconstruction approaches were recorded and listed in
Table VI. It is clear that although DS beamforming is the
fastest technique, it requires signal recovery for wall clutter
mitigation and image formation independently for 4 channels,

which yields a run time of 83.13 s. By processing all the chan-
nel datasets simultaneously and integrating the acceleration
scheme, the proposed algorithm takes 87.10 s or 18 iterations
to produce the target images. The two-stage wall clutter
mitigation and �1-minimization is the most time-consuming
approach because its processing time includes the times for
signal estimation, wall clutter mitigation, and �1-regularized
image formation for all the channel images.

6) Discussion: It is worth noting that although the proposed
model outperforms all the tested state-of-the-art methods in
terms of TCR, the proposed approach requires the hyperpa-
rameters to be tuned appropriately. In this paper, Bayesian
optimization is employed to search for the optimal hyper-
parameters, which increases the execution time. However,
due to the capability of incorporating prior knowledge about
the scores associated with the evaluated hyperparameters,
Bayesian optimization with Gaussian process through its
acquisition function optimizes the probability of searching
for the hyperparameter with the best score, which makes
Bayesian optimization much more efficient than heuristic,
cross-validation grid, or random search strategies.

V. CONCLUSION

This paper presented an efficient approach that incorpo-
rates low-rank, jointly sparse and total variation for solving
the crucial problems of wall clutter mitigation, target image
reconstruction, and background artifact suppression in com-
pressive TWRI. By including an analysis prior, the proposed
model enhances wall clutter representation and segregation
from the target signals. Furthermore, the introduction of TV
improves the continuity of targets and alleviates background
clutter. Here, TV regularization is extended as joint derivative
sparsity and its computation is approximated with the wavelet
decomposition and cycle spinning technique. This allows the
development of an accelerating iterative algorithm to solve
the LRAP, JS, and TV regularized TWRI efficiently. Through
extensive experimental validation, we find that the proposed
approach segregates wall clutter from target reflections well
and yields high-quality images of indoor targets, even with
reduced measurements. In compressive TWR sensing, the pro-
posed method outperformed the ERPCA, RPCA, and existing
CS-based wall clutter mitigation and image formation tech-
niques in terms of TCR.
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