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Abstract
Counter-terrorism is a global task that every nation is concerned about. To improve operations against terrorism, many
nations carry out counter-terroristic operations not only by themselves but also in cooperation with other nations. In
this paper, we propose an extended the Kaplan-Kress-Szechtman model to cope with multi-party counter-terrorism.
The optimal control problem for this model is studied. Our main tool is Pontryagin’s maximal principle. The optimal
intelligence level and individual reinforcement of each party are found. The numerical results show that counter-
terrorism operations in cooperative models are more effective than that in single models.
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1. Introduction

Mathematical models have been widely used for the theo-

retical studies, prediction, planning, etc., of warfare. In

combat modeling, they are used to illustrate a combating

process and to simulate a weapon system or events hap-

pening on a battlefield. Combating models have become

the main tools for military policy planners in the North

Atlantic Treaty Organization (NATO) and many countries

with a developed army (see Caulkins et al.1). A mathemat-

ical model as a system of differential equations for a com-

bat was introduced by Lanchester in 1916. In this model,

the combat was supposed to be between two forces of the

same type; the attrition effects are represented by constant

attrition rate coefficients. Lanchester proposed two models

corresponding to aimed and unaimed firepower. The attri-

tion rates follow square and linear laws for aimed and

unaimed firepower, respectively.

In 1962, Deitchman2 introduced a model for guerilla

warfare, which is an asymmetric Lanchester-type model.

In this model, the firepower of guerilla forces is aimed,

whereas that of government forces is unaimed. Schaffer3

extended Deitchmann’s model to investigate the optimal

distribution of firepower. Schaffer3 is believed to be the

first to include the intelligence level in the attrition rates.

Recently, Kress and Szechtmann4 and Kaplan et al.5

studied anti-insurgent operations by using a Lanchester-

like model including the intelligence level. In these works,

the ‘‘double-edged sword’’ effect was introduced for the

first time and the authors managed to explain why the ter-

rorists cannot be eliminated completely. The impact of the

intelligence level on the outcome of a combat between a

government force and an insurgent force in an asymmetric

model has been studied in the works of Kress and

Szechtmann4 and Kaplan et al.5 The higher the intelli-

gence level is, the more effective the firepower. In addi-

tion, problems of optimal control for dynamical systems

modeling of a combat have been studied for a long time.

In 1974, Taylor6 studied the optimal distribution of fire-

power for some combat models. Lin and Mackay7 studied

the optimal distribution of firepower in a Lanchester model

with respect to time. Chen et al.8 investigated the optimal
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control problem by setting reinforcements as control vari-

able for a Lanchester (1,1) model and Chen et al.9 extended

this to a Lanchester (2,2) model. On the other hand,

Feichtinger et al.10 studied the optimal control problem for

an asymmetric Lanchester model with the reinforcement and

intelligence level being control variables. In this paper, we

study an asymmetric Lanchester (n, 1) model representing a

combat between a terroristic force and n government forces

sharing intelligence. The combat process is modeled as a sys-

tem of differential equations. Based on this dynamic, an opti-

mal control problem is set up and studied by Pontryagin’s

maximal principle. It is shown that the interior and boundary

steady states exists under some mild assumptions. In these

states, the forces are mutually suppressing. The preliminary

numerical results justify the theoretical studies in many cases

under investigation. The rest of article is organized as fol-

lows. Section 2 is devoted to the description of our model.

Some results, including the existence of interior steady states

and numerical illustrations, are presented in Section 3. In the

last section we make conclusions.

2. The model

In current anti-terrorism wars nations should cooperate to

launch anti-terrorism operations, especially when terroristic

forces can simultaneously operate in many nations’ terri-

tories. This requires countries to cooperate for a joint anti-

terrorist plan. In other words, anti-terrorism should be carried

out collectively. We extend the Kaplan-Kress-Szechtman

(KKS) model10 to the case in which two counter-terrorism

forces fight against a terroristic force. Based on the KKS

model, we denote by X1(t),X2(t), :::, Xn(t) numbers of n

counter-terrorism forces facing a group of terrorists whose

quantity is represented by a portion Y (t) (out of a population

P). Since P is assumed to be constant, we, for simplicity, let

P= 1: Therefore, one has 0≤ Y (t)≤ 1. Constant attrition

rates of the terroristic forces against n counter-terrorism ones

are denoted by α1, α2, :::, αn, respectively. Similarly, by γ1,

γ2, :::, γn we respectively represent attrition rates of counter-

terrorism forces against the terroristic one. μ represents the

joint intelligence operation of n anti-terrorist forces. It repre-

sents, for example, the level at which counter-terrorism

forces can pinpoint the exact location of terrorist forces. To

sum up, we propose our model in the form of differential

equations as follows:

_X 1 = � α1Y � δ1X1 +β1,
_X 2 = � α2Y � δ2X2 +β2,

:::
_X n = � αnY � δnXn +βn,

_Y = � Pn
i= 1

γ iXi

� �
μ+ 1� μð ÞYð Þ+ θ(C):

8>>>>>><
>>>>>>:

ð1Þ

Here, β1, β2, :::, βn denotes the reinforcing rates of the

counter-terrorism forces, while θ(C) reflects the double-

edged sword effect with the following:

C =
Xn

i= 1

γiXi

 !
(1� μ)(1� Y ): ð2Þ

Conventionally, cf. Feichtinger et al.,10 we assume that

the cost of collecting intelligence is a convex function

satisfying the following:

I(0)= 0, I 0(μ)> 0, I 00(μ)> 0, I(1)= +∞: ð3Þ

The damage function D(Y ) is also a convex function,

with the following constraints:

D(0)= 0, D0(Y )> 0, D00(Y )> 0: ð4Þ

The costs to maintain the military of the n counter-

terrorism forces, denoted by A(X1),A(X2), :::,A(Xn), can

be assumed to be linear or concave functions satisfying

the following:

Ai(0)= 0, A0i(Xi)> 0, A00i (Xi)≤ 0, i= 1 : n:

Ki(βi), i= 1 : n denotes the cost of the reinforcing pro-

cess. It is conventional in human resource planning that

such costs are often assumed to be quadratic, and, for sim-

plicity, they are
β2

1

2
,

β2
2

2
, :::,

β2
n

2
, respectively.

So the task of the military planner is to solve the follow-

ing problem:

min
μ, β

ð∞
0

e�rt(D(Y )+ I(μ)+A(X )+K(β))dt, ð5Þ

where

A(X )=
Xn

i= 1

Ai(Xi); K(β)=
Xn

i= 1

Ki(βi):

In this article, we also presume that the damage caused by

terrorists follows quadratic laws, fY 2

2
(with f > 0). The

costs to maintain the warfare are linear functions, which

are c1X1, c2X2, :::, cnXn (with c1, c2, :::, cn > 0). The cost

of collecting intelligence is assumed to be

I(μ)= � log(1� μ) and corresponding control costs are
β2

1

2
,
β2

2

2
, :::,

β2
n

2
. Finally, we assume that θ(C)= θC2, with θ

being a positive real number.
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3. Interior steady states and stability
analysis

3.1 Interior steady states

Using Pontryagin’s optimal principle, we set up the

Hamilton function as follows:

H = � fY 2

2
�
Pn
i= 1

ciXi + log(1� μ)�
Pn
i= 1

β2
i

2

� �
+

+ Pn
i= 1

li(� αiY � δiXi + βi)+
+ ln+ 1 �γX μ+ 1� μð ÞYð Þ+ θ(γX )2 1� μð Þ2 1� Yð Þ2

� �
,

with l1, l2, :::, ln+ 1 being adjoint variables and, for the

sake of brevity, γX represents the sum
Pn
i= 1

γ iXi.

The partial derivatives with respect to control variables

are as follows:

∂H

∂βi

= � βi + li = 0) βi = li, = 1 : n

∂H

∂μ
= �1

1� μ
+ ln+ 1 �γX 1� Yð Þ � 2θγX 2 1� μð Þ 1� Yð Þ2

h i
:

If ln+ 1 > 0, then the Hamiltonian is monotonically

decreasing. It leads to an optimal level of intelligence

μ= 0: For ln+ 1 < 0, the following holds:

∂H

∂μ
= �1

1� μ
+ ln+ 1

�γX 1� Yð Þ � 2θ γXð Þ2 1� μð Þ 1� Yð Þ2
h i

, ð6Þ

where x= γX 1� μð Þ 1� Yð Þ. The solution of this equa-

tion is as follows:

x=
�1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8θ

ln+ 1

q
4θ

:

Since x≤ 1, it follows that ln+ 1 = � 1
x 1+ 2θxð Þ ≤ � 1

1+ 2θ
,

and the corresponding intelligence level is given by the

following:

μ= 1� x

γXð Þ 1� Yð Þ : ð7Þ

The adjoint variables satisfy the system of differential

equations:

_li = rli � ∂H
∂Xi

, i= 1 : n

_ln+ 1 = rln+ 1 � ∂H
∂Y

(
: ð8Þ

The concrete form of this system is as follows:

_l1 = r + δ1ð Þl1 + c1 � ln+ 1½�γ1 μ+ 1� μð ÞYð Þ
+ 2θγ1 γXð Þ 1� μð Þ2 1� Yð Þ2�,

_l2 = r + δ2ð Þl2 + c2 � ln+ 1½�γ2 μ+ 1� μð ÞYð Þ
+ 2θγ2 γXð Þ 1� μð Þ2 1� Yð Þ2�,

:::
_ln = r + δnð Þln + cn � ln+ 1½�γn μ+ 1� μð ÞYð Þ

+ 2θγn γXð Þ 1� μð Þ2 1� Yð Þ2�,
_ln+ 1 = rln+ 1 + fY + Pn

i= 1

αili � ln+ 1½� γXð Þ 1� μð Þ

� 2θ γXð Þ2 1� μð Þ2 1� Yð Þ�:

Note the following:

�γ i μ+ 1� μð ÞYð Þ+ 2θγ i γXð Þ 1� μð Þ2 1� Yð Þ2

= � γi 1+ 1
ln+ 1 γXð Þ

h i
,

� γXð Þ 1� μð Þ � 2θ γXð Þ2 1� μð Þ2 1� Yð Þ
= 1

ln+ 1 1�Yð Þ ,

and

� γXð Þ μ+ 1� μð ÞYð Þ+ θ γXð Þ2 1� μð Þ2 1� Yð Þ2
= � γXð Þ+ x 1+ θxð Þ:

The coupled canonical system consisting of the dynamics

and the adjoint equations is as follows:

_Xi = � αiY � δiXi + li, i= 1; n, ð9Þ
_Y = � γXð Þ+ x 1+ θxð Þ, ð10Þ

_li = r+ δið Þli + ci + γ iln+ 1 + γ i

γX
, i= 1; n, ð11Þ

_ln+ 1 = rln+ 1 + fY +
Xn

i= 1

αili �
1

1� Y
: ð12Þ

Interior steady states of this system satisfy the following

equations (by letting the derivatives in (9), (10), and (11)

vanish):

γX = x 1+ θxð Þ, ð13Þ

li = � 1

r+ δi

ci + θγ i

1+ θxð Þ 1+ 2θxð Þ

� �
, i= 1 : n, ð14Þ

αnδiXi � αiδnXn =αiln � αnli, i= 1 : n� 1: ð15Þ

One obtains the following linear system:

γ1X1 + γ2X2 + :::+ γnXn = x 1+ θxð Þ,
αnδ1X1 � α1δnXn =α1ln � αnl1

αnδ2X2 � α2δnXn =α2ln � αnl2

:::
αnδn�1Xn�1 � αn�1δnXn =αn�1ln � αnln�1

8>>>><
>>>>:

: ð16Þ

The determinant of this system is as follows:
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D= �αnð Þn�1
δn

Xn�1

i= 1

γiαi

Yn

j= 1

j 6¼ i

δj + γn

Yn

j= 1

δj

2
6664

3
7775:

Obviously, we see that, D> 0 if n-odd and D< 0 if n-

even, so the system has a unique solution (X1,X2, :::,Xn).

The following thus follows:

Y = l1 � δ1X1

α1

:

Since li < 0, i= 1 : n, it follows that Y < 0. For the

existence of the interior states it requires that

ci < 0, i= 1 : n:
Substituting li,Xi, Y into equation rln+ 1 +

fY + Pn
i= 1

αili � 1
1�Y

= 0, one obtains a one-dimensional

equation F xð Þ= 0: Solving this equation for x, one can

compute the corresponding interior steady states.

Numerical illustrations can be found in the upcoming sec-

tion. Now, let us discuss the stability of the steady states.

3.2 Stability of the steady states

Provided that the interior steady states are found, the corre-

sponding Jacobian is given by the following:

G1 G2

G3 G4

� �
, ð17Þ

where:

G1 =

�δ1 0 ::: 0 �α1

0 �δ2 ::: 0 �α2

::: ::: ::: ::: :::
0 0 ::: �δn �αn

�γ1 �γ2 ::: �γn 0

2
66664

3
77775

G2 =

1 0 ::: 0 0

0 1 ::: 0 0

::: ::: ::: ::: :::
0 0 ::: 1 0

0 0 ::: 0 1+ 2θxð Þ ∂x
∂ln+ 1

2
66664

3
77775

G3 =

� γ2
1

γXð Þ2 � γ1γ2

γXð Þ2 ::: � γ1γn

γXð Þ2 0

� γ2γ1

γXð Þ2 � γ2
2

γXð Þ2 ::: � γ2γn

γXð Þ2 0

::: ::: ::: ::: :::
� γnγ1

γXð Þ2 � γnγ1

γXð Þ2 ::: � γ2
n

γXð Þ2 0

0 0 ::: 0
f 1�Yð Þ2�1

1�Yð Þ2

2
66666664

3
77777775

G4 =

r + δ1 0 ::: 0 γ1

0 r+ δ2 ::: 0 γ2

::: ::: ::: ::: :::
0 0 ::: r + δn γn

α1 α2 ::: αr r

2
66664

3
77775,

with ∂x
∂ln+ 1

= � 1

ln+ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

n+ 1�8θln+ 1

p : By studying the real

parts of the eigenvalues of this matrix, one can derive the

stability of the underlying interior steady states.

4. Numerical illustrations
4.1 2 versus 1

In Feichtinger et al.,10 the parameters r = 2:2;
α= 2:23; δ= 0:34; γ= 1:19; θ= 1:86; c= � 2:3734;
f = 1:12 were chosen. The obtained numerical results

were reported as follows (with appropriate changes of

notation): the interior state is X = 1:39523; Y = 0:16034,

the optimal reinforcement rate is l= β= 0:83193; and

μ= 0:48822 is the corresponding optimal intelligence

level. In order to make a comparison, we reuse these para-

meters for our model with some duplications, thus:

Case 1 : r= 2:2, α1 =α2 = 2:23; δ1 = δ2 = 0:34;

γ1 = γ2 = 1:19; c1 = c2 = � 2:3734; f = 1:2; θ= 1:86:

With these parameters, our results are as follows.

Interior steady state:

X1 =X2 = 0:2948; Y = 0:2844;

l1 = l2 = 0:7344; l3 = � 0:9984;

optimal intelligence level: μ= 0:20.

Also in this case, the eigenvalues of the Jacobian are as

follows:

4:3313; 2:54;�2:131;�0:34; 1:1± 1:6790i:

These results show that the steady states can only be

reached by two stable manifolds. These facts are illu-

strated in Figure 1.

We also modify the parameters in Case 1 to make the

following:

Case2 : r = 2:5;α1 = 2:0;α2 = 1:9; δ1 = 0:34; δ2 = 0:37;

γ1 = γ2 = 1:3; c1 = c2 = � 2:5; f = 1:2; θ= 1:86:

The results are as follows.

Interior steady state:

X1 = 0:355214; X2 = 0:387704; Y = 0:302679;
l1 = 0:726132; l2 = 0:718542; l3 = � 0:698659:

optimal intelligence level: μ= 0:257162.
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Also in this case, the eigenvalues of the Jacobian are as

follows:

4:7469; 2:8553;�2:2469;�0:3553; 1:25± 1:6240i:

The steady states can only be reached by two stable

manifolds. This fact is illustrated in Figure 2.

4.2 3 versus 1

In order to get further insights into the (n, 1) model, we

make two other (3, 1) test cases with similar parameters as

the (2, 1) case above. Thus we consider the following:

Case 3 : r = 2:5;α1 = 2:0, α2 = 1:9, α3 = 2:0;

δ1 = 0:34; δ2 = 0:37, δ3 = 0:32; γ1 = 1:0, γ2 = 1:3;

γ3 = 1:1; c1 = c2 = c3 = � 2:5; f = 1:2; θ= 1:86:

The results are as follows.

Interior steady state:

X1 = 0:14635; X2 = 0:18627; X3 = 0:19253; Y = 0:33134;

optimal intelligence level: μ= 0:10393.

Case 4 : r = 2:3;α1 = 2:2, α2 = 2:1, α3 = 2:3;

δ1 = 0:34; δ2 = 0:37, δ3 = 0:32; γ1 = 1:5, γ2 = 1:4;

γ3 = 1:2; c1 = � 2:6, c2 = � 2:4,

c3 = � 2:5; f = 1:2; θ= 1:86:

The results in Case 4 are as follows.

Interior steady state:

X1 = 0:09208; X2 = 0:16590; X3 = 0:10893; Y = 0:29424;

Optimal intelligence level: μ= 0:10729.

The interior steady states are states where the counter-

terrorism forces and terroristic one are mutually sup-

pressed. In these states, the terrorism force cannot expand

its operation, and meanwhile the counter-terrorism forces

stay the same. After investigating four cases with four

interior steady states, it is apparent that the sum of Xi

decreases and Y increases as n increases. This fact is an

argument for the idea of cooperation in counter-terrorism,

viz., counter-terrorism forces need not be too many while

the terroristic one need not be eliminated to an excessively

small quantity. Moreover, the optimal intelligence level is

reduced, which means that the cost for collecting intelli-

gence can be cut down. These facts suggest that the more

anti-terrorism parties or nations get involved in the com-

bat, the lower the overall costs will be.

5. Conclusions

The model under consideration is an extension of the KKS

model. The results of Feichtinger et al.10 are a particular

case of ours. It is clear that cooperation in counter-

terrorism is much better, at least when the costs are con-

sidered. The costs are expected to be lower if more parties

take part in the combat.
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