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Abstract—Skyline frequent utility itemsets mining is a chal-
lenging task in frequent itemsets mining and plays an impor-
tant role in many data mining applications. Previous studies
presented two algorithms, namely SKYMINE and SKYMINE2,
to mine Skyline Frequent Utility Itemsets (SFUIs). In which,
the SKYMINE2 based on utility-list data structure is a state-
of-the-art algorithm. However, the SKYMINE2 remains compu-
tationally expensive because the algorithm generates numerous
utility lists, join operations, and potential SFUIs. In this paper,
we propose a more effective algorithm to mine the SFUIs based
on extent utility list data structure and using a new strategy
to prune the potential skyline frequent utility itemsets. Notably,
experimental results with four datasets show the proposed algo-
rithm reduces the number of utility lists, join operations, potential
SFUIs effectively and outperforms the SKYMINE2 in terms of
runtime.

Index Terms—Within-project Prediction, Cross-project Predic-
tion, Convolutional Neural Networks, Transfer Learning.

I. INTRODUCTION

Mining itemsets from massive data of organizations to
discover valuable information has received attention from both
academia and industry. The task is to extract the frequently
appearing items in transactions from a database. Determining
such items helps managers prepare strategic plans to serve
customer demands and boost profits. To mine itemsets in real
applications, we need to consider not only the frequency but
also other utility aspects like profit. Thus, among studies in
this field, proposed algorithms have paid more attention to
detecting the profitable itemsets in a quantitative database [9].

Frequent itemset mining (FIM) is the traditional approach
that uses a pre-specified minimum support (minSup) to gen-
erate frequent itemsets (FIs) [1], [3], [7], [8], [15]. Regarding
this, an itemset is defined as frequent if the number of
its occurrences in transactions exceeds the minSup. This
approach has two issues including 1) the difficulty to specify
the minSup value and 2) ignoring the item utilities like
weight, unit profit, and quantity, meanwhile such aspects are
preferable in practical problems.

Unlike FIM, high-utility itemset mining (HUIM) uses both
profits and quantities of products in transactions to extract
actual utility values of itemsets [2], [10]. Both FIM and
HUIM require choosing an appropriate threshold for minimum
support and utility when retrieving the frequent itemset can-
didates. A small value of the threshold leads to a large set

of frequent itemsets (FIs) or high-utility itemsets (HUIs). If
we increase the threshold, the FIs or HUIs set may be empty.
To deal with the scenario of many FIs or HUIs, a wide range
of methods have been investigated such closed itemsets [5],
[11], maximal itemsets [5], [16], closed high-utility itemsets
[4], [13], maximal high utility itemsets [12], [14].

To overcome the limitations of FIM and HUIM, Goyal et al.
develop the SKYMINE algorithm for skyline frequent utility
itemsets mining (SFUIM) [6]. The algorithm first generates
skyline frequent utility itemsets and then mines such candi-
dates to extract the itemsets. In the SFUIM, an itemset X
is considered as skyline frequent utility itemset if there is
no other itemset in the database that has both utility and
frequency higher than X . It should be noted that unlike FIM
and HUIM, the SKYMINE does not require a threshold and it
considers both frequency and utility. Due to such advantages,
recent studies have focused and made many efforts to enhance
SFUIM algorithms [6], [9]. However, these algorithms are
time-consuming because numerous potential SFUIs will be
generated.

This paper proposes a new algorithm, so-called FMSFUI
1 (Faster Algorithm For Mining Skyline Frequent-Utility
Itemsets) to efficiently mine the SFUIs. To speed up the
mining process, we develop a pruning strategy and an extent
utility list structure to reduce the numbers of utility lists, join
operations and generated potential SFUIs. The experimental
results on various databases reveal that our proposed algorithm
shows better performance than those of SKYMINE [6] and
SKYMINE2 [9] in mining SFUIs.

The remainder of the paper is organized as follows. Section
II describes the itemset mining problem, and some definitions
related to the SKYMINE algorithm. Our proposed pruning
strategy and algorithm are presented in Section III. We analyze
experiments and results in Section IV, and conclude in Section
V.

II. BACKGROUND

Given a finite set of items (symbols) I = {i1, i2, , im}. A
transaction database D is a set of transactions {T1, T2, , Tn},
such that for each transaction Tq , Tq ⊆ I and Tq has a unique

1The source code is publicly available at https://github.com/pvanh/FSFUI.
git
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identifier q called its Tid. Each item i ∈ I is associated with
a positive number prof(i), called its external unit profit and
each item ip in the transaction Tq is associated with a quantity
q(ip, Tq) called the internal utility of iq in the transaction Tq .

A itemset X , such that X ∈ I , contains k distinct items
called a k-itemset, in which k is the length of the itemset.
An itemset X is said to be contained in a transaction Tq if
X ⊆ Tq .

Definition 1. The occurrence frequency of an itemset X
in a transaction database D is denoted as f(X) and defined
as the number of transactions containing X, i.e., f(X) =
|X ⊆ Tq ∧ Tq ∈ D|.

Definition 2. The utility of an item ij in the transaction Tq

is denoted as u(ij , , Tq) and defined as total profit of item iq
in transaction Tq , i.e., u(ij , , Tq) = q(ij , Tq)× pr(ij).

Definition 3. The utility of an itemset X in the transaction
Tq such that X ⊆ Tq is denoted as U(X,Tq) and defined as
U(X,Tq) =

∑
ij∈∧X⊆Tq

u(ij , Tq).
Definition 4. The utility of an itemset X in a transaction

database D is denoted as u(X) and defined as u(X) =∑
(X⊆Tq,∧Tq,⊆D u(X,Tq).
Definition 5. The transaction utility of a transaction Tq in

a transaction database D is denoted as tu(Tq) and defined
as the sum of the utility of the items in Tq , i.e., tu(Tq) =∑

X∈Tq
u(x, Tq).

Definition 6. The transaction-weighted utility of an itemset
X in a transaction database D is denoted as twu(X) and
defined as the sum of the transaction utility of transactions
containing itemset X , i.e., twu(X) =

∑
X⊆Tq,∧Tq∈D tu(Tq).

The algorithms in FIM, HUIM use above definitions to
discover the FIs, HUIs. In SFUIM, the following definitions
are used to find SFUIs.

Definition 7 [9]. An itemset X is said to dominate another
itemset Y in D, denoted as X � Y ifff(X) ≥ f(Y ) and
u(X) ≥ u(Y ).

Definition 8 [9]. The problem of skyline frequent utility
itemset mining is to discorver all skyline frequent utility
itemsets. An itemset X in a database D is a skyline frequent
utility itemset iff it is not dominated by any other itemset in
the database.

Definition 9 [9]. The maximal utility of the frequency value
r is denoted as umax(r) and defined as the maximal utility
of itemsets having the same frequency value r.

Definiton 10 [9]. An itemset X in a transaction database
D is considered as a candidate SFUI (CSFUI) if its frequency
is equal to r and non-itemset in the database having higher
utility than u(X).

III. PROPOSED ALGORITHM FOR MINING SFUIS

In this section, we propose an algorithm for mining the set
of skyline frequent-utility itemsets. A strategy and an extent-
efficient utility list structure are also developed to reduce the
number of utility lists, the number of join operations and the
number of generated potential SFUIs.

Definition 11. The itemset P is extended with item x is
denoted as Px and defined as P x = P ∪ x. For example, if
P = {a, c, e} and x = {f} then P x = {a, c, e, f}.

Definition 12. Let � be any total order on items from I . A
sorted transaction database is denoted as SD and defined as
a transaction database, in which the items in transactions are
sorted in total order.

Definition 13. The extent utility list of an itemset P x in a
SD is a set of tuples, in which each tuple consists of four fields
as (tid, itemsetutil, itemutil, rutil). These fields are defined
as follows: the tid is the transaction ID containing the itemset
P x, the itemsetutil, itemutil and rutil respectively are the
utility of P in tid, the utility of x and the utility of resting
items after x in transaction tid.

Definition 14 (extent utility list). Given a extent utility list
of an itemset P x. The P x.sumitemsetutils is defined as
the sum of itemsetutil values in extent utility list of P x, the
P x.sumitemutils is defined as the sum of itemutil values
in extent utility list of P x, the P x.sumrutils is defined as
the sum of rutil values in extent utility list of P x.

Property 1 [9] (sumitemsetutils and sumitemutils). Given
an itemset P x having occurrence frequency is r. If the sum
of sumitemsetutils and sumitemutils values of extent utility
list of P x is higher than or equal to umax(r) then P x is
a potential skyline frequent-utility itemset.

Property 2 [9] (sumitemsetutils, itemutils and sumrutils).
Given an itemset P x having occurrence frequency is r. If
the sum of sumitemsetutils, sumitemutils and sumrutils values
of extent utility list of P x is less than umax(r) then all
extensions of P x are not SFUIs.

Definition 15. The remaining transaction-weighted utility
co-occurrence of pair item x, y such that x and y co-occur
in the transaction T in SD, x in front of y in total order is
denoted as rtwuc(x, y, T ) and defined as the sum of the utility
of the resting items in T from item x:

rtwuc(x, y, T ) =
∑

i∈T∧ifromxintotalorder

u(i, T ) (1)

Definition 16. The remaining transaction-weighted utility co-
occurrence of pair item x, y in a database SD is denoted
as rtwuc(x, y) and defined as the sum of the remaining
transaction-weighted utility co-occurrence of pair item x, y in
all transactions containing both of the item x, y in the database:

rtwuc(x, y) ==
∑

(T∈D)∧((x,y)⊆T )

rtwuc(x, y, T ) (2)

A. Pruning Strategy (Estimated Remaining Utility Co-
occurrence Pruning - ERUCP)

To mine the SFUIs, the SKYMINE [6] algorithm generates
numerous candidates because the algorithm uses the upper
bound of the itemsets is overestimated based on the two-phase
model, the algorithm SKYMINE2 [9] performs numerous
operations of joining two utility lists and generates numerous
utility lists and potentials SFUIs. To improve these limitations,
we propose a strategy to speed up mining process of the SFUIs
as follow:
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Lemma 1. Let two extent utility list of two
itemsets Px and Py such that Px having occurrence
frequency is r, Py having occurrence frequency is r1.
If min(Px.sumitemsetutils, Py.sumitemsetutils) +
rtwuc(x, y) is less than umax(r) or umax(r1) then Pxy
and all extensions of Pxy are not SFUIs.

Proof :
For ∀ pair x, y:
u(Pxy) = UTIL(P ) + UTIL(xy);
Where:
u(Pxy) is the utility of Pxy in the database D,
UTIL(P ) is the utility of P in the transactions
containing Pxy in the database D,
UTIL(xy) is the utility of {xy} in the transactions
containing Pxy in the database D.
Therefore, we have:
u(Pxy) = UTIL(P ) + UTIL(xy)
According to the extent utility list defined
in Definition 14, we have: UTIL(P ) ≤
min(Px.sumitemsetutils, Py.sumitemsetutils);
According to the Definition 16, we have:
UTIL(xy) ≤ rtwuc(x, y);
Therefore, we have:
u(Pxy) = UTIL(P ) + UTIL(xy) ≤
min(Px.sumiutil, Py.sumiutil) + rtwuc(x, y).

Such that if min(Px.sumiutil, Py.sumiutil) +
rtwuc(x, y) is less than umax(r) or less than
umax(r1) then Pxy and all extensions of Pxy are
not SFUIs.

Such that if min(Px.sumiutil, Py.sumiutil) + rtwuc(x, y)
is less than umax(r) or less than umax(r1) then Pxy and
all extensions of Pxy are not SFUIs.

B. Proposed Algorithm

In this subsection, we proposed a new effective algorithm
to mine skyline frequent utility itemsets. At the beginning,
the transaction weighted utility (twu) of all 1-itemsets is
calculated. In the next step, 1-itemsets are sorted in twu-
ascending order. Then, the remaining transaction-weighted
utility of pairs item x, y in a database (rtwu(x,y)) is calculated,
and finally, the extent utility lists of 1-itemsets are constructed.
Finally, we designed FSFUI-Miner algorithm to discover the
potential SFUIs. The pseudocode of FSFUI-Miner is shown
in Algorithm 1. At line 13, extent utility lists are pruned
(according to Lema 1) to reduce the numbers of join operations
and generated potential SFUIs. To determine the actual SFUIs
from PSFUIs discovered by FSFUI-Miner algorithm, we use
Algorithm 2 to mine.

IV. EXPERIMENTAL RESULTS

In this section, we conducted substantial experiments on
four datasets to assess the performance of our proposed algo-
rithm FSKYMINE for mining SFUIs. Table I shows statistical
figures on the datasets. To the best of my knowledge, there are
only two algorithms, i.e., SKYMINE [6] and SKYKINE2 [9],
that were presented to mine the SFUIs by considering both

Algorithm 1: FSFUI-Miner

Input : P is the extent utility list of the itemset P ;
ExtPs is the set of extent utility lists of the itemsets
extended from P ;
umax is an array to keep the maximum utility of the
varied frequencies;
rtwuc is array to keep the remaining
transaction-weighted utility of pair of any two items x, y
in database D.
Output: PSFUIs is the set of P s potential skyline

frequent utility itemsets
1 foreach x ∈ ExtPs do
2 if (Px.sumitemsetutil + Px.sumitemutil) =

umax[f(Px)]) then
3 PSFUIs[f(Px)]+ = Px;
4 end
5 else if sum(Px.itemsetutil + Px.itemutil) >

umax[f(Px)]) then
6 umax(f(Px))←

sum(Px.itemsetutil + Px.itemutil);
7 Remove Py from PSFUIs[f(Px)];
8 PSFUIs[f(Px)]← Px;
9 end

10 if Px.sumIutils+ Px.sumItemutils+
Px.sumRutils ≥ uEmax[f(Px)] then

11 exULs← null;
12 foreach (y after x in ExtPs do
13 if

(min(Px.sumitemsetutil, Py.sumitemsetutil)+
rtwuc(x, y) ≥ umax[f(Px)]) and
(min(Px.sumitemsetutil, Py.sumitemsetutil)+
rtwuc(x, y) ≥ umax[f(Py)]) then

14 exULs←
exULs+ Construct(P, Px, Py);

15 end
16 end
17 FSFUI-Miner (Px, exULs, umax, PSFUIs);
18 end
19 end

Algorithm 2: Proposed mining algorithm in [9]
Input : PSFUIs is the set of potential SFUIs
Output: SFUIs is the set of skyline frequent utility

itemsets
1 foreach X ∈ PSFUIs do
2 foreach Y ∈ PSFUIs do
3 if (u(X) ≥ u(Y ) and f(X) > f(Y )) or

(u(X) > u(Y ) and f(X) ≥ f(Y )) then
4 SFUIs← X ∪ SFUIs;
5 Remove Y from PSFUIs;
6 end
7 end
8 end

2019 6th NAFOSTED Conference on Information and Computer Science (NICS)

253



Algorithm 3: The Construct function

Input : P is the extent utility list of the itemset P ;
Px is the extent utility list of the itemset Px;
Py is the extent utility list of the itemset Py.
Output: the extent utility list of Pxy

1 foreach tuple elex ∈ Px do
2 if ∃eley ∈ Py and elex.tid = eley.tid then
3 elexy = (elex.tid, elex.itemsetutil +

elex.itemutil, eley.itemUtil, eley.rutil);
4 ExtentUListofPxy ←

X ∪ ExtentUListofPxy;
5 end
6 end
7 return ExtentUListofPxy;

TABLE I
THE DATASETS

Dataset #transactions #items
Chess 3,196 75
Mushroom 8,124 119
Foodmart 4,141 1,559
Retail 88,162 16,470

the frequency and utility of the itemsets in the transaction
database. According to technicals point of view, SKYMINE2
is the more state-of-the-art algorithm. A computer with core
i3 processor of 2.3 GHz, with 4GB RAM running Windows
7 is used in our experiments.

Tables II−V compare FSKYMINE and SKYMINE2 in
terms of running time to produce the same high-utility item
sets. The ”Ratio” columns show the ratios of SKYMINE2’s
values to those of FSKYMINE. As can be seen in Ta-
ble II, FSKYMINE runs much faster than SKYMINE2 on
all databases. Specially, one Retail, the running time of
FSKYMINE is 6 times less than that of SKYMINE2. Ap-
plying the pruning strategy (Lemma 1) results in a significant
reduction of join operations, utility lists and potential SFUIs
in comparison with SKYMINE2 (III−V). This helps to reduce
the running time as seen as in Table II.

TABLE II
THE RUNNING TIME OF THE ALGORITHMS (MS)

Dataset FSKYMINE SKYMINE2 Ratio
Chess 279,887 447,163 1.6
Mushroom 10,627 18,051 1.7
Foodmart 374 840 2.2
Retail 37,521 234,159 6.2

TABLE III
THE NUMBER OF JOIN OPERATIONS

Dataset FSKYMINE SKYMINE2 Ratio
Chess 14,196,256 15,433,526 1.09
Mushroom 528,200 810,321 1.53
Foodmart 791 1,306,272 1651.45
Retail 4,671,121 506,089,424 108.34

TABLE IV
THE NUMBER OF UTILITY LIST OR EXTENT UTILITY LIST

Dataset FSKYMINE SKYMINE2 Ratio
Chess 14,196,331 15,433,601 1.09
Mushroom 528,319 810,440 1.53
Foodmart 2,350 1,307,831 556.52
Retail 4,687,591 506,105,894 107

TABLE V
THE NUMBER OF POTENTIAL SFUIS

Dataset FSKYMINE SKYMINE2 Ratio
Chess 3,074 3,077 1
Mushroom 1,385 1,385 1
Foodmart 24 24 1
Retail 803 826 1.03

Our proposed algorithm is specially efficient for scenarios
of numerous items that normally appear in real-world appli-
cations. On Foodmart, FSKYMINE produces the number of
join operations and utility list less than those of SKYMINE2
1,651 and 556 times. Similarly, such ratios are 108 and 107
on Retail. As a result, FSKYMINE significantly outperforms
SKYMINE2 on these datasets.

V. CONCLUSION

In this paper, we proposed a very fast algorithm namely
FSKYMINE to mine skyline frequent utility itemsets.
FSKYMINE is specially efficient for datasets with many
items in comparison with SKYMINE2, the state-of-the-art
algorithm. The proposed algorithm relays on a strategy of
ERUCP (Estimated Remaining Utility Co-Occurrence Prun-
ing) to reduce the number of join operations in mining process
skyline frequent utility itemsets using extent utility list data
structure, and the number of generated potential SFUIs. Our
experiments on four datasets have confirmed the assumption.
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