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Abstract. The discrete logarithm problem in a hidden group, which is defined
over finite non-commutative associative algebras, represents interest for con-
structing post-quantum public-key cryptoschemes. The currently known form of
the hidden logarithm problem suits well for designing the public-key agreement
protocols and public encryption algorithms, but not suits for designing the
digital signature algorithms. In the present paper, there are introduced novel
forms of defining the hidden discrete logarithm problem, on the base of which
two digital signature algorithms are proposed. Two different four-dimensional
finite non-commutative associative algebras have been used in the proposed
signature algorithms. In one of the proposed algorithms, there are used globally
non-invertible vectors that are invertible locally. A large set of the left-side and a
large set of the right-side local units relates to some fixed globally non-invertible
vector. Several different local units are used to define one of the proposed forms
of the hidden logarithm problem.
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1 Introduction

Currently, digital signature algorithms (DSAs) [1, 2] based on the computational dif-
ficulty of the factorization problem (FP) [3] and the discrete logarithm problem
(DLP) [4] have wide practical application. The security of the DSAs based on the FP
and DLP is determined by the fact that the most efficient known algorithms for solving
these problems have subexponential (factorization and DLP in finite fields) or expo-
nential difficulty (DLP on elliptic curves).

In connection with the significant progress in the development of quantum com-
putations [5, 6], interest in estimating the computational complexity of the DLP and FP
at solving these problems on a quantum computer has arisen. It has been shown that
solving the FP and the DLP on quantum computer has polynomial computation dif-
ficulty [7, 8]. This result means that attacks with using quantum computers will break
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the DSAs based on computational difficulty of the FP and DLP. Waiting for the
emergence of practically working quantum computers in the middle or in the second
half of the 2020s [9] leads to the current challenge of applied and theoretical cryp-
tography for the development of the post-quantum DSAs that will resist the attacks
based on using quantum computers.

To ensure sufficiently, high security level of the DSAs requires that computation-
ally difficult problems other than the FP and the DLP can be used as their base
cryptographic primitive. The response to this challenge was the announcement by the
National Institute of Standards and Technology (NIST) of the competition for devel-
oping the post-quantum public-key cryptosystems (public-key agreement protocols,
public encryption algorithms, and DSAs) [9, 10] and the appearance of regularly held
thematic conferences [11, 12].

This paper extends the approach to the design of the post-quantum public-key
cryptoschemes, which relates to the use of so-called hidden DLP (HDLP) as the base
cryptographic primitive. Section 2 introduces the known form of the HDLP and
describes the finite quaternion algebra. Section 3 describes a new 4-dimensional
FNAA. Sections 4 and 5 describe the first (second) proposed DSA. In Sect. 6, the
proposed DSAs are discussed as candidates for the post-quantum signature algorithms.
Section 7 concludes the paper.

The main contribution of the paper is introducing two new forms of the HDLP,
applicable to the design of the post-quantum signature schemes, and proposing two
new DSAs as candidates of the post-quantum signature schemes.

2 Non-commutative Finite Algebras as Carriers
of the Post-quantum Cryptoschemes

For the development of post-quantum public-key cryptoschemes, it was suggested to
use the problem of finding the conjugating element in non-commutative braid groups
[13, 14]. However, in this approach, there are fundamental difficulties associated with
the fact that this problem reduces to solving systems of linear equations [15]. The latter
casts doubt on the security of the numerous two-key cryptosystems based on calcu-
lations in braid groups [16, 17].

More promising is the approach consisting in combining the DLP with the problem
of finding the conjugating element, leading to the HDLP, i.e., to the DLP in the hidden
cyclic group of a finite non-commutative associative algebra (FNAA) [18, 19]. How-
ever, the form of the HDLP proposed in papers [18, 19] suits well for designing the
public-key agreement protocols, public encryption, and commutative encryption
algorithms, but not suits to design the DSA.

The HDLP is defined over some finite non-commutative algebraic structure con-
taining sufficiently large number of different cyclic groups as its subsets. The FNAAs
represent the most attractive case of the carriers of the HDLP. Let us consider a finite
m-dimensional vector space defined over a ground finite field GF(p). An arbitrary
vector V can be represented as an ordered set of m elements of the field GF(p)V =
(a,b,...,q) or as the following sum of the single-component vectors ae, bi, ..., gv:
V=ae®bi® - - @ qv, where e, i, and v are formal basis vectors; ae = (q,0,...,0),
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bi = (0,b,0,...,0), and gv = (0,...,0,q). The terms ae, bi, ..., gv are called the
components of the vector V. The addition of vectors V and V' = (d',¥,...,q) is
denoted as @ and is defined with the following formula:

VEBV/ = (avb»-“aCI)@(alvb/,'“aq/) = (a+a',b+b’+ +q+ql)

The operation of multiplying two vectors ae ®bi & --- ® gv and xe @ yi @ ---
wv is defined as the multiplication of each component of the first operand with each
component of the second operand in accordance with the following formula (the
multiplication operation is denoted as o):

(ae Dbi®---Bgv)o(xe YD - Bwv)
=axeoedayeoid® ---GaweovdbxioePbyioi
Q- Pbwiovd---Dgxvoedgyvoid ---Dgwvoyv,

in which in each term the product of two basis vectors is to be replaced by some single-
component vector indicated in a cell of some table called basis-vector multiplication
table (BVMT) [18, 19]. The indicated cell locates at intersection of the row defined by
the left basis vector and the column defined by the right basis vector. The coordinates
of the single-component vectors, which are not equal to 1, are called structural coef-
ficients. After the mentioned replacement was performed, the right-hand side of the last
expression will represent the sum of the single-component vectors. Addition of all of
the lasts yields some vector V' = (a”,0",...,q") =d"e ®b"i® - -- ® ¢"v. The finite
vector space with the described multiplication operation is called finite m-dimensional
algebra. If the operation of multiplication in a finite algebra is associative and non-
commutative, then the last one is called FNAA.

For some fixed values of the dimension and of the characteristic of the field GF(p),
finite algebras of various types can be defined using different BVMTs. The finite
quaternion algebra, a particular case of the four-dimensional FNAAs, is defined with
the BVMT shown as Table 1.

Table 1. BVMT defining the finite quaternion algebra (t € GF(p)) [18]

o e i j k

e e i j k

i i —1e k —7j
J j -k —e i

k k Tj -i —7€

The vector E = (1, 0, 0, 0) is the global bi-side unit (unit acting on all elements of
the algebra). This finite algebra contains:

Q=p(p-1)(p* 1) (1)
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different vectors that are invertible relatively the global unit and p* + p> — p vectors
that are non-invertible relatively E. The set of the globally non-invertible vectors
contains many different subsets of the locally invertible vectors, i.e., vectors invertible
in the frame of some subset including the local bi-side unit. Results of the paper [19]
show that such locally invertible vectors represent special interest for using them as
parameters of the HDLP.

Initially, the HDLP was introduced over the finite non-commutative multiplicative
group I of the quaternion algebra as follows. Suppose that two invertible vectors Q and
G have sufficiently large prime order g (such that g divides Q) and satisfy condition
QoG # Go Q. Then, one can define computation of the public key as follows:

Y=0""0G" 00 =(0""0GoQ), ()

where the pair of integers x (x < g) and ¢ (f < g) represents the private key. The vectors
Y and G are contained in different cyclic groups contained as subgroups in the group I’
therefore, the problem of finding the values x and ¢ in the vector Eq. (2) is called HDLP.

The public-key agreement scheme constructed on the base of this form of the
HDLP is as follows. Two remote users A and B select their private keys (x4, #4) and (xp,
tg) correspondingly. Then, using the formula (2), they compute their public keys Y4 and
Yp. After exchanging with the public keys, the user A computes the vector

7 = Qq—fA o YgA ° QZA — Qq—tA—tB o G'8% o Qz+zB+rA’
and the user B computes the same vector
7 = Qll—tB o YZ{B o QtB — QlI—tB—tA o G¥4*8 o QI+IA+tB.

The HDLP defined in the form of the formula (2) over the finite quaternion algebra
has super-polynomial difficulty at solving it using the ordinary computers, but it can be
reduced to the DLP in the finite field GF(p?) [20]. Therefore, to provide post-quantum
security one should look for new FNAAs as carriers of the HDLP [20].

One can expect that defining the HDLP in new forms is also an attractive approach
for providing post-quantum security. For example, in new forms of the HDLP one can
use non-invertible vectors of the finite quaternion algebra or of some other FNAA with
global unit. Using non-invertible vectors represents interest to provide security to
attacks using homomorphism of the FNAA into the finite field GF(p) or into the finite
field GE(p?) [19].

3 Proposed New FNAA

We propose the four-dimensional FNAA in which the multiplication operation is
defined with Table 2 as a new carrier of the HDLP.
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Table 2. BVMT defining the four-dimensional FNAA with bi-side global unit (tu # 1)

) i j k
e e uk pe k
i 7j i j i
J J i 0] i
k 7€ k e tk
Solving the vector equations:
VoX=V and XoV=V (3)

for the case T # 1, we have derived the following formula for the bi-side global
unit E:

1 1
E= ) ; : ’ a (4)
l—tp' 1l —tu'tu—1"tu—1

For vectors V = (a, b, ¢, d) coordinates of which satisfy condition ab # dc, Eq. (3)
has the single solution X = E. For these vectors, the vector equations V - X = E and
X » V = E also have same single solution that defines the vector X = V', If there is
dc — ab = 0, then the vector V irreversible. From the last condition, it is easy to find
the number of irreversible vectors, which is equal to p® + p> — p, and the value of the
order of the non-commutative multiplicative ring called inverses of the vector V. Thus,
the condition ab # dc defines the globally invertible vectors V, i.e., the vectors that are
invertible relatively the bi-side global unit. We add the word “globally” since the
condition ab = dc defines the vectors V that are non-invertible relatively the unit E, but
invertible relatively some local bi-side units acting in the frame of some subsets of the
algebra elements. Such globally non-invertible vectors we denote as N = (a’, o', ¢/, d').
For vectors N (that are not the left zero divisors nor the right zero divisors), there exists
a large set of the local bi-side units, which contains only one element E' = (x, y, z,
w) that is a globally non-invertible vector relating to the case xy = zw. The vector E’
depends on the coordinates of the vector N and can be computed using the following
formula:

! / ! !/ ! / / !
E'Z(x,y,z,w):<h, /d _a—l—dt.d_h, d  d+dx 7i )7 )
adu+d du+d o du+d du+d d
where h = d'(d + b+ u+d't)”". All other local bi-side units of the vector N are
globally invertible.

It is easy to show that the local unit E’ is the local bi-side unit for every vector N“,
where u is an arbitrary natural number. Taking into account the finiteness of the
considered FNAA, one can be shown that for some minimum value of the degree
u = m, the condition N @ = E' holds. This value o is called local order of the vector
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N. The set of the vectors N', where i = 1,2, ..., o, compose a cyclic group having order
o and containing the unit element E'. Thus, if some globally non-invertible vector N is
not a zero divisor, then N generated a cyclic finite group contained in the considered
FNAA. Such cyclic groups represent interest for using them as the hidden group to
define the HDLP.

In one of the proposed DSAs (see Sect. 5), the local right-side units of some locally
invertible vector are used as secret parameters. All local right-side units of the vector
N =(a, b, ¢, d) are described by the following formula:

d a+dt a a+dt
) ®

Er = IBERS) = h7 - ) - ) )
(53,2, w) ( au+d a’,u—l—d’n ap+d du+d "
where h,n =0, 1, 2, ..., p — 1. The set (6) includes p2 different right-side units of the
vector N and only p of such units are globally non-invertible vectors. Coordinates of
the lasts satisfy condition hd’ = na’. All other units in the set (6) are globally invertible

vectors.

4 Digital Signature Scheme on the Base of the First New
Form of the HDLP

In the first proposed DSA, we use a new form of the HDLP in the frame of which the
formula, like formula (2), is used to compute two of three elements of the public key.
Suppose a user selects at random three invertible vectors P, Q, and G (while using one
of the finite quaternion algebra considered in Sect. 2) which have sufficiently large
prime order g (that divides the number p + 1) and satisfy the following conditions:
QoG#GoQ,PoG#GoP,and Qo P # Po(Q . Then, he can generate the triple
of random integers (x, t, u), where x < g; t < g; u < g, and compute his public key as
following triple of the vectors (Y, U, F):

Y:qutononU:ququOPu’F:QuftOPu‘ (7)

To compute a signature to some electronic document M, the owner of the public
key uses the integers x, 7, and u and the vectors Q, G, and P. The last six values
compose the private key of the user. The problem of representation of the public key in
the form (7) is the first proposed new form of the HDLP.

The signature generation algorithm is as follows:

Input: document M.

1. Generate a random integer k < g and compute the vector R = Q97" o G¥ o P".

2. Compute the first signature element e: ¢ = f(M, R), where f is some specified
hash function (the hash function value e is computed from the document M that
is to be signed, to which the vector R is concatenated).

3. Compute the second signature element s: s = k — ex mod q.
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Output: digital signature in the form of the pair of integers (e, ).
The signature verification algorithm is as follows:
Input: the public key (Y, U, F); document M; and digital signature (e, s).

Compute the vector R = Y o F o U°.

Compute the value &: & = f(M, R).

Compare the values e and e.

If ¢ = e, then output message “The signature is valid”. Otherwise, output “The
signature is false”.

Bl ol e

Proof of the correctness of the algorithm is as follows:

R=Y0FoU = (090G 0Q)0Q " oP'oc(P™0GoP")
=qutOGerQtOthOPuOquuOGsOPu=qutoneOGsOPu
— qut o Gxe+s o P = qut ° Gxe+k7ex o P = qut ° Gk o P
=R=>¢e=e.

Thus, if the signature is computed correctly, then it will pass the signature verifi-
cation procedure as genie one.

5 Digital Signature Scheme on the Base of the Second
New Form of the HDLP

In the second proposed DSA, we use the FNAA defined with Table 2. Suppose a user
selects at random one globally invertible vector Q, having sufficiently large prime order,
and one locally invertible vector N = (a, b', ¢, d') such that @'yt +d’ # 0, which has a
large prime local order g and relates to the bi-side local unit £’ defined by the formula
(5). While selecting the vectors Q and N, the following condition is to be satisfied:
Qo N # N o Q. Then, the user selects at random three pairs of integers (h1, ny), (hs, n»),
and (h3, n3) such that the conditions hd’ # nid', hyd' # nyd', and hsd’ # n3a’ hold and,
using the formula (6), computes the local right-side units E,q, E,», and E,5 relating to the
vector N. Due to the indicated conditions, the computed units E,|, E,,, and E,; represent
globally invertible vectors. The vectors Q, N, E,q, E,,, and E,5 are secret elements used
for computing the public key.
Algorithm for computing the public key is described as follows:

1. Generate a random integer x < q.
2. Compute the vectors (T, P, L): T =E, o Q 'y P=T '0E,; L=Es0P .
3. Compute the public key as the following pair of the vectors ¥ and U:

Y=QoN'oT; U=PoNolL. (8)
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The pair of the vectors (¥, U) represents the public key. The vectors T and P are
also secret; however, they are used only in the procedure for computing the public key.
The private key used for computing digital signatures represents the integer x and the
triple of the four-dimensional vectors (N, O, L). The problem of representation of the
public key in the form (8) is the second proposed new form of the HDLP.

The signature generation algorithm is as follows:

Input: document M.

1. Generate a random integer k < g, and compute the vector R = Q o N o L.

2. Compute the first signature element e: e = f(M, R), where f is some specified
hash function.

3. Compute the second signature element s: s = k — ex mod g.

QOutput: digital signature in the form of the pair of integers (e, ).
The signature verification algorithm is as follows:
Input: the public key (Y, U); document M; and digital signature (e, s).

Compute the vector R = Y¢ o U°.

Compute the value &: ¢ = f(M,R),

Compare the values e and e.

If e = e, then the signature is accepted as genie. Otherwise, the signature is
rejected as false one.

bl

Proof of the correctness of the algorithm is as follows.
Using the equality Q o T = E,,, one can show the following:

(QoG oT) = (Qo(GxoToQ)E*lonoT)
(Qo (G* 0 En) GxoT)
(Qo G o oT>
—(QoG*oT).

Using the equality L o P = E,,, one can write the following:

(PoGolL) = (Po(GoLoP)SiloGoL)

= (Po (GoE,3)“‘1oGoL) =(PoG"'oGolL)
=(PoG'0olL).
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For a genie signature (e, s), we have the following:

R=Y0U =(QoG oT)o(PoGolL)
=Qo0G¥0ToPoG oL=0QoG“0E,0G oL
=Q0G¥ 0G' oL=00G“ T oL=00G“ oL
=QoG'oL=R=¢=e.

Thus, if the signature (e, s) is computed correctly, then it will pass the verification
procedure as valid signature.

Because the generator N is private, the last proposed form of the HDLP does not
suite for constructing the public-key agreement schemes.

One should note that in the second DSA, the local left-side units Ej;, Ej,, and Ej3
representing globally invertible vectors can be used instead of the local right-side units
E,, E,», and E ;. In the case of the four-dimensional FNAA defined with Table 2, the
set of all left-side units relating to the vector N = (d',b’,c’,d'), where d't+ ¢ # 0, is
described by the following formula:

©)

c a+cdu a ad+cpu
Ei=(xyzw) = (h’a’r—i—c’ Tattd " Maitd T divd )’
where h, n =0, 1, 2, ..., p — 1. The set (8) includes p2 different left-side units of the
vector N and only p of such units are globally non-invertible vectors. Coordinates of
the lasts satisfy condition hc’ = na'. Selecting different pairs of the integers (h;, n;)
satisfying condition h;c’ # n;a’, one can define selection of the required vectors Ej,
i=1,2,3.

Each of the considered four-dimensional algebras can be used as a carrier of each of
the two proposed forms of the HDLP. However, when using the finite quaternion
algebra as the carrier of the HDLP of the second form, the formulas describing the sets
of the local right-side or of the left-side units, like (6) or (9), are to be derived and used
at designing the signature schemes.

6 The Proposed DSAs as Candidates for Post-quantum
Cryptoschemes

The proposed two DSAs and the public-key agreement protocol described in Sect. 2
are based on the HDLP, but the used forms of the last problem are different. In the key
agreement scheme, the DLP arises in the finite cyclic group generated by the vector
G. In this cryptoscheme, the public key Y is connected with the vector G*; however, the
last is hidden by the conjugacy vector Q' (see the formula (2)). In the first DSA, there
are hidden both the cyclic group generator G and the vector G* [see the first and second
formulas in (7)] by the conjugacy vectors Q" and Q", respectively. The requirement that
order g of the vector G divides the integer p + 1 (i.e., the integer ¢ does not divide the
integer p — 1) [19] is used in the first proposed DSA in order to prevent attacks based



10 A. A. Moldovyan et al.

on the homomorphism of the used FNAA into the finite ground field GF(p), over which
the FNAA is defined [19].

Like in the case of the first DSA, security of the second DSA is also based on
computational difficulty of finding the value x that represents the discrete logarithm of
the value Y’ = N*; however, the value Y’ is masked in the first element of the public
key: Y = Qo Y’ o T. Besides, the value N is also masked in the second element of the
public key: U = Po N o L. In the case of the known values N and Y’, one has the
ordinary DLP, but in the case of known public key (Y, U) one has the HDLP.

One can interpret the second proposed DSA as implementation of the Schnorr
signature scheme [21] in the finite cyclic group generated by the globally non-invertible
vector N, which is hidden in the four-dimensional FNAA defined with Table 2.
Approximately, the same can be said about the first proposed DSA. The both proposed
signature schemes are very practical, since they define sufficiently short signatures and
provide to generate arbitrary number of signatures using one registered public key.
Besides, they have sufficiently high performance.

To estimate the performance of the proposed DSAs, let us consider the case of 128-
bit security that can be provided with using the size of the primes p and ¢ equal to 270
and 256 bits correspondingly. Using the HDLP in the hidden cyclic group having 256-
bit prime order defines 128-bit security of the proposed signature schemes. He well
approved Schnorr signature scheme defined over the field GF(p") with 2500-bit char-
acteristic p' provides 128-bit security. In the Schnorr signature scheme and in the
proposed DSAs, there is used approximately the same number of the exponentiation
operation. Besides, the signature length is also the same; therefore, performance
comparison of these three cryptoschemes is defined by the computational difficulty of
the multiplication operation in the FNAAs and in GF(p'). Taking into account that
computational difficulty of the modulo multiplication is proportional to the square of
the size of the modulo and the multiplication operation in the used FNAAs includes 16
multiplications modulo p, it is easy to show the proposed DSAs are approximately 6
times faster than the Schnorr signature algorithm (in the case of providing security
equal to 2'*® multiplication operations, i.e., in the case of 128-bit security).

Using the non-invertible vector N as generator of the hidden cyclic group in the
second proposed DSA serves to prevent potential attacks based on the homomorphism
of used FNAA into the field GF(p), which are proposed in [19].

The supposed resistance of the described two DSAs to attacks based on using
quantum computers is connected with hiding the cyclic group (in the frame of which a
DLP-based signature scheme is constructed) in the four-dimensional FNAAs. How-
ever, like in the case of the signature schemes selected as candidates for post-quantum
standards [10], estimation of the computational difficulty of the proposed forms of the
HDLP for the case of solving them on a quantum computer represents a problem for
independent research. The proposed DSAs have many practical advantages (short
signature size, no limitation on signing many electronic documents with one public
key, possibility to use the standard architecture of the public-key infrastructure) in
comparison with the candidates for post-quantum signature standards; therefore, we
suppose the task of estimating security of the proposed DSAs will attract much
attention of the cryptographic community.
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In the second proposed DSA, we have used the non-invertible vector N as generator
of the hidden cyclic group in order to prevent potential attacks based on the homo-
morphism of used FNAA into the field GF(p), which are proposed in [19].

7 Conclusion

The performed research has contributed to the justification of the HDLP as an attractive
primitive of the post-quantum public-key cryptography. The previously known form of
the HDLP was used for designing post-quantum public-key agreement protocols and
public encryption algorithms, but no signature scheme was proposed on its base. In this
paper, two novel forms of the HDLP are proposed and used to design two DSAs.

The proposed forms of the HDLP suit well to construct signature schemes, but on
the basis of them it is not possible to construct the public-key agreement schemes. The
latter is caused by the fact that the hidden finite cyclic group used as the core part of the
signature scheme represents a secret element. The last moment contributes significantly
to the security of the proposed DSAs.

The FNAAs of the dimensions m > 6 also represent interest as carriers of the
proposed two new forms of the HDLP. A unified method for constructing FNAAs of
arbitrary even dimensions m > 4 is proposed in the paper [22]. Using different types of
the FNAAs for designing the DSAs based on the proposed forms of the HDLP rep-
resent a task of independent research in the area of post-quantum cryptography.

Support for Research. This work was partially supported by the Russian Foundation for Basic
Research in the framework of the project No. 18-07-00932-a.
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