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ABSTRACT

Many-objective optimization problems (MaOPs) have been gained
considerable attention for researcher, recently. MaOPs make a num-
ber of difficulties for multi-objective optimization evolutionary
algorithms (MOEAs) when solving them. Although, there exist a
number of many-objective optimization evolutionary algorithms
(MaOEAs) for solving MaOPs, they still face difficulties when the
number of objectives of MaOPs increases. One common method to
reduce or alleviate these difficulties is to use objective dimensional-
ity reduction (or objective reduction for briefly). Moreover, instead
of searching the whole of objective space like existing MOEAs or
MaOEAs, Pareto Corner Search Evolutionary (PCSEA) concentrates
only on some places of objective space, so it decreases time consum-
ing and then speeds up objective reduction. However, PCSEA-based
objective reduction needs to specify a threshold to select or remove
objectives, which is not straightforward to do. Based on the idea
that more conflict two objectives are, more distant two objectives
are; in this paper, we introduce a new objective reduction by inte-
grating PCSEA and k-means, DBSCAN clustering algorithms for
solving MaOPs which are assumed containing redundant objectives.
The experimental results show that the introduced method can re-
ducing redundant objectives better than PCSEA-based objective
reduction. The results further strengthen the links between evolu-
tionary computation and machine learning to address optimization
problems.
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1 INTRODUCTION

In social life, there often exist problems with two or more objectives
which are conflict to each other. The problems are often referred as
multi-objective problems (MOPs) [22]. In an MOP, different solu-
tions are likely to have an edge of objective over other objectives,
so the term Pareto dominance concept is used widely to differenti-
ate them. Most common MOEAs try to approximate the objective
Pareto Front (PF) space so that no we cannot enhance any objectives
without sacrificing the quality of others [17].

There exist a number of evolutionary computation (EC) tech-
niques for dealing with these MOPs [9] such as particle swarm
optimization, differential evolution, or genetic algorithms. Many
benefits can gained when using EC. They include the simplicity of
the approach, broad applicability, outperforming traditional meth-
ods on real problems, and the capability for self-optimization [11].
MOEAs refer to algorithms using EC technique to evolve solutions
for solving MOPs. MOEAs can evolve multiple solutions in a single
run, and they can achieve better solutions than traditional methods,
for instance, SPEA2 [34], NSGA-II [7].

MOPs with more than three objectives are usually regarded as
MaOPs (Many-Objective Optimization Problems) [3, 14]. When
dealing with these MaOPs, MOEAs encounter a number of difficul-
ties. Firstly, with Pareto-based MOEAs, a large portion of population
becomes incomparable, so it is difficult to identify which candidates
for next generation. Moreover, the size of population increases
exponentially when approximating the entire PF. Finally, it is not
easy to visualize the results for decision makers to select a final
solution [15].

Approach to solving MaOPs can be categorized to two groups.
The first group assumes that there is not any redundant objective in
a given problem, and the methods in first group, such as HypE [1],
Two_Arch2 [27], try to directly eliminate the difficulties encoun-
tered. The algorithms in the first group are called Many-Objective
Evolutionary Algorithms (MaOEAs). In contrast, the second group
supposes that there remain redundant objectives in the given prob-
lem, and the methods in second group, such as NCIE [28], Exact
or Greedy algorithms [2], try to remove the redundant objectives
before using MOEAs or MaOEAs to search for PF. By removing re-
dundant objectives, the objective reduction approach has three main


https://doi.org/10.1145/3368926.3369720
https://doi.org/10.1145/3368926.3369720

SolCT 2019, December 4-6, 2019, Hanoi - Ha Long Bay, Viet Nam

benefits. Firstly, it can reduce the computation of an MaOEA, i.e. it
makes less time to operate and less space to store. Furthermore, the
problem with less objectives can be even solved by other MOEAs.
Finally, it can help decision makers better understand the MaOP by
indicating the irrelevant objectives or redundant ones [20, 25].

There exist two methods in objective reduction. The first one is
the structure-based method. It tries to retain the dominance rela-
tions as much as possible when removing redundant objectives. The
0-OR, -OR in [29] and the PCSEA-based objective dimensionality
reduction in [26] are examples of the first method. The second one
is the correlation-based method. It uses metrics such as correlation
to evaluate the relation between objectives of nondominated solu-
tions, then the objectives that are low conflict, or non-conflict to
other are removed while others are retained [13, 16].

Both the two objective reduction methods need an approxi-
mate nondominated solution set which is generated by MOEAs or
MaOEAs. However, these evolutionary algorithms often target the
set covering the whole true PF. Because of requiring MOEAs/MaOEAs
for evolving whole PF, most existing objective reduction methods
require a large of calculation, especially when solving problems
having numerous objectives.

In contrast to most existing methods, Pareto corner search evo-
lutionary algorithm (PCSEA) in [26] only locates in intersections
of PF’s boundaries then search for solutions. The result is that the
PCSEA-based objective reduction method run much faster than
other methods do. However, the PCSEA-based objective reduction
method requires to define a threshold to remove or retain objectives.
Moreover, the authors in [23] shows that the threshold strongly
depends on each problem, but the threshold was fixed in [26]. There-
fore, this paper proposes a new method to alleviate the limitation of
the PCSEA-based objective reduction method by using clustering
algorithms for objective reduction. Results display that the pro-
posed method can perform objective reduction both effectively and
efficiently.

The rest of this paper is organized as follows. Section 2 gives
some related work. Section 3 presents the proposed method. Sec-
tion 4 shows experimental design. Section 5 shows the results and
discussion. Section 6 concludes and states the future work.

2 RELATED WORK

This section presents related work including multi and many-objective
optimization, objective dimensionality reduction, and Pareto Corner
Search Evolutionary Algorithm. Clustering algorithms including
k-means and Density Based Spatial Clustering of Applications with
Noise (DBSCAN) are also presented in this section.

2.1 Multi and Many-objective optimization
An MOP as defined as follows [22]:
minimise f = {fi(x), 2(x), ..., fr (x)}

subjecttox € Q

1

where there are k objective functions!, which are mapping of R”
to R, and are fully or partially conflict each other and need to
be minimised simultaneously. x = (x1, x2, ..., xn)T is the decision
vector, Q is a subset of R™.

1k is greater than or equal to 2
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In order to solve MOPs, there exist two main techniques that
are weighted sum technique and evolutionary computation based
technique. The first technique solves MOP by transforming it to
problem with a single objective (SOP). Then, the SOP can be solved
by using existing methods for single objective problems [22].

The evolutionary computation-based technique solves the MOP
by using evolutionary algorithms to approximate optimal solutions.
By evolving a population of solutions, MOEAs are able to approxi-
mate a set of optimal solutions in a single run and can be applied to
any problem that can be formulated as a function optimization task.
Plenty of MOEAs have been proposed. Some well-known MOEAs
are nondominated sorting genetic algorithm II (NSGA-II) [7], Pareto
archived evolution strategy (PAES) [19], multi-objective evolution-
ary algorithm based on decomposition (MOEA/D) [31].

When MOPs with more than three objectives which are con-
sidered as MaOPs [3],[14]. When tackling these MaOPs, MOEAs
encounter a number of difficulties. First, when applying Pareto-
dominance based MOEAs such as NSGAII 7] to solve MaOPs, a
large portion of population becomes nondominated, so we cannot
determine which solutions are better for next generation. When
using aggregation-based or indicator-based approaches such as
IBEA [33], they still have to search simultaneously in an exponen-
tially increasing number of directions. Second, the size of population
has to increase exponentially to describe the front result [15]. Third,
visualization the solution set is difficult to help decision makers to
choose the final solution [15].

MaOEAs, which are proposed to solve MaOPs, can be catego-
rized into 2 classes. The first class supposes that the problems do
not contain redundant objectives then directly eliminates the diffi-
culties encountered. It includes sub-classes: decomposition-based,
preference ordering relation-based, preference incorporation-based.
MaOEAs such as a new dominance relation-based (8-DEA) [30],
reference-point based nondominated sorting (NSGA-III) [6], and
knee point driven evolutionary algorithm (KnEA) [32] belong to
the first class. In contrast to the first class, the second one assumes
that there remain redundant objectives in the given problem, and
try to find a minimum subset of the original objectives which can
generate the same PF as whole original objectives do. This class is
showed more detail in sub-section 2.2 below.

2.2 Objective Dimensionality Reduction

In order to avoid the curse of dimensionality, dimensionality re-
duction is often used. In general, we use dimensionality reduction
methods for transforming a large feature space to a smaller one.
There exist two approaches in dimensionality reduction: feature
extraction and feature selection. Using feature extraction to extract
a set of features to explain data. Feature extraction formulates the
reduced features as a linear combination of the original features.
Feature selection is utilized to find the smallest subset of the given
features in order to represent the given data best. Dimensionality
reduction brings several benefits such as reducing the storage space
or time performance required.

In evolutionary multiobjective optimization, objectives are con-
sidered as features, and dimensionality reduction is used and is
called objective dimensionality reduction or objective reduction
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for briefly. There also exist 2 approaches in objective reduction: ob-
jective feature extraction and objective feature selection. Objective
feature extraction aims at creating novel features from the original
features to explain data. For example, authors in [4, 5] formulated
the essential/reduced objective as a linear combination of the origi-
nal objectives based on the correlations of each pair of the essential
objectives.

Objective feature selection aims at finding the smallest subset of
the given objectives in order to generate the same PF as the set of
original objectives does. This approach can be classified into 2 sub-
classes: Pareto dominance structure based and correlation based.
Pareto dominance structure based sub-class is based on preserving
the dominance relations in the given nondominated solutions. That
means they are retained as many as possible after removing redun-
dant objectives [12]. The correlation based sub-class bases on the
correlation between each of pairs of objectives. Then it aims to keep
the most conflict objectives and remove the objectives that are non-
conflict each other. This sub-class measures the conflict between
objectives by using the correlation [25] or mutual information [13]
of objective values of solutions set.

2.3 Pareto Corner Search Evolutionary
Algorithm (PCSEA)

Objective reduction procedures essentially have two major modules.
In the first module, an MOEA (e—MOEA, NSGAII in [25], SPEA2-
SDE in [29]) is used to generate an approximation of the PF. In
the second module, dimensionality reduction is executed on the
obtained approximation of the PF. Those modules may be applied
in some loops to get the reduced set of objectives. However, for
generating approximate PF, we often call for MOEA for a plenty of
generations. Even so, from PF population may still distant, which
can make it pointless to extract any information for reduction.
Moreover, existing MOEAs often search for approximation to the
entire PF. This becomes impossible even with the case of a large
number of generations or/and solutions set for high number of
objectives. To overcome these difficulties, PCSEA [26] focuses on
only “corner” solutions of the PF where the boundaries intersect
(Algorithm 1).

Algorithm 1: PCSEA algorithm
Input: N (Population size),
Ng (number of generations)
1 begin

2 Initialize(pop1)

3 Evaluate(pop1)

4 for i < 2 to Ng do

5 childpop; « Evolve(popi_1)

6 Evaluate(childpop;)

7 S « CornerSort (pop;—1 + childpop;)
8 popi < S(1:N)

9 end
10 end

Working of PCSEA is similar to other evolutionary algorithms
such as NSGA-II [7]. While NSGA-II uses nondominated sorting
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Algorithm 2: The PCSEA-based objective reduction algo-
rithm
Input: Fr < {fi, f2,..., fm} // original objectives set
C // threshold
Output: Fp // reduced objective set
1 run PCSEA to get corner solutions
2 foreachm € {1,...,M} do

3 R - NFR\{fm}
Nrg

4 if R > C then

5 | Fr — FR\{fm}

6 end

7 end

for comparing and ranks the solution by using crowding distance-
based, PCSEA uses corner-sort ranking mechanism which ranks
solutions basing on individual objective and Ly norm all-but-one
objectives.

Once the corner solutions of the PF are obtained using PCSEA (in
Algorithm 1), the objective reduction module is performed. The idea
is Pareto dominance among the solutions will be largely depend
on the relevant objectives. That is if one redundant or irrelevant
objective is removed then there is no (or negligible) change in
the number of nondominated solutions. On the contrary, if one
of critical objectives is discarded, that number is changed signifi-
cantly. The PCSEA-based objective reduction algorithm is shown
in Algorithm 2.

The parameter R in step 3 in Algorithm 2 is ratio between Np
and Nfg {f,,}» where Ny and Np, (f,,} are the number of non-
dominated solutions in F and FR\ {f,}, respectively.

2.4 Clustering algorithms

Clustering involves the dividing a dataset into groups such that the
members of each group are as “close” as possible to one another, and
different groups are as “far” as possible from one another, where
distance is measured with respect to all available variables [24].
Partition-based and density-based methods are two typical types
of clustering method.

2.4.1 K-means clustering algorithm.

K-means [21], which is one of the simplest unsupervised learn-
ing algorithms, belongs to partition clustering method. K-means
solves the clustering problems where each cluster is represented
by center of gravity of the cluster. The k-means algorithm works
as Algorithm 3

Algorithm 3: K-means algorithm

Input: k clusters
1 Initialize centroid of the k clusters

2 repeat

3 Generate a new partition by assigning each data to its
closest cluster centroid.

4 Compute new cluster centroid for each cluster.

5 until the cluster membership stabilized,
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2.4.2 DBSCAN clustering algorithm.

DBSCAN [10] is one of density-based clustering algorithm. Clus-
ters are identified by looking at the density of points. Regions with
a high density of points depict the existence of clusters whereas
regions with a low density of points indicate clusters of noise or
clusters of outliers. The algorithm grows regions with sufficiently
high density into clusters and discovers clusters of arbitrary shape
in spatial databases with noise. DBSCAN has two parameters: ep-
silon (Eps) and (minPts). They mean that the minimum number
of points that must be existed in Eps. The algorithm starts with
an arbitrary starting point that has not been visited. This point’s
Eps-neighborhood is retrieved recursively, and if it contains enough
number of points, i.e greater than or equal to minPts, a cluster is
started. Otherwise, the point is labeled as noise. Note that this point
might later be found in a sufficiently sized Eps-environment of a
different point and hence be made part of a cluster.

If a cluster contains a small number of of points in usual clus-
tering problems then the points are regarded as noise or outlier.
However, bases on the features of objective in MaOPs, a point (an
objective in MaOPs) which is contained in a cluster, is considered a
good point (a relevant objective of problem).

3 THE PROPOSED METHOD

The PCSEA-based objective reduction in [26] can efficiently re-
move redundant objectives. However, this algorithm has a number
of drawbacks. First, the cutoff value of R (C threshold) must be
provided before running objective reduction. Secondly, the objec-
tive reduction algorithm did not consider the importance of the
order of removing redundant objectives. Finally, the algorithm was
tested on DTLZ5(I,M) problem with only a small number of relevant
objectives (specifically 5).

The main purpose of this paper is to take the advantages and
alleviate the limitations of the PCSEA-based objective reduction
method. The proposed method uses the PCSEA to generate nondom-
inated solutions. The objectives in the solution set are considered
as object (or point) then for clustering to eliminate redundant ob-
jectives. Algorithm 4 shows the main steps of the proposed method.
We call the algorithm PCS-Cluster.

The algorithm has two key ideas. The first idea, the proposed
algorithm can take advantages of the PCSEA, which is able to find
some key solutions in the PF with lower complexity than other
MOEAs/MaOEAs. The second idea, unlike Algorithm 2, the pro-
posed algorithm avoids using the sensitive parameter threshold C.

Pareto Corner Search Evolutionary Algorithm (PCSEA).

The PCSEA [26] is excuted to get nondominated solutions as line 2
in Algorithm 4. It is similar to NSGAII [7]. While NSGAII uses
nondominated sort and crowding distance-based ranking, PCSEA
uses corner-sort ranking in which solutions are ranked based on the
individual objective values and L, norm of all-but-one objectives.

Clustering procedure.

Objectives of solution set are considered as objects in objective
space. They are grouped in a number of set which are known as
clusters. To measure the distance between objective x and objective
y for clustering, we use distance d as formula (2):

d=1-p(x,y) (2)
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Algorithm 4: PCS-Cluster objective reduction algorithm

Input: t <0 // step
Fr — {fi, fa, ..., fm} // original objective set

Output: F; // reduced objective set
1 repeat
2 P «— PCSEA(F;); // Get corner solutions corresponding
to remaining (current) objective set
3 {C1,Cy,...,Cy} < Clustering {F;(P)}
4 Fs— @
/* for each cluster: retain one, discard the others */
5 fori=1tok do
6 ‘ Fs « Fs U (an objective in cluster C;)
7 end
/* Compare two sets before and after reduction */
8 if F; = Fg // 1If they are same
9 then
10 ‘ stop «true
11 else
12 t «—t+1;
13 F; « Fs;
14 stop «false;
15 end

=

6 until stop;

where p(x,y) is the Pearson correlation coefficient between
random variables x and y, the range of p is from -1 to 1, the lower
p value is, the higher two variables negative correlated, means that
one objective increases while the other decreases; and vice versa,
the higher p is, the higher two variables positive correlated, means
that both objectives increase or decrease at the same time.

This procedure uses two kinds of clustering algorithms namely
k-means [21] and DBSCAN [10]. The k-means divides the set of
objectives into k clusters. The value of k is determined using EL-
BOW method [18]. The ELBOW method computes the distortions
under different cluster number counting from 1 to n, and k is the
cluster number corresponding 99.0% percentage of variance ex-
plained, which is the ratio of the between-group variance to the
total variance. DBSCAN automatically divides the set of objectives
into a number of clusters using density-based clustering algorithm
instead of predetermination the number of clusters.

Working of PCS-Cluster

This sub-section shows the process of working of the algorithm
when solving DTLZ5(5,10) problem?. Parameters for PCSEA are set
as in Table 3 (step 2). Initially, 10 objectives are assigned for F; set.
Fig. 1a draws a parallel coordinates of F; objectives of solutions set
obtained by PCSEA (the solutions concentrate only on “corners” of
objective space).

After having the solutions set, a matrix distance (followed for-
mula 2) between objectives is calculated. The matrix distance is
showed in Table 1. A cell of row i and column j contains the distance
between objective i and objective j.

%It is defined in subsection 4.1
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Objective Value
Objective Value

12 s 4 5 6 7 8 9 10 1 7 8 9 10
Objective Number Objective Number

(a) The first loop (10 objectives) (b) The second loop (5 objectives)

Figure 1: Parallel coordinate plots for objectives of solution
set obtained by PCSEA for solving DTLZ5(5,10) problem

Table 1: The matrix distance between 10 objectives

0.0E+00 |0.0E+00 [ 1.1E-15 |1.9E-15 | 2.0E-15 |2.3E-15 | 1.1E+00 |1.2E+00 | 1.2E+00 | 1.3E+00
0.0E+00 |0.0E+00 [0.0E+00|1.9E-15 | 0.0E+00 | 1.7E-15 | 1.1E+00 | 1.2E+00 | 1.2E+00 | 1.3E+00
1.1E-15 |0.0E+00 | 0.0E+00 |0.0E+00 | 0.0E+00 |0.0E+00| 1.1E+00 | 1.2E+00 | 1.2E+00 | 1.3E+00
1.9E-15 |1.9E-15 |0.0E+00|0.0E+00|0.0E+00|0.0E+00|1.1E+00 | 1.2E+00 | 1.2E+00 | 1.3E+00
2.0E-15 |0.0E+00|0.0E+00 [0.0E+00 | 0.0E+00|0.0E+00 | 1.1E+00 | 1.2E+00 | 1.2E+00 | 1.3E+00
2.3E-15 |1.7E-15 | 0.0E+00 [ 0.0E+00 | 0.0E+00 | 0.0E+00 | 1.1E+00 | 1.2E+00 | 1.2E+00 | 1.3E+00
1.1E+00|1.1E+00|1.1E+00|1.1E+00| 1.1E+00 | 1.1E+00| 0.0E+00 | 1.1E+00| 1.1E+00 | 1.2E+00
1.2E+00|1.2E+00 | 1.2E+00 | 1.2E+00 | 1.2E+00 | 1.2E+00| 1.1E+00 | 0.0E+00 | 1.1E+00 | 1.2E+00
1.2E+00|1.2E+00 | 1.2E+00 | 1.2E+00 | 1.2E+00 | 1.2E+00| 1.1E+00 | 1.1E+00 | 0.0E+00 | 1.3E+00
1.3E+00|1.3E+00|1.3E+00 | 1.3E+00| 1.3E+00 | 1.3E+00| 1.2E+00 | 1.2E+00| 1.3E+00 | 0.0E+00

Based on matrix distance in Table 1, a clustering algorithm (k-
means or DBSCAN) is executed. In the case of DBSCAN, the DB-
SCAN groups 10 objectives into clusters: each objectives is assigned
cluster as {1,1,1,1,1,1,2,3,4,5}, so there are 5 clusters in total. We
retain each cluster one object (one objective in MOP/MaOP). Then
five objectives 1,7, 8,9, 10 are retained and assigned for Fs set, while
others are removed. As a result, F; is not equal to Fs, F is assigned
to Fs and we continue the loop.

At the next loop, PCSEA generates a solutions set with F; objec-
tives set. This solutions set is drawn as in Figure 1b. The distance
matrix is calculated as showed in Table 2. Clustering divides the F;
objectives set as 1, 2,3, 4, 5. Each cluster contains only one object
(objective) and needs to keep one object. So we retain all objective.
Other words, F;s is the same as F; or the algorithm exists. Finally,
the algorithm retains right five objectives {1, 7, 8,9, 10}.

Table 2: The matrix distance between 5 objectives (1,7,8,9,10)

0.0E+00 | 1.1E+00 | 1.1E+00 | 1.2E+00 | 1.3E+00
1.1E+00 | 0.0E+00 | 1.1E+00 | 1.2E+00 | 1.2E+00
1.1E+00 | 1.1E+00 | 0.0E+00 | 1.2E+00 | 1.3E+00
1.2E+00 | 1.2E+00 | 1.2E+00 | 0.0E+00 | 1.4E+00
1.3E+00 | 1.2E+00 | 1.3E+00 | 1.4E+00 | 0.0E+00

4 EXPERIMENTAL DESIGN

We do experiment with DTLZ5(, M) problem [8], PCSEA for gen-
erating nondominated solutions. Then we compare the proposed
algorithm (PCS-Cluster) with the best corresponding of the PCSEA-
based objective reduction.
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4.1 Test Problem
The DTLZ5(LM) problem is defined as follows:

min fi(x) =r(xp).cos(61)cos(02) ...cos(Opr—2)cos(Opr—1)
min fa(x) = r(xpr).cos(01)cos(02) . ..cos(Opr—2)sin(Orr—1)
min f3(x)  =r(xp).cos(01)cos(02) . ..sin(Opr—2)

min fg1(x) = r(xar).cos(01)sin(0s)
min fr(x) =r(xpm).sin(61)
where
r(xp) = (1 +100g(xp))
6 - i
T2
_ w(1+2g(xpm)xi) =T (M=1
%= T4 g Py
9= inexM (x; — 0‘5)2

0<x;<1 i=Tn

i=1,0-1)

The total number of variables n in decision space is equal to
M + k — 1, where k = |xps| = 10. There remain three properties of
problem. The first property of the problem is that the dimensionality
(I) of the PF can be altered by setting I to an integer between 2 and
M. The second property is that PF is non-convex and follows the
formula: Z?;I 1( fi*)2 = 1. The third property is that there are M — I
first objectives correlated, while the others and one of M — I first
objectives are conflict each other.

4.2 Parameter Setting

The experiments are performed totally on 28 instances of DTLZ5(, M)
problem. While values of I is set 5, 10 and 15, values of M is set
from 10 to 100 at each step 10. The parameters for PCSEA are set
as Table 3.

In PCSEA-based objective reduction algorithms, threshold C is
set equal from 0.55 to 0.95 at each step 0.05, and 0.975, 0.99. Param-
eters for PCSEA-Cluster objective reduction (namely for k-means
and DBSCAN clustering algorithm) are set as Table 4. In which,
distance type for both clustering algorithm is Pearson correlation,
percentage is percentage of variance explained, minPts is minimum
number of points required to form a cluster. Total 30 independent
runs are executed for each instance.

Table 3: The parameters for PCSEA

Parameter Value | Parameter Value

population size 200 | SBX crossover index 10

number of generations | 500 | mutation probability 0.1

crossover probability 0.9 polynomial mutation 20

5 RESULTS AND DISCUSSION

This section firstly examines and chooses values for one threshold
for k-means and one threshold for DBSCAN. Next, performance of
the proposed method is compared with the original method namely
PCSEA-based objective reduction.
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Table 4: The parameters for k-means, and DBSCAN

(a) For k-means

Parameter Value
Distance type | correlation
Percentage® 99.0

* Percentage of variance explained for ELBOW method in determining k clusters

(b) For DBSCAN
Parameter Value
Distance type correlation
Distance threshold 0.25
minPts 1

5.1 Examination of thresholds for k-means, and
DBSCAN in solving DTLZ5(10,") problem

This section examines the effect of choosing the percentage thresh-
old and distance threshold for clustering algorithm (namely k-
means and DBSCAN respectively) on result of solving DTLZ5(10,")
problem. For distance threshold, the values are set from 0.2 to 0.9
in step 0.05. For percentage threshold, the values are set 95, 96,
97, 98, 99. For DTLZ5(I,M) problem, I is set fixed with value of
10, the values of M is set from 20 to 100 with step 10. We run 30
independently each instance, so we have 270 cases in total.

For percentage threshold, we found that results gain the best
result at value of 99. For distance threshold, Fig 2 shows plot for
number of successes in finding out the relevant objectives and
removing redundant ones for solving DTLZ5(10,”) problems on
a number of different values of distance threshold for DBSCAN.
The plot says that the worst result at the threshold of 0.9 and
gradually better when threshold decreases. The result gains the
best when threshold is small at values of 0.2, 0.25, and 0.3. Bases on
this examination, we choose distance threshold as in Table 4b for
sub-section 5.2.
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Figure 2: The number of successes in determining the rel-
evant objectives in solving DTLZ5(10,") problem by using
DBSCAN
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Table 5: The number of successes in finding correct relevant
objective set in total 30 runs

Problems | 1 M Number of successes
PCSEA-based | k-means based | DBSCAN based

DTLZ5 5 10 30 30 30
DTLZ5 5 20 30 30 30
DTLZ5 5 30 30 30 30
DTLZ5 5 40 30 30 30
DTLZ5 5 50 30 30 30
DTLZ5 5 60 30 30 30
DTLZ5 5 70 27 30 30
DTLZ5 5 80 28 30 30
DTLZ5 5 90 23 30 30
DTLZ5 5 100 22 30 28
DTLZ5 10 20 21 29 29
DTLZ5 10 30 25 29 28
DTLZ5 10 | 40 26 30 29
DTLZ5 10 | 50 27 29 29
DTLZ5 10 | 60 23 29 29
DTLZ5 10 | 70 22 30 29
DTLZ5 10 | 80 21 27 24
DTLZ5 10 90 23 30 29
DTLZ5 10 | 100 25 29 28
DTLZ5 15 20 6 22 21
DTLZ5 15 30 3 23 22
DTLZ5 15 40 2 20 19
DTLZ5 15| 50 1 19 18
DTLZ5 15| 60 4 22 21
DTLZ5 15| 70 4 19 17
DTLZ5 15| 80 5 22 19
DTLZ5 15 90 3 19 16
DTLZ5 15 | 100 4 23 21

Total 525 751 726

5.2 Performance of PCS-Cluster objective
reduction

This sub-section compares the performance of the proposed method
(PCS-Cluster) with existing method, namely PCSEA-based objective
reduction. Table 5 shows numbers of successes in finding correct
relevant objective set for PCSEA and PCS-Cluster objective reduc-
tion algorithms. The values in the PCSEA-based objective reduction
is chosen the best in all cases of threshold C.

Table 5 shows the number of successes in finding correct rele-
vant objective set in total 30 runs independently for original and
two algorithms of proposed method. It can be seen that, all the
algorithms can remove redundant objective set exactly when value
of I is 5 and values of M in not greater than 60. The table also gives
decreasing trend in succeed when value of I increases, while the
proposed method decreases moderately, the original one decreases
significantly. It is clear that the number of successes in finding cor-
rect relevant objective set in the proposed method (751 and 726 for
k-means based and DBSCAN based objective reductions) is greater
than its original one (525 for PCSEA-based objective reduction).

To investigate whether results of the objective reduction algo-
rithms are significant different to each other in a statistical sense,
Wilcoxon signed-rank test is performed. The null hypothesis is that
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the performance of the two methods are similar with significant
level at 0.05, and the alternative hypothesis is that the performance
of the two methods is significant different. From the table, PCSEA
and PCS-Cluster k-means we get p-value of 3.94E-05. It says that
the null hypothesis is rejected or we accept the alternative hy-
pothesis which means that the two algorithms are different with
significant level at 0.05. PCSEA and PCS-Cluster DBSCAN we get
p-value of 3.83E-05. It says that the null hypothesis is rejected or
we accept the alternative hypothesis which means that the two
algorithms are different with significant level at 0.05. So we have
enough basis to conclude that the both variants of PCS-Cluster
are different to or better than PCSEA-based objective reduction
algorithm at level 0.05.

6 CONCLUSION AND FUTURE WORK

This paper has proposed a method of objective reduction PCS-
Cluster by combination between PCSEA evolutionary algorithm
and clustering algorithms for identifying the relevant and redun-
dant objectives. It takes advantages of PCSEA evolutionary algo-
rithm and the simple of clustering algorithms namely k-means (a
partitioning clustering algorithm) and DBSCAN (a densisty based
clustering algorithm). We designed experimental with wider range
instances of DTLZ5(I, M) problem and run 30 times independently.
The results proved that the proposed method is better than the
original one.

As the result of PCSEA-based objective reduction algorithm is
not entirely independent of the order in which the objective is
removed, therefore future works could investigate the order of
objective is examined for retaining or discarding.
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